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Abstract: Electronic commerce (E‑commerce) transactions require secure communication to protect
sensitive information such as credit card numbers, personal identification, and financial data from
unauthorized access and fraud. Encryption using public key cryptography is essential to ensure se‑
cure electronic commerce transactions. RSA and Rabin cryptosystem algorithms are widely used
public key cryptography techniques, and their security is based on the assumption that it is compu‑
tationally infeasible to factorize the product of two large prime numbers into its constituent primes.
However, existing variants of RSA and Rabin cryptosystems suffer from issues like high computa‑
tional complexity, low speed, and vulnerability to factorization attacks. To overcome the issue, this
article proposes a new method that introduces the concept of fake‑modulus during encryption. The
proposed method aims to increase the security of the Rabin cryptosystem by introducing a fake‑
modulus during encryption, which is used to confuse attackers who attempt to factorize the public
key. The fake‑modulus is added to the original modulus during encryption, and the attacker is un‑
able to distinguish between the two. As a result, the attacker is unable to factorize the public key and
cannot access the sensitive information transmitted during electronic commerce transactions. The
proposed method’s performance is evaluated using qualitative and quantitative measures. Quali‑
tative measures such as visual analysis and histogram analysis are used to evaluate the proposed
system’s quality. To quantify the performance of the proposed method, the entropy of a number of
occurrences for the pixels of cipher text and differential analysis of plaintext and cipher text is used.
When the proposed method’s complexity is compared to a recent variant of the Rabin cryptosystem,
it can be seen that it is more complex to break the proposedmethod—represented as O(ɲ× τ)which
is higher than Rabin‑P (O(ɲ)) algorithms.

Keywords: cryptography; differential analysis; entropy; Fermat’s factorization; RSA; Rabin cryptography

1. Introduction
Secure transaction in e‑commerce refers to the safe and secure exchange of informa‑

tion and money between buyers and sellers in an online marketplace. E‑commerce has
revolutionized the way people buy and sell goods and services, making it easy for cus‑
tomers to shop from anywhere in the world, at any time of the day. The convenience of
online shopping has also led to the need for secure transactions to protect both buyers and
sellers from online threats and fraud. However, with the growth of e‑commerce, there
have also been concerns about the security of online transactions. Here are some of the
most common security issues of e‑commerce:
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• Payment Security: One of the biggest concerns for consumers when shopping online
is the security of their payment information. Cybercriminals may intercept and steal
sensitive data such as credit card numbers, names, and addresses. To prevent this,
it’s important for e‑commerce websites to have strong encryption protocols to protect
customer data.

• Data Privacy: Customers share a lot of personal information when they make an on‑
line purchase. This data may include names, addresses, phone numbers, and email
addresses. If this data falls into the wrong hands, it can be used for identity theft
or other criminal activities. Businesses must ensure that they are handling this data
securely, with proper encryption, storage, and access controls.

• Phishing and Malware Attacks: Cybercriminals often use phishing and malware at‑
tacks to steal sensitive information from customers. Phishing attacks involve sending
fake emails or websites that appear to be legitimate to trick customers into sharing
their personal information. Malware attacks involve installing malicious software on
a customer’s computer to steal data. E‑commerce businesses should be vigilant in
monitoring for these attacks and should have strong anti‑malware and anti‑phishing
measures in place.

• Website Security: The security of e‑commercewebsites is also critical to protect against
hacking and data breaches. Businesses should ensure that their websites are secure
with SSL/TLS encryption, firewalls, and other security measures. They should also
monitor for suspicious activity, such as multiple failed login attempts.
Secure transactions in e‑commerce are crucial to maintaining the trust of customers

and ensuring the safety and security of online transactions. E‑commerce platforms must
employ various security measures to protect the sensitive information of buyers and sell‑
ers and prevent fraudulent activities. They are encryption, authentication, and secure pay‑
ment systems.

Encryption ensures that sensitive information such as credit card details, passwords,
and personal data are securely transmitted over the internet, making it difficult for hack‑
ers to intercept or steal such information. Authentication involves verifying the identity
of users, ensuring that only authorized individuals have access to sensitive information.
Secure payment systems ensure that the payment information is transmitted securely, pre‑
venting unauthorized access and fraudulent activities. This involves the use of secure pay‑
ment gateways, which encrypt and process the payment information, ensuring that the
transaction is secure and protected [1].

Encryption is the process of converting plaintext into a coded form, making it unread‑
able to unauthorized users. Public key cryptography, such as the RSA (Rivest, Shamir,
and Adleman) and Rabin cryptosystems, are widely used encryption techniques that en‑
sure electronic commerce transactions’ confidentiality, integrity, and authenticity.

2. Related Work
RSA cryptography is the oldest, most used, and most efficient of the various public‑

key cryptosystems, developed by Rivest et al. [2] in 1978. Rivest et al. [3] first proposed
the problem of factorization in the year 1978. However, RSA’s security [4] cannot be guar‑
anteed theoretically; it is a slow algorithm that can only encrypt a small amount of data
simultaneously. There have been several attempts to overcome the limitations of the RSA
algorithm. Michael O. Rabin [5] made one such attempt in 1979. To increase the speed of
the encryption of RSA, he proposed a variant of RSA, later known as Rabin’s cryptography.
Rabin is essentially RSAwith the optimal choice of public key exponent (e), where encryp‑
tion uses integer two as the public key exponent, which takes a shorter computation time
for encryption. This feature makes the Rabin cryptosystem relatively faster in encryption
than Standard RSA. Rabin algorithmmakes use of two keys like RSA. Here, the public key
is a common modulus (n), and the private keys are the prime factors used to compute n.
Hence, the security of the Rabin algorithm entirely depends on n. In cryptanalysis, deter‑
mining the factors of common modulus n plays a vital role. If someone breaks the factor,
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obtaining the message becomes an easy task. Using the Rabin cryptosystem, getting plain‑
text back from the cipher text is considered as hard as factoring. Because of this feature,
Rabin cryptosystem is used in numerous research applications [6–9]. Rabin cryptography
can secure e‑commerce transactions by encrypting sensitive information using the public
key and decrypting it using the private key.

Here is an example of a secure transaction using Rabin cryptography:
1. Alice wants to purchase a book from an online store.
2. The online store has a publicly available public key.
3. Alice uses Rabin encryption to encrypt her credit card information and other personal

data using the online store’s public key. This generates the ciphertext.
4. Alice sends the ciphertext to the online store.
5. The online store receives the ciphertext and uses its private key to decrypt

the message.
6. The online store processes the transaction and sends a confirmation message to Alice.
7. The confirmation message is encrypted using Alice’s public key.
8. Alice receives the encrypted confirmation message and uses her private key to de‑

crypt it.
In this example, Rabin cryptography ensures that Alice’s credit card information and

personal data are secure during the transaction. The online store’s public key encrypts Al‑
ice’s information, and only the online store’s private key can decrypt the ciphertext. Sim‑
ilarly, Alice’s public key encrypts the confirmation message, and only Alice’s private key
can decrypt the message. This provides a secure way for Alice and the online store to ex‑
change information without the risk of unauthorized access or interception. It’s important
to note that Rabin cryptography are susceptible to brute force attacks and side‑channel
attacks. Therefore, using a secure implementation of these algorithms and keeping the
private keys secure is essential. To improve the security of the Rabin cryptosystem, re‑
searchers contributed several ideas to make the Rabin cryptosystem strong. The following
section discusses enhancements made in the Rabin cryptosystem to achieve extraordinary
results in security.

Williams [5] uses unique prime numbers to make the system more efficient using the
quadratic residue theory and the Jacobi symbol in the decryption. This leads to obtaining
a proper message back out of four decrypted values. However, this technique results in
Poor performance due to the involvement of the Jacobi symbol computation in the encryp‑
tion and decryption process, causing increased computational complexity and the need
for extra bits, which increases cipher text overhead. The work proposed in [10] optimized
the Rabin cryptosystem by using reciprocal numbers to solve Rabin’s 4‑to‑1 situation in
decryption in 1999. In this method, Encryptor calculates and sends two additional bits of
informationwith its ciphertext to indicate the proper square root. However, it still requires
more computational costs since it uses the Jacobian symbol for encryption and decryption.
LynnMargaret Batten and Hugh CowieWilliams [11] introduced a unique scheme known
as the ‘R‑W signature scheme,’ which is considered the most efficient decryption method
compared to existing methods. This scheme uses the concept of the Chinese Reminder
Theorem (CRT) to obtain the correct plaintext back out of 4 outcomes of the decryption al‑
gorithm using private keys α and β. In 1997, authors in [12] proposed an RSA‑type system
using n‑adic expansions and permutation functions, showing that the proposed method
is faster. The authors introduced a new concept [13] built on the hardness of factoring
and pointed similarity of the trapdoor permutation of the proposed scheme with the Ra‑
bin cryptosystem. He also suggested that the proposed method is best suited for practi‑
cal application by developing a hybrid encryption scheme using a new trapdoor one‑way
permutation. The work in [14] deals with deterministic aspects and identification prob‑
lems of the Rabin cryptosystem during decryption. The paper [15] proposed a fault attack
against the Rabin cryptosystem using a one‑byte permutation on public key n. However,
the above‑discussed methods are either too complex or easy to crack.
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Some researchers turn to the modulus process to improve the Rabin cryptosystem.
In [16], the authors analyzed and compared three types of algebraic analysis on AAβ cryp‑
tosystem. The study includes congruence relation, which is used to solve theAaβ equation.
Continued fractions and Coppersmith’s theorem are used to retrieve the factors from the
equation. The authors developed an asymmetric scheme based on the integer factorization
problem [IFP], including the square root scenario in [17], which is analytically proved to
have 1 to 1 decryption. Mahad et al. [17] introduced a newoptimized solution to correct the
Rabin cryptosystem decryption failure of 4 to 1 by reducing the plaintext phase space from
x ϵ Zαβ, to x ϵ 22n−2, 22n−1 ⊂ Zαβ, where αβ is a composite of 2 strong primes αβϵ 22n, 22n+2.
Also, the specified proposed [18] method makes the encryption process fast, and compu‑
tation is not included much. In [19], the authors proposed two methods using common
modulus ᶇ = α2β. In the first cnge to M ∈ Zαβ. In the second method, the range of
plaintext is restricted between 0 to 22n−2. In both schemes, the authors introduced a math‑
ematical notation to obtain actual plaintext xi among four possible candidates x1, x2, x3, x4
which is calculated using, (

Ci − xi2
)

/(n) = Wi (1)

where Wi is an integer, Ci is the cipher.
All Rabin encryption variant techniques stated in the literature above, a one‑time ex‑

ecution of modulo ᶇ squaring is registered with complexity O
(
ᶇ2). This feature of Rabin

makes the system the quickest andmost efficient compared to RSA. In the Rabin cryptosys‑
tem, encryption can be done using Equation (2).

Ci ≡ x2(mod ᶇ) (2)

However, most of the researchers majorly concentrated on the decryption side of the
Rabin cryptosystem. The decryption side of the Rabin cryptosystem proposed
in [11,14,15,19] uses two prime factors as the key and uses the Chinese Reminder Theorem
(CRT) to obtain the plaintext. In these approaches, the decryption procedure produces
four possible plaintexts, of which only one will always be correct. In addition to the cor‑
rect plaintext, decryption has three false plaintext results to judge the actual answer. This
is themain issue and significant disadvantage of Rabin‑type algorithms. If the algorithm is
used to encrypt a text message, then obtaining back in the decryption is not a difficult task.
If the plaintexts are numerical values, this algorithm becomes challenging in decryption.

This limitation has been resolved in the paper [20] with a new Rabin‑like cryptosys‑
tem without using the Jacobi symbol. In this approach, the decryption function needs a
single prime p as the key by computing a single mod function and giving the required
plaintext without any failure. In [21] work of Rabin P is assessed on the microprocessor
platform in terms of runtime and energy consumption. The following points summarize
the limitations of all existing Rabin cryptosystems.
• Case I: In the case of the existingworks, it is easy to recover the plaintext if the intruder

can efficiently factor in the public key ᶇ.
• Case II: Not all the plaintexts can be used for encryption/decryption.
• Case III: It requires plaintext padding systems or sending extra bits to improve en‑

cryption and decryption.
• Case IV: Insufficient expansion of the plaintext‑ciphertext ratio.

To overcome all these issues, this paper proposes a novel key generation process by
applying the fake‑modulus (Ӡ) concept. The remainingportions of the article are structured
as follows: Section 2 introduces the background of Rabin‑ӠCryptosystem and the previous
security efforts. The mathematical preliminaries essential to propose the algorithm are
described in Section 3. Section 4 suggests Rabin‑Ӡ cryptosystem using a fake‑modulus
algorithm. Section 5 explores the evaluation results and discussion. The conclusion is
discussed in Section 6.
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3. Mathematical Preliminaries
This section gives the preliminaries required to support the proposed methodology,

which makes the decryption process more unique and robust. Also, we suggest one more
RSA variant by introducing the fake‑modulus principle Ӡ, which improves the Rabin en‑
cryption process. This feature makes the proposed system hard to break using the factor‑
ization process.

3.1. Range of Plaintext
The proposed algorithm supports encryption and decryption functionality for a spe‑

cific range of plaintext. If x is the plaintext that is to be encrypted, then the range of plain‑
text is defined as

√
Ӡ < x < α2

2 .

Theorem 1: Uniqueness of Solutions in Fake‑Modulus Based Rabin‑Ӡ Cryptosystem.
Let x denote the plaintext, and α and β represent the prime factors of ɲ. For any plaintext x

satisfying the condition
√
Ӡ < x < α2

2 , a unique solution exists obtained through the computation
of, Ci ≡ x2mod Ӡ.

Proof: Upper bound of x is α2

2 thenwe should have x1 + x2 < α2, which leads to the contra‑
diction x1 + x2 = α2. Suppose if x1 and x2 are greater than α2

2 , which gives
x1 + x2 > α2 again which leads to a contradiction. Thus, one of x1 or x2 is always less
than α2

2 . Suppose x1 < α2

2 , then there exists a real number ψ1 such that x1 + ψ1 = α2

2 .
Similarly, suppose x2 > α2

2 then there is a real number ψ2 such that x2 − ψ2 = α2

2 .
⇒ (x1 + ψ1) + (x2 − ψ2) =

α2

2 + α2

2 = α2 .
But we have x1 + x2 = α2

⇒ ψ1 − ψ2 = 0
⇒ ψ1 = ψ2 .
⇒ Only one of x1 or x2 is always less than α2

2 . Hence there exists a unique x < α2

2 . □

Cipher values obtained from the proposed algorithm’s encryption functionality also
fall within a specific range. If Ci be the cipher value, then the range of cipher values re‑
stricted to fall within the range 0 < Ci < ɲ using Equation (3)

Ci ≡ x2(mod Ӡ) (3)

The limitations specified in cases I, III, and IV can be eliminatedusing the fake‑modulus
concept, which is used to hide the public key ɲ during the time of encryption. The compu‑
tation process to obtain a fake‑modulus is explained as follows.

3.2. Fake‑Modulus Principle
In the Rabin algorithm, let α and β are two large prime numbers, such that

(α + 1)mod 4 ≡ 0 and (β + 1)mod 4 ≡ 0. If ɲ = α2β then, let Fake‑modulus key
Ӡ ϵ Z+ can be computed using the formula

Ӡ = ɲ+
(

α2 × τ
)

, (4)

where τ is the random integer that falls within the range 0 < τ <
√

α, and the range of Ӡ
should be α2

2 < Ӡ < α4

4 . Where τ is generated using a linear feedback shift register (LFSR)
falls within the range 0 < τ < ±

√
α and range of Ӡ should be α2

2 < Ӡ < α4

4 . The length
of the key τ should be chosen to provide a sufficient level of security, while also ensuring
that the encryption and decryption operations can be performed efficiently. A key length
of 1024 bits is commonly used for the Rabin cryptosystem.

A PRNG [22,23] with a suitable seed value can be used to generate the secret key. Any
integer value қ ∈ ±

√
α is considered for initial seed values of LFSR. In this generation of
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key sequence is based on the initial seed values қ1, қ2, қ3 . . . қi are considered. As shown
in the Figure 1, to randomize the key sequence it uses a function f (қ1, қ2, қ3 . . . қi) mod

√
α.

To get more randomized results, prime values is taken as the initial seed values of LFSR.
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The decryption algorithm in the proposed methodology requires a single prime num‑
ber as its key and performs with a single modular exponentiation process. This has more
impact on the computational complexity of the proposed method over other variants. The
following proof gives the justification for the methods used in decryption.

Theorem 2: Let Ci ≡ x2mod Ӡ is the cipher text of Rabin. Then decryption algorithm produces a
unique solution.

Proof: Let Ci be the cipher value and α be the prime factor which is used as the private key
at the decryption side. Suppose Ci ≡ x2mod Ӡ is the cipher text, and we obtain modulus
ɲ = α2β. We can write Ci ≡ x2mod Ӡ as Ci − x2 ≡ 0 mod Ӡ. Then, α2

Ӡ → α2

Ci−x2 . Therefore
x < α2, only solving is sufficient for Ci ≡ x2mod α2 which is effectively solved. Further‑
more, there are exactly two separate x1 and x2 solutions that satisfy Ci ≡ x2mod α2. The
decryption algorithm produces only a unique solution for x < 22k−1. Note that the up‑
per limit of x < α2

2 . Then either x1 or x2 is less than α2 so x1 + x2 = α2 satisfies x < 22k−1.
Lastly, we conclude that the decryption algorithmwill produce only one unique x < 22k−1.

The discussed preliminaries can be readily adapted to the proposed method, which
will be briefly discussed in the next section. This will encompass key generation, encryp‑
tion, decryption, and will be supported by an illustrative experimental example. □

4. Methodology Proposed
The Rabin‑Ӡ cryptosystem is a variant of the Rabin cryptosystem that uses a fakemod‑

ulus to reduce the computational cost of the decryption process.
This section proposes the methodology using Rabin‑Ӡ cryptosystem using the fake‑

modulus concept that is divided into three stages: key generation, encryption, and de‑
cryption. Specifically, the fake‑modulus is chosen in the key generation step according
to the selected large prime number. By this operation, we can keep α as a secret key and
thus increase security. To design an efficient Rabin‑Ӡ lighter weight cryptosystem, we can
consider the following steps:

4.1. Key Generation
In the process of key generation the fake modulus key Ӡ ϵ Z+ can be computed using

the formula specified in Equation (4). The Algorithm 1 describes the process of obtaining
fake modulus.

Algorithm 1: Key Generation

Input: 2 large prime numbers α and β by satisfying (α + 1) mod 4 == 0 and (β + 1) mod 4 == 0.
Output: Fake‑modulus Ӡ.
Steps:

1. Select 2 large prime numbers α and β by satisfying (α + 1) mod 4 == 0 and
(β + 1) mod 4 == 0.

2. Calculate the modulus ɲ = α2β. To hide the public key, compute fake‑modulus Ӡ using
function Ӡ = ɲ+

(
α2 × τ

)
where Ӡ is in the range of α2

2 < Ӡ < α4

4 and τ is an arbitrary
integer used to generate fake‑modulus.

3. Share fake‑modulus Ӡ as the public key to the encryption side and use α as a secret key on
the decryption end.

4.2. Encryption
The encryption operation involves computing the ciphertext as the square of the plain‑

text modulo the fake modulus. This operation can be performed efficiently using standard
modular exponentiation algorithms in Algorithm 2.



Cryptography 2023, 7, 44 8 of 20

Algorithm 2: Encryption

Input: Plaintext xi and fake‑modulus Ӡ.
Output: Cipher text Ci.
Steps:
Encrypt the plaintext xi, where the range of xi is 0 < xi <

α2

2 using
Ci ≡ x2(mod Ӡ)

4.3. Decryption
The decryption operation involves computing the square roots of the ciphertext mod‑

ulo, both the true and fake moduli in Algorithm 3. The square root modulo the fake mod‑
ulus, can be computed efficiently using the LFSR, while the square root modulo, the true
modulus, can be calculated using standard modular exponentiation algorithms. The cor‑
rect plaintext can be obtained by combining the results of these computations using the
Chinese remainder theorem.

Algorithm 3: Decryption

Input: Cipher text Ci and secret key α

Output: Plaintext xi.
Steps:

1. Compute
wi = Ci (mod α) (5)

2. Find
xα = wi

α+1
4 (mod α) (6)

3. Obtain

i =
Ci − x2

α

α
mod α (7)

4. Compute vwhich is multiple inverses of 2xα for α, i.e.,

(2xα ∗ v)mod α = (2xα ∗ v) mod α = 1 (8)

5. Obtain
j = (i ∗ v)(mod α) (9)

6. Compute
x1 = xα + jα (10)

7. If x1 > α2

2
then plaintext x = α2 − x1 otherwise x = x1 (11)

4.4. Example
In this section, we study a case of problem by assuming two prime numbers α = 263,

β = 283 and plaintext x = 21,017 and use the proposed algorithm to encrypt and decrypt
this plaintext.

4.4.1. Key Generation
Let α = 263 and β = 283 are the two prime numbers selected by satisfying

(α + 1) mod 4 == 0 and (β + 1) mod 4 == 0. Compute modulus ɲ = α2β = 19, 574, 827.
Select arbitrary integer τ within the range 0 < τ <

√
α and compute the fake‑modulus us‑

ing Equation (4). In this example, we selected τ = 5 and obtained Ӡ = 19, 920, 672. Share
fake‑modulus Ӡ as the public key and keep α = 263 as secret.

4.4.2. Encryption
Using the fake‑modulus Ӡ = 19, 920, 672 perform encryption operation on plaintext

x = 21, 017. Using equation Ci ≡ x2(mod Ӡ) obtain the cipher text Ci = 3, 459, 505.
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4.4.3. Decryption
Upon receiving the cipher value Ci = 3, 459, 505 from the sender using private key

α = 263, the receiver follows the following steps. Compute w using Equation (5) and
obtain w = 3. Compute xα = 23 using Equation (6). The value i = 2 was obtained using
Equation (7). Compute v which is multiple inverses of 2xα with respect to α is computed
using Equation (8) and obtained v = 227. Using Equation (9) calculate j = 183. Compute
x1 = 48, 152 using Equation (10). According to Equation (11), the value of x1 > α2

2 then
plaintext x = α2 − x1. In this case α2 = 69,169 and x1 = 48, 152. The difference between
α2 − x1 = 21,017, which is plaintext x.

The flow diagram of the Rabin‑Ӡ algorithm for key generation, encryption, and de‑
cryption is explored in Figure 1.

5. Cryptanalysis
In all the versions of the Rabin cryptography algorithms stated in [11,14,15,19], the

public key component ᶇ is shared publicly. Hence the hacker can crack the system very
easily using the following two cryptanalysis methods:
• By factoring the prime numbers using Fermat’s Factorization method [24]
• Breaking the plaintext using cipher value and shared public key by brute force.

The following subsections shows that Rabin‑Ӡ with fake‑modulus is secure for the
above two hacking strategies.

5.1. Obtaining Private Keys from Fermat’s Factorization Method
Fermat factorizationmethodknownas Fermat’sDifference of SquaresMethods, which

uses the concept of quadratic disputes.
Let ᶇ be the composite number, which is written as ᶇ = α2 ∗ β; where 1 < β <

√ᶇ ,
hence α > β,

ᶇ =
[
α+β

2

]2
−

[
α−β

2

]2
Where S = α+β

2 , T = α−β
2 then α = S + T and β = S − T ,

it can also written as,
ᶇ = S2 − T 2

where,
ᶇ = (S + T )(S − T ) = α·β (12)

In the strategy of Fermat factorization, the algorithm searches for the value of Ƴ2 − ᶇ
until it discovers an ideal root value. The search process begins from

∣∣√ᶇ
∣∣+ 1,

∣∣√ᶇ
∣∣+ 2,

and so on. The above explanation demonstrates that this algorithm is guaranteed to even‑
tually succeed in finding the factor value associated with the discovered root value. Let’s
utilize the Fermat method to factorize ᶇ = 21,473. After determining i which is the ideal
root value of ᶇ, we find √ᶇ =

√
21, 473 = 146.536 . . . rounded to the nearest integer gives∣∣√ᶇ

∣∣ = 146 → 0 . We initiate the process by incrementing from the initial root 0 until we
find an integer. The progression of obtaining an integer from the ideal root value is pre‑
sented in Table 1. By employing Equation (12), the factorization process can be expressed
as ᶇ = (153 + 44) × (153 − 44). Therefore, the factors of the given ᶇ are α = 197 and
β = 109.
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Table 1. Fermat’s Factorization Process.

I Ƴi Ƴi2 Ƴi2−n
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1 147 21,609 136 11.661903789690601
2 148 21,904 431 20.760539492026695
3 149 22,201 728 26.981475126464083
4 150 22,500 1027 32.046840717924134
5 151 22,801 1328 36.4417343165772
6 152 23,104 1631 40.38564101261734
7 153 23,409 1936 44

Table 2 presents the outcomes of the Fermat’s factorization process applied in the Ra‑
bin p algorithm, while Table 3 illustrates the utilization of Rabin Ӡ with the fake‑modulus
approach. A comparison was conducted using prime factors of various key sizes, show‑
casing the steps taken to factor the given modulus (ᶇ), the processing time required for fac‑
torization, and the obtained factors through Fermat’s factorization. The results depicted in
Tables 2 and 3 demonstrate that the Rabin Ӡ with fake‑modulus algorithms involve more
steps and time to factorize the modulus (ᶇ), and the resulting factors are not perfect. This
observation highlights the robustness of the proposed algorithm and its ability to conceal
the private key utilized in the decryption process.

Table 2. Use of Fermat’s Factorization Process in Rabin‑P algorithm.

Key Size ᶇ = α2β Steps k Factoring Time in µs Factors Obtained

8 4,307,411 6631 6.2408447265625 17,161, 251
10 278,726,051 120,579 62.55626678466797 273,529, 1019
12 17,411,169,179 1,998,079 1064.565896987915 4,255,969, 4091
14 1,105,352,737,843 32,732,805 17,681.19716644287 67,551,961, 16,363
16 70,363,372,715,879 528,613,693 3,430,048.5668182373 1,073,938,441, 65,519

Table 3. Use of Fermat’s Factorization Process in Rabin‑Ӡ algorithm.

Key Size ᶇ = α2β Steps k Factoring Time in µs Factors Obtained

8 4,307,411 5899 12.034177780151367 17,161, 501
10 278,726,051 7253 11.652231216430664 50,731, 10,983
12 17,411,169,179 1137 0.8997917175292969 208,363, 167,103
14 1,105,352,737,843 818 0.7925033569335938 1,536,953, 1,438,325
16 70,363,372,715,879 12,748,236 144,303.49683761597 46,174,339, 3,047,703

5.2. Obtaining Plaintext from Cipher Text and Modulus in Rabin Cryptosystem Using Brute
Force Method

Consider Mi ∈ Z as the plaintext to be encrypted using the encryption function
Ci = Mi

2mod ᶇ, where Ci ∈ Z represents the ciphertext, and ᶇi ∈ Zpq serves as the mod‑
ulus used as a public key in this function. Let қ ∈ Z be an integer that is iteratively incre‑
mented until the resulting Mi becomes an integer, using the function Mi =

√
Ci + қ× ᶇ.

The following case studies provide illustrations of the process involved in recovering a
message Mi from the ciphertext Ci and modulus n through a brute force attack on the Ra‑
bin cryptosystem. Figure 2 visually presents the step‑by‑step procedure for recovering the
message Mi using the ciphertext Ci and modulus n through the brute force attack on the
Rabin cryptosystem.
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5.3. Case Study
Let C = 11, 544, 473 represent the cipher value, and the public key component ᶇ =

19, 574, 827. The eavesdropper, using these parameters, performs the following operation
using the equation Mi =

√
Ci + қ× ᶇ, where қ is the integer value that indicates the

number of iterations or steps required to break the cipher. We initiate the incrementing
process from 0 until we obtain an integer value for Mi. In this example, when қ = 8, the
equation yields an integer value of 12,967. Since this integer value, 12,967, corresponds
to the plaintext for the given cipher value, Table 4 displays the step‑by‑step process of
obtaining the plaintext from the given cipher value.

Table 4. Process of obtaining Plaintext from the given cipher text.

k Mi =
√
Ci + k × n

0 3397.7158503912597
1 5578.467531500027
2 7119.980828625875
3 8382.657931706386
4 9478.59594032787
5 10,460.334985075764
6 11,357.52767991344
7 12,188.858108945235
8 12,967

The number of steps needed to break the plaintext using Rabin p versus Rabin Ӡwith
fake‑modulus for various key sizes is presented in Figure 3. The figure illustrates the com‑
parison of the number of steps required to break the plaintext between Rabin p and Rabin
Ӡwith fake‑modulus for different key sizes.
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modulus for different Key size.

Observations:
• It is observed that Rabin‑P, with the fake‑modulus approach, denoted as fake Rabin‑P,

requires a higher number of steps to crack the plaintext from the given ciphertext.
• The time consumption for Rabin‑P and Rabin‑P with the fake‑modulus is approxi‑

mately equivalent for prime numbers with lower bit lengths (e.g., 8, 10, and 12 bits).
However, as the bit length increases beyond 16 bits, the gap between the time curves
widens significantly.

• Based on the statistical comparison, it is evident that breaking the code using the pro‑
posed fake‑modulus approach, demands more time and steps compared to the tradi‑
tional Rabin‑P algorithm.

6. Results and Analysis
In this section, we aim to highlight the significance of the Rabin Ӡ cryptosystem in rela‑

tion to the Rabin P cryptosystem, particularly regarding its robustness. We thoroughly ex‑
amine the investigations conducted on the security provided by the proposed algorithms,
comparing them to the Rabin P cryptosystem through performance and complexity anal‑
ysis. Our objective is to showcase the importance of the proposed method in terms of
its robustness compared to the Rabin P cryptosystems. To assess the significance of the
proposed systems, we establish an experimental setup utilizing an existing Intel P4 CPU
1.7 GHz, 1.24 GB RAM, and the Windows 10 platform. To showcase the performance of
the proposed algorithms, we applied them to a variety of test images, including Lena, and
Baboon. These test images have dimensions of (512 × 512 × 3) pixels. By using these rep‑
resentative images, we aim to demonstrate the effectiveness and capabilities of the algo‑
rithms in different scenarios. The subsequent metrics defined herein effectively articulate
the comparisons.

6.1. Visual Analysis
To evaluate the extent of distortion or degradation introduced during the encryption

process, a visual comparison was performed between the plaintext and encrypted images.
This allowed us to gauge the impact of encryption on the visual quality and fidelity of the
images. If the encrypted image contains many unidentified pixels from the original im‑
age, it can be deemed secure. Figures 4b and 5b displays the encrypted image generated
by the Rabin‑P algorithm, wherein certain areas still exhibit evidence of the original im‑
age. However, upon employing the proposed Rabin‑Ӡ algorithm, the encrypted image (as
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depicted in Figures 4c and 5c) exhibited no discernible traces of the original image. This
demonstrates the algorithm’s resilience against statistical attacks.
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Figure 5. (a) Test Baboon image ,(b): Encrypted image using Rabin‑P, (c): Encrypted image using
Rabin‑Ӡ.

6.2. Histogram Analysis
Ahistogram is the schematic representation of the number of occurrences of the value

of each pixel. In this work, the Lena color image shown in Figure 4a has been considered
for evaluation. i.e., the numbers of occurrences of each pixel value are expressed separately
for Red, Green, andBlue in the histogram. Figure 6a,b shows the histogram for the distribu‑
tion of the occurrences of RGB components of the original image. From the visual analysis
shown in the histogram of Figures 7 and 8, the histogram results of the Rabin‑Ӡ cryptosys‑
tem have flat and uniform pixel distribution compared to Rabin P. In the figure the x‑axis
represents the range of pixel values, while the y‑axis represents the number of pixels in
the image that fall within that range. These histogram results are significant enough to
suggest that the proposed approach is cryptographically secure pixel distribution.
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6.3. Entropy Analysis
The degree of uncertainty in the system is defined as the entropy of information. The

greater the entropy, the greater the image’s randomness or uniformity [25]. Entropy can
bemathematically defined using Equations (13) and (14). Let pi be the probability of occur‑
rence of pixel i in the cipher image of length N number of pixels, where
i = 0, 1, 2, . . . , M − 1.

pi = lim
N→∞

Ni
N

(13)

Entropy(
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Rabin-P algorithm [19] 
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(Baboon) 7.68 7.74 7.69 

Rabin-ӡ with fake-modulus 
(Lena) 7.93 7.95 7.94 

(Baboon) 7.92 7.97 7.94 

6.4. Differential Analysis 

Differential analysis is a metric used in differential attack analysis to check the cipher 

resistance. When an attacker makes little changes to the original image (flipping one bit), 

notice the difference in the cipher image [26]. Such disparity can be calculated using two 
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Change Intensity (UACI) [28]. The proposed cryptosystem will guarantee two separate 
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evaluate the impact of the pixel change on the encrypted image using NPCR is given in 
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A comparison between the proposed algorithm and existing Rabin algorithms is con‑

ducted, and the resulting entropy values are presented in Table 5. The entropy values of
the encrypted images generated by the proposed Rabin‑Ӡ algorithm are found to be in
close proximity to 8. This signifies that the cipher image exhibits exceptional uncertainty
and a significant degree of permutation and substitution effects. Consequently, it can be
concluded that the proposed algorithm is highly resistant to attacks and provides a secure
defense against statistical entropy attacks.
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Table 5. Entropy result comparison of the number of occurrences of pixel values of proposed Rabin‑Ӡ
with Rabin‑P algorithm.

Methods Proposed
Entropy of RGB Components

Red Green Blue

Ref. [11] 7.59 7.68 7.71

Ref. [14] 7.65 7.70 7.68

Ref. [15] 7.73 7.76 7.72

Ref. [16] 7.71 7.73 7.70

Rabin‑P algorithm [19]
(Lena) 7.63 7.71 7.75

(Baboon) 7.68 7.74 7.69

Rabin‑Ӡwith
fake‑modulus

(Lena) 7.93 7.95 7.94

(Baboon) 7.92 7.97 7.94

6.4. Differential Analysis
Differential analysis is a metric used in differential attack analysis to check the ci‑

pher resistance. When an attacker makes little changes to the original image (flipping one
bit), notice the difference in the cipher image [26]. Such disparity can be calculated us‑
ing two criteria: the Number of Pixel Change Rate (NPCR) [27] and the Unified Average
Pixel Change Intensity (UACI) [28]. The proposed cryptosystem will guarantee two sep‑
arate ciphered images, although there is only one bit of difference between them. The
NPCR focuses on the total number of pixels that affect the value of differential attacks, and
to evaluate the impact of the pixel change on the encrypted image using NPCR is given
in (15)

NCPR =

(
1

Wi Hi
∑n,m

i,j=1 D(i, j)
)
× 100 (15)

with D(i, j) = 1 i f C1(i, j) ̸= C2(i, j) and D(i, j) = 0 i f C1(i, j) = C2(i, j)

where Wi is the image width and Hi be the height. C1(i, j) is the image before the change
in one‑bit pixel position and C2(i, j) are the ciphered images after the change in one pixel
of the plain image. For the pixel at the position (i, j) calculation was made i f C1(i, j) ̸=
C2(i, j), then set D(i, j) = 1 else set D(i, j) = 0.

UACI focuses on the average difference between two paired ciphertext images. UACI
is specified in Equation (16)

ACI =
(

1
Li

∑n,m
i,j=1

|C1(i, j)− C2(i, j)|
255

)
× 100 (16)

where Li = length of the image, which contains the total number of pixels.
The outcomes of theNPCR andUACI equations are presented in Table 6. The analysis

reveals that the encryption scheme exhibits a remarkable sensitivity to even minor modi‑
fications in the plaintext. For the proposed method, the NPCR values exceed 99%, while
the UACI values surpass 33%. All measured values fall within the confidence interval of
[98–99%]. While the NPCR results are comparable to those of existing Rabin algorithms,
the UACI results significantly surpass them. These findings provide compelling evidence
that our cryptosystem effectively safeguards against differential attacks.
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Table 6. This is a table. Comparison of NPCR vs. UACI between plaintext and Cipher of Rabin‑P
and‑Ӡ.

NPCR UACI

RED GREEN BLUE RED GREEN BLUE

Ref. [11] 99.600 99.423 99.364 32.379 32.278 33.178

Ref. [14] 99.591 99.490 99.564 32.619 32.311 33.214

Ref. [15] 99.593 99.538 99.614 32.714 32.274 33.287

Ref. [16] 99.614 99.532 99.632 32.770 32.297 33.258

Rabin‑P [19]
(Lena) 99.619 99.629 99.636 32.799 32.382 33.284

Rabin‑P [19]
(Baboon) 99.608 99.587 99.478 32.798 32.492 33.01

Rabin‑Ӡwith
fake‑modulus

(Lena)
99.641 99.638 99.646 32.957 32.300 33.310

Rabin‑Ӡwith
fake‑modulus
(Baboon)

99.624 99.574 99.547 33.047 32.981 32.865

6.5. Complexityl Analysis
Time complexity is a statistical framework that determines the amount of time it takes

to execute an algorithm. The complexity of the algorithms specified in this section is based
on the number of mathematical operations involved in the function using the Newton‑
Raphson iterationmethod [29]. Table 7 summarizes the time the proposedmethods took to
prove the robustness in each step compared with the Rabin‑P cryptosystem. To calculate
modulus ɲ = α2β required O(2ɲ) since ɲ uses multiplication operation on 3 integers
twice. The equation used for computing fake‑modulus Ӡ = ɲ+

(
α2 × τ

)
also uses O(2ɲ)

for computing fake‑modulus.

Table 7. Time complexity involved during Key generation, Encryption and Decryption phase of
Rabin P And Rabin‑Ӡ algorithms.

Process Equation Used Rabin‑P Rabin‑Ӡ Using
Fake‑Modulus

Key Generation
ɲ = α2β O

(
n3) O

(
n3)

Ӡ = ɲ+
(
α2 × τ

)
‑ O

(
n3)

Encryption Ci ≡ x2(mod Ӡ) O(n2 log2n) O(n2 log2n)

Decryption

w = Ci(mod α) O
(
n2) O

(
n2)

xα = Ci
α+1

4 (mod α) O(n2 log2n) O(n2 log2n)

i = Ci−x2
α

α mod α O
(
3n2) O

(
3n2)

(2xα ∗ v)mod α = 1 O
(

M ∗ 2n2) O
(

M ∗ 2n2)
j = (i ∗ v)(mod α) O

(
2n2) O

(
2n2)

x1 = xα + jα O(log n) O(n) O(log n) O(n)

The proposedmethodRabin‑Ӡ has a complexity ofO
(
ɲ2 log2 ɲ

)
for encryption, which

involves exponentiation and multiplication operations. The decryption process requires
O
(
n2) and O

(
n2 log2 n

)
, operations to compute w and xα, respectively. The complexity

for computing v‘s multiplicative inverse is O
(
M× 2n2), where M is the number of iter‑

ations required. The complexity for computing j is O
(
2n2) iterations, and computing x1
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requires O(logn) iterations. To break the Rabin algorithm using the equation
Mi =

√
Ci + ki × ᶇ, the complexity involved relies on taking the square root in each itera‑

tion (O(2ɲ)) and multiplying key ki with ɲ requires (O(ɲ)) can be specified as O(3ɲ). The
equation Ӡ = ɲ+

(
α2 × τ

)
used for breaking the fake‑modulus relies on the complexity of

breaking ɲ and the key generated for the value τ using LFSR. Therefore, the complexity of
breaking the Rabin algorithm using a Fake‑modulus can be stated as O(ɲ× τ). The com‑
plexity of breaking ɲ and τ would depend on the specific techniques used to perform the
attack, but in general, they would involve searching for a factor of the modulus or finding
a linear relationship between the LFSR output and the fake‑modulus.

Comparing the above statistics, it is observed that breaking Rabin‑Ӡ using the fake‑
modulus is more complex than breaking Rabin‑P algorithms. This makes the proposed
Rabin‑Ӡ with a fake‑modulus more secure than the standard Rabin‑P algorithm
against attacks.

6.6. Randomness Analysis
In cryptographic applications that involve encrypting images, it is essential that the

resulting encrypted images be immune to statistical attacks. Statistical attacks are a type of
cryptanalysis technique that involves analyzing the statistical properties of the encrypted
data to try to uncover information about the plaintext. The NIST statistical randomness
test suite is a widely used tool for evaluating the randomness of encrypted images and
other cryptographic outputs [30].

The significance level of the test should be higher than 0.01 in order to eliminate or
accept the randomness of bit sequences. The results of the NIST randomness test for a
512 × 512 Lena and Baboon image are displayed in Table 8.

Table 8. NIST Encryption Test Results of proposed algorithm.

Test Name
Proposed Encryption

Algorithm
(Lena)

Proposed Encryption
Algorithm
(Baboon)

Result

Frequency 0.03427581 0.02989546 √
Block Frequency 0.02543914 0.02734212 √

Approximate Entropy 0.104512041 0.09128766 √
Linear Complexity 0.1382546 0.1087234 √
Random Excursions 0.16248531 0.10237231 √

Random Excursions Variant 0.09214753 0.10118763 √

According to tabulation results shown in Table 8, the proposedmethod passed (√) the
randomness test when put through various tests as part of the NIST test suite. It suggests
that the bit sequences generated by themethodwere able to pass the various statistical tests
for randomness with a p‑value greater than 0.01. This would indicate that the generated
bit sequences are likely to be truly random [31–36].

7. Discussions
The proposed work aims to enhance the security and performance of existing Rabin

cryptosystems by introducing a fake‑modulus technique. The results specified that the
proposed technique provides better immunity against differential attacks compared to ex‑
isting Rabin type cryptosystems. It alsomentions that the complexity involved in breaking
the Rabin algorithm using the fake‑modulus technique is higher than existing Rabin‑P al‑
gorithms, making it difficult to break.

The proposed algorithm also produces a flat and uniformpixel distribution compared
to existing Rabin cryptosystems, as demonstrated by the visual analysis of encrypted im‑
ages and histograms. It highlights the paper’s use of entropy and differential analysis to
quantify the performance of the proposed method, which is considered a valuable con‑
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tribution to the field of electronic commerce and cryptography, as it offers a solution for
ensuring secure communication in electronic commerce transactions.

8. Conclusions
Encryption using public key cryptography is widely used to ensure secure communica‑

tion and protect sensitive information from unauthorized access. The proposed work aims
to address the issues with existing Rabin cryptosystems by introducing a fake‑modulus tech‑
nique to enhance its security and performance against differential attacks. The paper
presents a detailed analysis of the weaknesses of existing Rabin cryptosystems and pro‑
poses a solution that is validated through qualitative and quantitative studies. The pro‑
posed technique is shown to provide better immunity against differential attacks com‑
pared to existing Rabin cryptosystems. The complexity involved in breaking the Rabin
algorithm using the fake‑modulus technique is higher than existing Rabin‑P algorithms,
making it difficult to break. The proposed algorithm also produces flat and uniform pixel
distribution compared to existingRabin cryptosystems, as demonstrated by the visual anal‑
ysis of encrypted images and histograms. The paper’s use of entropy and differential anal‑
ysis to quantify the performance of the proposed method is a valuable contribution to the
field. The results show that the proposed algorithm provides excellent uncertainty, and its
performance against differential attacks is superior to existing Rabin cryptosystems.

The proposed technique is supported by both visual and quantitative analysis, and
its complexity makes it difficult to break. This work is relevant to the field of electronic
commerce and cryptography, as it provides a solution for ensuring secure communication
in electronic commerce transactions.
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