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Abstract

:

Cryptanalysis has been studied and gradually improved with the evolution of cryptosystems over past decades. Recently, deep learning (DL) has started to be used in cryptanalysis to attack digital cryptosystems. As computing power keeps growing, deploying DL-based cryptanalysis becomes feasible in practice. However, since these studies can analyze only one cipher type for one DL model learning, it takes a lot of time to analyze multi ciphers. In this paper, we propose a unified cipher generative adversarial network (UC-GAN), which can perform ciphertext-to-plaintext translations among multiple domains (ciphers) using only a single DL model. In particular, the proposed model is based on unified unsupervised DL for the analysis of classical substitutional ciphers. Simulation results have indicated the feasibility and good performance of the proposed approach. In addition, we compared our experimental results with the findings of conditional GAN, where plaintext and ciphertext pairs in only the single domain are given as training data, and with CipherGAN, which is cipher mapping between unpaired ciphertext and plaintext in the single domain, respectively. The proposed model showed more than 97% accuracy by learning only data without prior knowledge of three substitutional ciphers. These findings could open a new possibility for simultaneously cracking various block ciphers, which has a great impact on the field of cryptography. To the best of our knowledge, this is the first study of the cryptanalysis of multiple cipher algorithms using only a single DL model
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1. Introduction


Cryptanalysis refers to techniques for breaking into cryptographic security systems and gaining access to the contents of encrypted messages, even when the cryptographic key is unknown by Kirchhoff’s principle, which is the paramount principle in modern cryptosystems [1,2]. It attempts to discover a meaningful pattern inside a given ciphertext to recover the corresponding plaintext or key. Such cryptanalysis techniques have been studied and gradually improved with the evolution of cryptosystems over past decades. This cryptanalysis technology can be applied to encryption for audio encryption [3] and face recognition [4] used in real life.



Recently, a new class of artificial intelligence (AI)-based cryptographic attacks on digital cryptosystems have been proposed to gain efficient, meaningful cipher cracking and classification results [5,6]. The AI algorithms based on deep neural networks have led to huge improvements in computer vision [7], medical image processing [8], machine translation [9], and the generation of virtual data [10,11,12] that are almost identical to the real data, and the attacks on cyber information security over the past decade [13,14]. More recently, generative adversarial networks (GANs) [15,16] have produced great results for image generation, translation, resolution enhancement, and synthesis [12,17,18,19,20]. These advances in GAN models can even generate realistic face images from virtual people [12,21]. In addition, few studies break and emulate ciphertexts using GANs [22,23]. Reference [23] demonstrated that CipherGAN was capable of providing the underlying cipher mapping between unpaired ciphertext and plaintext for automated cryptanalysis without any prior knowledge, such as the character frequency distribution observed in natural language. This new class of AI-based cryptanalysis has been proposed to gain efficient and meaningful cipher cracking results. Especially, generative adversarial networks (GANs) have produced great results for image generation and translation. These advances in GANs models can even generate realistic data. A language model must represent both the feature distributions at sequential data point, and the possibly intricate temporal dynamics of those variables [19]. In particular, we want to properly represent the conditional distribution of temporal transitions in multivariate sequential data. The recently introduced StarGAN is an efficient method for multi-domain image-to-image translation, which takes in as input images in different domains and learns to flexibly translate the input image into the output image in the target domain, instead of learning a fixed translation, such as black-to-blond hair [24]. As a result, StarGAN can learn image-to-image translations with a single learning model that covers multiple domains.



Inspired by StarGAN, we propose new cipher emulation attacks using GAN-based unsupervised deep learning techniques for the automated analysis of classical substitutional ciphers. StarGAN seeks to discover a mapping between several domains via a single framework. Therefore, it perfectly matches our proposal of a multi-domain cipher emulation attack on classical ciphers. This method has been shown to be effective and is commonly used in computer vision applications such as creating samples of natural pictures. In this study, we present the unified GANs for ciphertext-to-plaintext translations in different domains with a single model. We demonstrate that the proposed unified cipher-generative adversarial network (UC−GAN) can understand the confusion property of classical ciphers, which is one of the principles of modern symmetric cryptography. To the best of our knowledge, this is the first study of the unified unsupervised deep learning-based cryptanalysis of multiple cipher algorithms using only a single model.



The main contributions of this study are summarized as follows. First, we propose the cipher emulation attacks based on unsupervised deep learning for the analysis of classical substitutional ciphers. Our proposed method can break classical ciphers using ciphertext-only without any prior knowledge, such as the character frequency distribution observed in natural language or the spaces between words in plaintext.



Second, we demonstrate that our proposed UC−GAN can perform ciphertext-to-plaintext translations among multiple domains (or ciphers) using only a single deep-learning model. As a result, UC−GAN can emulate both “ciphertext in different domains-to-plaintext” and “plaintext-to-ciphertext in different domains” translations.



Third, to show our model’s feasibility and good performance, we compare our experimental results with the conditional GAN and CipherGAN results. These two GAN models can only perform the mapping between ciphertext and plaintext within a single domain (or cipher). Therefore, multiple models should be built separately in order to learn the mapping between ciphertext and plaintext in breaking more than two ciphers.



This paper is organized as follows. Section 2 explains and introduces the background and related works. Section 3 describes our proposed method, while Section 4 presents our experimental results. Finally, Section 5 discusses our experimental results, and Section 6 concludes this paper.




2. Background and Related Works


In this section, we first describe the basic concepts of the GAN used to design the main elements of our network model, followed by a review of classical cipher techniques. We then introduce existing AI-based cryptanalysis for substitution ciphers. Table 1 shows some mathematical symbols used in the GAN model equations in this study.



2.1. Generative Adversarial Networks


Generative adversarial networks (GANs) have been successfully developed into various real-world applications, including image synthesis, transfer, super-resolution, and classification. The GAN algorithms simultaneously train a pair of neural networks (generator and discriminator) in competition with each other. Figure 1 illustrates the basic idea of the GAN. There are two models in GAN architecture that might be able to generate fake data that look like the real thing. When dealing with images, the generator model needs to generate images. The second model is the discriminator network, which attempts to distinguish between fake and real data. Both models compete with each other. The generator model attempts to fool the discriminator network; at that point, the discriminator model adapts to the new fake data. This information can be used to improve the generator model. Consequently, the trained generator can create fake data that are indistinguishable from real data. The discriminator and generator models are set to compete against each other as adversaries, each attempting to surpass the other, and in the process, both becoming better and better. To sum up, the two models are playing a minimax game with the following objective function [21,22]:


    min  G    max  D  V   D , G   = E   log D  x    + E   log   1 − D   G  z         



(1)




where, G is the generator network that accepts sample data, z from a noise distribution pz(z) and produces the data in a target domain, D is the discriminator network that accepts the sample x from the training dataset or the output from the generative model and predicts the probability that x or G(z) came from the training dataset. When the model is trained by computing Equation (1), the generator will ultimately be able to create more sophisticated fake images. Figure 1 can be utilized as a general guideline for training GAN. Figure 1 shows the general architecture of the GAN model.



In recent years, there has been tremendous progress in the development of the GAN model to generate more exquisite samples and obtain better training stability than the original GAN model [25]. The original GAN cannot generate conditional data, meaning there is no control over the modes of generating data. The conditional GAN model was first proposed to acquire a conditional generative model by setting up the target label as an additional input for the generator and the discriminator [26]. In addition, the Pix2Pix model [27] was proposed for the first time to conduct the image-to-image translation tasks in a single direction. However, the Pix2Pix model is a supervised learning model that is characterized by training on pairs of datasets. CycleGAN [28] is the first unsupervised image-to-image translation model using unpaired datasets, which translates between two domains in both directions [29] (see Figure 2). More recently, the unified generative model was presented for unsupervised learning to translate images between multiple domains with only one generator and discriminator, using domain classification loss with target domain labels [30,31]. In this paper, we propose a new cipher emulation attack algorithm based on the unified GANs to perform ciphertext in different domains (ciphers)-to-plaintext translations using only a single deep learning model.




2.2. Classical Substitution Ciphers


We briefly explain the classical substitution ciphers used in this study which include shift cipher, Vigenere cipher, and substitution cipher [32]. A shift cipher encryption method encrypts the original plaintext into unreadable ciphertext, where each letter in the original message is replaced with a letter corresponding to a certain number of letters up or down in the alphabet. The number of possible shifts is limited to between 0 and 25 in the English language, which is equal to the number of English letters. The receiver decrypts the ciphertext by returning each letter in the encrypted data. A Vigenere cipher is categorized as a poly-alphabetic cipher that encrypts a plaintext into a set of different letters using the key with the total number of possible keys of 26m, i.e., all the possible sequences of letters of length m. The substitution cipher deploys any permutation of the 26 letters as a key. Therefore, the total number of possible keys are 26! ≈ 288.4 (! is factorial, ≈ is approximation).




2.3. AI-Based Cryptanalysis


Substitution ciphers have a confusion property that provides obscurity between the encryption key and the corresponding ciphertext. In particular, confusion is the basic building block of modern symmetric cryptography with the diffusion property. Therefore, understanding the structure and the vulnerability of substitution ciphers can be the basis of the cryptanalysis of modern cryptography. Table 2 shows the various AI-based cryptanalysis research. Reference [23] trains language data encrypted using shift and Vigenere ciphers in a stable way using the CycleGAN model. The studies of AI-based cryptanalysis for modern block ciphers were also introduced [33,34,35]. A recent work by Baek et al. [33] classifies AI-based attacks into three methods: key recovery attack, cipher identification, and cipher emulation attack. Regarding attacks on modern lightweight ciphers, such as Speck32/64, the authors introduced a deep learning-based ciphertext distinguisher that classifies between the ciphertexts obtained by the Speck32/64 algorithm with 11 rounds and random values [34]. In addition, using the neural distinguisher, the authors performed a partial key recovery attack. Furthermore, recent work by Baksi et al. [35] proposed an improved neural distinguisher, especially some lightweight ciphers such as Gimli, Ascon, Knot, and Chaskey. However, some approaches using neural distinguishers by references [34,35] are specific for some ciphers. In addition, there is a small improvement in accuracy results rather than the original differential distinguisher. This means that AI-based approaches will have to try various challenges against confusion and diffusion property, to break S-box using state-of-the-art deep learning methods like GANs. Such improvements will be a basic building block for AI-based cryptanalysis.



Also, some approaches studied advanced cryptanalytic approaches in image domains. A new GAN-based image transformation technique for privacy-preserving DNN that can apply images without visual information to DNN and increase the robustness for ciphertext-only attack has been proposed [10]. A novel deep learning-based key generation network (DeepKeyGen) is proposed as a stream cipher generator for generating private keys that can be used for encryption and decryption of medical images [36]. K. Panwara et al. [37] summarized the latest trends in deep learning-based end-to-end encryption techniques. Existing deep learning-based encryption systems are classified into three categories: encryption with style transfer, style transfer with enhanced diffusion properties, and combining deep neural networks with chaotic systems, and each methodology is discussed and related conclusions are made. However, their approaches focus only on the image domain with image encryption. On the other hand, we have focused on the natural language domain with a substitutional cipher on symmetric cryptosystems.





3. Overview of the Proposed UC−GAN Cryptanalysis Model


We propose a UC−GAN network model for multi-domain cryptanalysis that is based on StarGAN using a single unified generator and discriminator model. In our model, as in CipherGAN, our objective is to train the generator on multiple cipher and plain domains without any prior knowledge. However, the two models differ in the number of generators. Figure 3 shows the process of UC-GAN and CipherGAN generating plaintext from the ciphertext. As the CipherGAN model is based on the CycleGAN model, each generator must be used for each ciphertext domain. However, the proposed UC-GAN model uses only a single unified generator for multiple ciphertext domains based on the StarGAN model.



We therefore present an enhanced form of StarGAN for multi-domain cryptanalysis. We specifically consider training objectives and network designs regarding conditional techniques. In addition, we use embedding space for continuous relaxations [23,38] before main training. Furthermore, we suggest an adversarial loss that supports the conversion of all source domain data into the target single data (multi-cipher to single-plain) or (single-plain to multi-cipher) with only one training process. Similar to CipherGAN, the goal of our approach is to train the generator G on various cipher and plain domains with no previous information. The fundamental distinction is that we employ a single unified generator (G) and discriminator (D) across several cipher domains. The primary distinction between our model and CipherGAN is that the CipherGAN requires a ratio of the number of G and D to the number of ciphertext/plaintext domains. Therefore, our method is greatly improved in representing multi-domain on discrete random variables. The experiment results show that our proposed model can break and emulate multiple substitution ciphers (Caesar, Vigenere, and substitution cipher) in only one training process.



Figure 4 shows the process of creating data used for model training. To build UC−GAN, we use embedding E for continuous relaxations before the main process as embedding space     W   e m b     and timing space     W   t i m e    . The embedding E consists of a one-hot vector step and a simplex to embedding step. In the one-hot vector step, each character is represented by a one-hot vector with the length of v (v = 26 in our setting). To make embedding vector   E ( x )  , it computes   r = t ·   W   e m b     and   E ( x ) = r | |   W   t i m e    , where the original one-hot vector   t   from the original data   x  , with embedding space     W   e m b     and additional timing space     W   t i m e    . Such continuous relaxation makes it possible to back-propagate when we are training neural network models with preserved information. In our setting, we assume that the original data x consists of the number of N characters. Therefore,   t ∈   { 0 , 1 }   N × v     and    W  E m b   ∈  ℝ  v × E     and    W  t i m e   ∈  ℝ  N × T     are trained parameters which we have to update when the training is processed. Finally, the input data of the model are created by concatenating the embedding data and the target domain label.



Figure 5 shows the training process of UC-GAN when using ciphertext as an input. The generator of UC-GAN can generate plaintext from ciphertext. In this case, inputs of generator are embedded ciphertext and target domain label indicating plaintext. In our proposed model, we have four domains PT, CT1, CT2, and CT3. These domain labels are set as the plaintext domain PT to 0, Caesar ciphertext domain CT1 to 1, Vigenere CT2 to 2, and substitution cipher CT3 to 3. The discriminator produces two probability distributions that distinguish whether the source used as the input of the discriminator is real or generated by the generator (Dsrc), and checks whether the domain of the source is the same as the target domain label c (Dcls).



The loss for generator G consists of three losses: adversarial loss, domain classification loss, and reconstruction loss. Adversarial loss for the generator is a value for learning the generator using the results of the discriminator. Afterward, the model learns in the direction in which the loss is reduced so that the output generated from the generator is classified as real by the discriminator. We use adversarial loss with the least squared loss [39]. The adversarial loss for generator is described as follows:


   L  a d v _ g   =  E  x , c   [   (  D  s r c   ( E ( G ( E ( x ) , c ) ) ) − 1 )  2  ]  



(2)




where, x is the input of the generator, which can be either plaintext or ciphertext. c is the target domain label, and the generator G transforms x into the domain corresponding to c. E is an embedding function and D is a discriminator.



The domain classification loss for generator is a value that the discriminator determines whether the output generated by the generator is converted to the desired target domain label. The domain classification loss for generator is described as follows:


   L  c l s  f  =  E x     , c   [ − log  D  c l s   ( c | E ( G ( E ( x ) , c ) ) ) ]  



(3)







Reconstruction loss is a cycle-consistency loss used in cycleGAN, which is a value calculated by calculating the difference with the input when returning to the domain of the original input after passing through the generator twice. First, the original image is transformed into an image of the target domain, and then the original image is reconstructed from the transformed image. We used the L1 norm for reconstruction loss. The domain classification loss for generator is described as follows:


   L  r e c   =  E  x , c ,  c ′    [ | | x − G ( E ( G ( E ( x ) , c ) ) ,  c ′  ) |  | 1  ]  



(4)




where, G takes in the translated image G(E(x), c) and the original domain label c’ as the input and tries to reconstruct the original image x. Therefore, the loss for the generator is described as the summation of Equations (2)–(4):


   L g  =  L  a d v   +  λ  c l s    L  c l s  f  +  λ  r e c    L  r e c    



(5)




where,     λ   c l s     and     λ   r e c     are hyper-parameters for     L   c l s   f     and     L   r e c    . The generator is trained to minimize Equation (5).



The loss for discriminator D consists of three things. These are adversarial loss, domain classification loss, and Wasserstein gradient penalty loss. The adversarial loss for the discriminator is a value that the discriminator learns to determine the actual ciphertext or the actual plaintext for real and to determine the generated sentence for fake. The adversarial loss for discriminator is described as follows:


   L  a d v   =  E x  [   (  D  s r c   ( E ( x ) ) − 1 )  2  ] +  E  x , c   [   (  D  s r c   ( G ( E ( x ) , c ) ) )  2  ]  



(6)







The domain classification loss for the discriminator is the value by which the discriminator determines whether the source used as the input to the discriminator matches the target domain label. The domain classification loss for discriminator is described as follows:


   L  c l s  r  =  E x      ,    c ′   [ − log  D  c l s   (  c ′  | E ( x ) ) ]  



(7)




where, Dcls takes in the real data E(x) and the original domain label c′ as the input.



Actually, the loss architecture of vanilla GAN [40] is based on Kullback–Leibler divergence (KL divergence), which is a type of statistical distance. However, gradient vanishing problem occurs sometimes, therefore it makes worse results. To prevent such issues, the Wasserstein gradient penalty loss [41] has been proposed. They used 1-Wasserstein distance (Earth Movers’s distance) with constrained 1-Lipschitz function instead of KL divergence. Additionally, improved versions have been proposed for enforcing the Lipschitz constraint, by directly constraining the gradient norm of the discriminator’s output with respect to its input [42]. We used this gradient penalty for a stable training process on continuous relaxed random variables which is described as follow:


   L  g p   =  E  x ^   [   ( | |  ∇  x ^    D  s r c   ( E (  x ^  ) ) |  | 2  − 1 )  2  ]  



(8)




where,     x  ^    is a random samples     x  ^  ~   P     x  ^     , where     P     x  ^      is a sampling uniformly along straight lines between pairs of points sampled from the data distribution and the generator distribution. Therefore, the loss for the discriminator is described as the summation of Equations (6)–(8):


   L D  =  L  a d v   +  λ  c l s    L  c l s  r  +  λ  g p    L  g p    



(9)




where,     λ   c l s     and     λ   g p     is hyper-parameters for     L   c l s   r     and     L   g p    . The discriminator is trained to minimize Equation (9).



Network Architecture


Figure 6 shows the overall structure of our network components. The network comprises 4 convolution blocks (1D Convolution-Layer Norm-ReLU) for channel expansion, a bottleneck layer consisting of 5 residual layers, and 2 convolution blocks (1D Convolution-Layer Norm-ReLU) to make the channel to 26. The last layer of the generator outputs the form of a vector with 26 components, and only one component is highlighted by Softmax, and the corresponding position means the position of the alphabet. Three convolution layers make up the discriminator network, which extracts the characteristics of the recovered plaintexts. However, there are significant distinctions between our network and StarGAN. First, we train language domains using a 1-dimensional (1D) convolution layer. Second, there are no deconvolutional operations in our generator network’s upsampling layers. Third, we decreased the depth of the generator and the discriminator to obtain a more reliable training outcome. We employ layer normalization for the generator and discriminator, respectively, and rectified linear units (ReLU) and leaky rectified linear units (LeakyReLU) as activation functions. Additionally, the hyperparameters are adjusted for steady training.





4. Experimental Results


We now assess how effectively our GAN-based method recovers substitution cipher. However, our adversarial approach may theoretically be used for many kinds of data. We also offer experimental support for this assertion in the first experiment. In the second set of experiments, we compare the Pix2Pix network model against the CipherGAN model for plain-to-cipher and cipher-to-plain recovery. In the third set of experiments, we compare the results of our UC−GAN model with the CycleGAN model.



4.1. Datasets


We employ the Brown corpus, a collection of digitized text samples in American English, for our experiments. There are four domains in the training dataset and the test dataset plaintext (PT), Caesar cipher (CT1), Vigenere cipher (CT2), and substitution cipher (CT3). The dataset is encrypted with Caesar, Vigenere, and Substitution ciphers. Table 3 briefly explains how we may obtain these ciphertexts. We delete all special characters and spacings. Furthermore, each data row in our dataset consists of N = 100 characters. As a result, we can extract 4,537,600 characters. For the training dataset, each domain has a number of 9600 data rows to consider both the known-plaintext attack (KPA) scenario and the ciphertext-only attack (COA) scenario. In KPA settings, the attacker can access the encryption method, which means the attacker has the number of n pairs. Otherwise, in COA settings, the attacker has only ciphertexts, which means they have the number of n ciphertexts. We extract 9600 data rows for each 4 domains to show accurate unsupervised learning results. Therefore, the training dataset has 9600 × 4 × N(100) = 3,840,000 characters. In addition, we set the data row to 3200 (320,000 characters) in the test dataset. To show the exact effectiveness of our model, the remaining 377,600 characters are abandoned. Table 3 shows examples of the plaintext and corresponding ciphertext encrypted with different substitution ciphers:




4.2. System Equipment


Table 4 lists the system configuration for training the proposed network models.




4.3. Default Hyperparameter


Using the Adam optimizer, our model was trained with a batch size of 32, and a learning rate of 1.8 × 10−4. The learning rate is exponentially warmed up over 5000 steps and then remains constant. Each epoch equals 1200 rounds. To obtain more precise results for text recovery, we update the generator once after the discriminator twice. The domain classification loss     λ   c l s    , reconstruction loss     λ   r e c     and gradient penalty     λ   g p     hyperparameters are set to 1, 10, and 10, respectively. For each of     W   e m b     and     W   t i m e    , we set the embedding space E and the concatenation space T to 256. The proposed method was implemented using Python for encryption and Pytorch for our experiment UC-GAN, and we train on a single NVIDIA Geforce GTX 1080Ti GPU. The GPU in general provides speedups that are at least 5 to 10 times greater than the Central Processing Unit (CPU).




4.4. Cipher Emulation Results


As described above, we demonstrate that our UC-GAN can successfully break the Caesar, Vigenère, and Substitution ciphers using only one unified generator. In addition, our unified method can learn these discrete distributions for all multi-ciphers-to-plain domains (See Figure 7a). Our encryption emulation can reconstruct all types of ciphertexts from a single plaintext, such as PT→CT1, PT→CT2, and PT→CT3 for the plain-to-multi-ciphers domain (See Figure 7b). In addition, the proposed model can emulate all types of ciphertext to a single plaintext for multi-cipher-to-plain. We measured the accuracy of the model using test data per each epoch. To test the model, the test data was used as the input of the model, and one generator generates three ciphertexts according to the labeled target. The model accuracy was calculated by comparing the generated ciphertext with the target ciphertext. Figure 7c,d show the accuracy of the test data per epoch and the highest accuracy in each cipher. As shown in Figure 7, the model reached nearly 100% accuracy for all types of ciphers in 115 training epochs. However, the convergence speed was different for different ciphers and Caesar and Substitution were broken faster than Vigenère. Table 5 shows the results of the ciphertext generated by the model from the plaintext and the target ciphertext created by the three cipher methods. Texts that do not match between the target ciphertext and the generated ciphertext are marked in red, showing that most of the texts match. Table 6 demonstrates the actual network result for the cipher-to-plain recovery experiment.



To ensure the accuracy of our proposed model, we evaluated the accuracy for each character and presented a confusion matrix (See Figure 8). Considering that the character frequencies in the data are imbalanced, we constructed a confusion matrix with the frequency ratio of each character. We observed that high-frequency characters performed well while low-frequency characters showed relatively low performance. The characters b, j, k, q, x, and z exhibit comparatively poor performance, and their infrequent usage can be verified by analyzing the character frequency. We calculated a weighted F1 score that considers the imbalanced character frequencies. We multiplied the F1 score calculated for each character by its frequency ratio and then calculated the total calculated values. Looking at the calculated F1 score, with a value very close to 1, the proposed model shows that it is possible to break three ciphers simultaneously. To exactly validate our generated ciphertext results, we have made target ciphertext by CrypTool [43], which is officially released for non-commercial use and provides different types of cryptographic algorithms including classical cryptosystems and block ciphers.




4.5. Computational Complexity and Memory Usage


Deep learning models require a significant amount of computation and memory to train and evaluate. Two important metrics used to quantify the computational complexity and memory usage of deep learning models are multiply-and-accumulate operations (MACs) and memory usage. MACs are a measure of the number of arithmetic operations required to perform forward and backward passes through a neural network model. Therefore, the higher the amount of computation, the higher the index of MAC. Memory usage refers to the amount of RAM or GPU memory occupied by the model and its associated data structures during training or inference. Memory usage varies depending on the size of the data being used. We calculated the MACs and memory usage of the generator’s process that converts from ciphertext to plaintext when the batch size was 1. A batch size of 1 means that we used 1 row consisting of N = 100 characters as the input. The result is MACs of 0.28 B (billion) and memory usage of 21.54 MB. For Discriminator, MACs of 0.04 B and memory usage of 13.92 MB were shown. Since the proposed model has a small network structure based on 1D convolution, it shows lower complexity than Resnet50 (4.13 B and 206.57 MB), which is mainly used for image-based research. As it has low complexity, it shows that it is possible to train quickly even in a relatively low-cost computation environment.




4.6. Model Result with Various Hyperparameters


The task of selecting a collection of ideal hyperparameters for a learning algorithm is known as hyperparameter optimization or tuning in machine learning. To generalize diverse data patterns, the same machine learning model may require different constraints, weights, or learning rates that highly impacts the training processes. The effect of tweaking hyperparameters on network training was examined utilizing several different experiments. The highly important parameters including batch size and embedding space     W   e m b     and     W   t i m e     were investigated. The batch size refers to the quantity of data utilized to train the network in each epoch. A big batch size hinders network convergence, whereas a small batch size causes the network to fluctuate without attaining adequate performance. To obtain the optimized parameters we conducted several experiments. Table 7 demonstrates different hyperparameters settings used to run different experiments. Especially, we empirically found that the embedding space     W   e m b    ,     W   t i m e     and batchsize   b s   are crucial factors in achieving stable training results in our scenario. However, the values for lambda in the classification loss     λ   c l s     and the reconstruction loss     λ   r e c     are highly sensitive to change making it challenging to train. Therefore, following StarGAN [24], we fixed     λ   c l s     to 1 and     λ   r e c     to 10 during our experiments. Similarly, changing the learning rate   l r   can result in unstable training times. After many times experimenting, we found that 18 × 10−4 is the best learning rate for our model. We then tested various values for   b s  ,     W   e m b    , and     W   t i m e     with a fixed value for     λ   c l s    ,     λ   r e c    , and   l r  . We changed the batch size by a factor of 4 and the embedding space by a factor of 2, to ensure that these hyperparameters significantly impacted the model.



In the first round of the experiment, we investigated the impact of batch size on the different cipher attacks. First, we set the batch size to 8 and ran the training process for both ciphers to plain and plain to cipher attacks. Figure 9a and b demonstrate the network training process on a cipher to plain and plain to cipher, respectively. As can be seen from Figure 9, the network could not converge for all types of ciphers in 120 epochs. The converge speed is lower than the batch size of 32 meaning that the lower batch size needs more training epochs to converge all ciphers. Afterwards, we set the batch size to 128 and ran the training process. Figure 9c and d demonstrate the network training process on a cipher to plain and plain to cipher, respectively, for a batch size of 128, respectively. Similarly, the network could not converge for all types of ciphers. Figure 9 demonstrates the test accuracy result comparison for batch size 8 (Figure 9e) and batch size 128 (Figure 9f).



Afterwards, we fixed other parameters and investigated the impact of embedding space     W   e m b     and     W   t i m e     on network training. In the first round of the experiment, we set the embedding spaces     W   e m b     and     W   t i m e     from 256 to 128 and run the network. Figure 10 demonstrates the network training process for different embedding spaces     W   e m b     and     W   t i m e    . Figure 10a and b show the network could converge for all types of ciphers but with a lower speed compared to the default setting for a cipher to plain and plain to cipher attacks, respectively. Afterwards, we set the embedding spaces     W   e m b     and     W   t i m e     from 256 to 512 and run the network, respectively. Figure 10c and d demonstrate the network training process for the embedding space     W   e m b     and     W   t i m e     of 512 for a cipher to plain and plain to cipher attacks, respectively. It has a large size compared to the default setting which demonstrates to be inefficient and did not converge for all ciphers. Figure 10e and f demonstrate the proposed method tests accuracy results for embedding spaces     W   e m b     and     W   t i m e     128, and embedding spaces     W   e m b     and     W   t i m e     512, respectively. Looking at the results in Figure 10, it shows that the results of learning can vary depending on the embedding spaces, and in particular, it can be seen that convergence is slow or does not converge at all, resulting in ciphers with very low accuracy.




4.7. Model Comparison


We conducted a comparison of the proposed model GAN-based state-of-the-art and the existing models. The Pix2Pix model and the CipherGAN model are the popular GAN-based cryptanalysis models we used for model comparison. In effect, the original Pix2Pix model is based on supervised learning which is trained in one direction using a paired dataset. To compare the model between supervised and unsupervised settings, we directly implement an improved Pix2Pix model with our embedding technique for cryptanalysis. Therefore, the Pix2Pix model can only learn one cipher at one training, in one direction (plain to cipher or cipher to plain). CipherGAN is based on unsupervised learning using the cycleGAN structure. Unlike supervised learning, unsupervised learning is trained in both directions (plain to cipher and cipher to plain) using an unpaired dataset. However, CipherGAN can also be trained for only one cipher in one training. Pix2Pix is a KPA scenario because it requires a paired dataset, and CipherGAN is a COA scenario because it uses an unpaired dataset.



Figure 11 shows the test results trained with the Pix2Pix model and the CipherGAN model. Since the Pix2Pix model learns only one cipher in one training and is unidirectional, the results of each training are combined and displayed. The results of cipher to plain and plain to cipher are very similar (See Figure 11a,b). In both processes, Caeser and Substitution approached 100% when epochs exceeded 30, and Vigenère approached 100% at 70 epochs. Therefore, a total of six training sessions are required to attack three ciphers using the Pix2Pix model. CipherGAN also shows the combined results of each training because only one cipher is learned in one training (See Figure 11c,d). CipherGAN, like Pix2Pix, has similar results of cipher to plain and plain to cipher. However, the test results of Substitution are different. Pix2Pix was trained stably and showed a graph with gradually increasing accuracy, while CipherGAN dropped once after 40 epochs and then rapidly rose and changed to a stable shape. In the case of Vigenère, training was completed last, the same as Pix2Pix. The bar graph in Figure 11e and f shows the highest test accuracy of each cipher for each model. All results show that over 99% of the model can be trained to break each cipher. This shows that once the model is trained, it can eventually be decrypted. Although there is a difference in the size of the epoch to be trained, it can be seen that the proposed model reaches high accuracy much faster when viewed as a training process for all ciphers. Table 8 shows the test results of our proposed model and the test results of Pix2Pix and CipherGAN, which are comparative models. However, UC-GAN can be considered more efficient because it simultaneously broke three ciphers in one training.





5. Discussion


We suggested a novel unsupervised deep-learning model that is more flexible and efficient than existing information extraction techniques for translating ciphertext-to-plaintext across various cipher domains. The proposed model is based on generative adversarial networks (GANs). As described above, by competing for a generative deep neural network against a discriminative deep neural network, the GAN model creates samples that seem to come from the training set. Especially, CipherGAN is a GAN-based model that is an unsupervised cryptanalytic method to break substitution ciphers without any prior knowledge. However, CipherGAN requires the number of generators and discriminators to be in proportion to the number of ciphertext/plaintext domains. Unlike CipherGAN, we proposed UC−GAN, which consists of a unified generator and a discriminator using only a single deep neural network for multiple domains. The proposed UC−GAN model was able to perform extremely well on multiple substitution ciphers, achieving near-flawless accuracy. The experimental results were carried out using three types of classical ciphers Caesar, Vigenere, and Substitution ciphers. In addition, we compared the model performance of our model with that of the CycleGAN model. The experimental results demonstrate that the proposed UC−GAN model can perform similar test accuracy results to the CipherGAN model, but unlike CipherGAN and the proposed UC-GAN uses only a single domain. This means that the efficiency of emulation in multiple domains is 3 times faster than CipherGAN. Second, UC−GAN shows that discrete GANs can be evolved much more like the original GANs. In addition, as shown in Figure 6, the UC−GAN model is notably insensitive to the random initialization of weights and demonstrates constant trends in testing. Furthermore, we experimentally compared the performance of the Pix2Pix network model with that of the CipherGAN network model for cracking classical substitution ciphers. The experiment was conducted under two possible circumstances; first, cipher-to-plain, and second, plain-to-cipher. In both cases, the Pix2Pix network model performed relatively better than the CipherGAN model. Our proposed model usage is not limited only to cipher cracking, but can also be utilized in other multi-domain networks, such as image generation, voice convertor, or automated speech translation for multiple audiences.




6. Conclusions


In this paper, we proposed a fully automated multi-domain cipher cracking system for substitution ciphers without any prior knowledge, such as language frequencies. Our approach is based on generative adversarial networks (GANs). We use GANs in a new way by utilizing a unified generator and discriminator of the proposed UC−GAN in just one deep neural network for multi-domain cryptanalysis. In this paper, we showed that the proposed model has great breaking emulation results for multi-domain cryptanalysis. We evaluated the proposed method using three types of classical ciphers: the Caesar, Vigenere, and Substitution ciphers. The experimental results demonstrated that the proposed model was able to crack multiple ciphers in a single training process. The proposed model showed more than 97% in overall accuracy and more than 0.96 in weighted F1-score considering unbalanced character frequencies. Furthermore, we showed that the proposed model has very stable training results with hyperparameter tuning in several experiments.



Block ciphers are one of the important encryption systems in modern cryptography for data confidentiality. The block ciphers are applied to a wide variety of practical applications that are highly secure with complicated structures. Therefore, in the future, we plan to utilize the current method to crack block ciphers or a component of block ciphers such as S-boxes, which is the main component of block ciphers.
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Figure 1. The general architecture of the GAN model. 
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Figure 2. Schematic representation of the CylcleGAN. 
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Figure 3. The process of generating the plaintext from the ciphertext with (a) the CipherGAN model; (b) the proposed UC-GAN model. 
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Figure 4. The process of creating data used for model training. (a) Embedding for continuous relaxation; (b) label concatenation. Finally, concatenated   E ( x ) ∥ c   is an input for the unified generator G. 
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Figure 5. The process of training the UC-GAN using ciphertext as an input. The generator generates fake plaintext by embedding the real ciphertext and using it as an input to the generator along with the target domain label. After embedding the generated fake plaintext, the fake ciphertext can be generated by using it as an input to a generator, and results for domain classification and real or fake classification can be obtained by using it as an input to a discriminator. It is trained the same way when using plaintext as an input. 
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Figure 6. Schematic of the overall network components of the proposed UC−GAN. All layers consist of 1-dimensional (1D) convolution to train language domains. In addition, N and Oi are the size of output texts from the previous layer. The figure above shows the process in which ciphertext is used as an input, the generator generates plaintext, and the discriminator evaluates the generated plaintext. It is trained the same way when using plaintext as an input. 






Figure 6. Schematic of the overall network components of the proposed UC−GAN. All layers consist of 1-dimensional (1D) convolution to train language domains. In addition, N and Oi are the size of output texts from the previous layer. The figure above shows the process in which ciphertext is used as an input, the generator generates plaintext, and the discriminator evaluates the generated plaintext. It is trained the same way when using plaintext as an input.



[image: Cryptography 07 00035 g006]







[image: Cryptography 07 00035 g007 550] 





Figure 7. The proposed method tests the process and accuracy results. (a) proposed method test curves for multi-cipher-to-single plain recovery; (b) proposed method test curves for single-plain-to-multi-cipher recovery; (c) multi-cipher-to-single-plain recovery test results; (d) single-plain-to-multi-cipher recovery test results. 






Figure 7. The proposed method tests the process and accuracy results. (a) proposed method test curves for multi-cipher-to-single plain recovery; (b) proposed method test curves for single-plain-to-multi-cipher recovery; (c) multi-cipher-to-single-plain recovery test results; (d) single-plain-to-multi-cipher recovery test results.



[image: Cryptography 07 00035 g007]







[image: Cryptography 07 00035 g008 550] 





Figure 8. The confusion matrix results with the frequency ratio of each character for multi-cipher-to-single plain recovery. The x-axis is predicted characters and y-axis is true characters with the frequency of characters. Weighted F1-scores are displayed under the confusion matrix. 
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Figure 9. The impact of batch size on the training process. (a,b) network training process for a batch size of 8 for a cipher to plain and plain to cipher attacks, respectively; (c,d) network training process for a batch size of 128 for a cipher to plain and plain to cipher attacks, respectively; (e) proposed method test results for batch size 8; (f) proposed method test results for batch size 128. 
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Figure 10. The proposed method training process of different sizes of embedding spaces     W   e m b     and     W   t i m e    . (a,b) proposed method training process on embedding spaces     W   e m b     and     W   t i m e     of 128, for a cipher to plain and plain to cipher attacks, respectively; (c,d) proposed method training process on embedding spaces     W   e m b     and     W   t i m e     of 512 for a cipher to plain and plain to cipher attacks, respectively; (e) tests accuracy results for embedding spaces     W   e m b     and     W   t i m e     128; (f) embedding spaces     W   e m b     and     W   t i m e     512. 
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Figure 11. Test accuracy comparison of the Pix2Pix network (KPA) model with the CipherGAN (COA) network model. (a) Ciphertext-to-plaintext result with Pix2Pix network model; (b) plaintext-to-ciphertext result using Pix2Pix network mode; (c) plaintext-to-ciphertext result using CipherGAN; (d) plaintext-to-ciphertext using CipherGAN; (e) Test accuracy result of the Pix2Pix network model in plaintext-to-ciphertext recovery against the CipherGAN model; (f) test accuracy result of the Pix2Pix network model in ciphertext-to-plaintext recovery against the CipherGAN model. 
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Table 1. Mathematical symbols definition.
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	Symbol
	Definition





	𝔼[x]
	Expectation



	E(x)
	Embedding



	   E ( x ) | | c   
	Concatenated embedding and target



	      x   1    
	L1 norm (mean absolute error)



	G
	Generator



	D
	Discriminator



	c
	Target domain label



	c′
	Original domain label



	   ∇   
	Gradient
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Table 2. AI-based cryptanalysis research.
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	Method
	Objectives
	Data
	Basic Model





	Gomez et al. [23]
	Cipher cracking
	Shift and Vigenere ciphers
	CycleGAN



	Baek et al. [33]
	AI-based attacks review
	Block ciphers
	Dense, CNN



	Gohr et al. [34]
	Ciphertext distinguisher
	Lightweight ciphers

(Speck32/64)
	Resnet



	Baksi et al. [35]
	Ciphertext distinguisher
	Lightweight ciphers

(Gimli, Ascon, Knot, and Chaskey)
	MLP, CNN, LSTM



	Sirichotedumrong

et al. [10]
	Image transformation scheme
	CIFAR-10, CIFAR-100
	GAN



	Ding et al. [36]
	Private key generation
	Medical images

(Stream cipher)
	GAN



	Panwar et al. [37]
	End-to-end image encryption survey
	-
	GAN, Diffusion, CNN
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Table 3. Examples of plaintext and ciphertext encrypted with different classical cipher methods.
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Plaintext

	
Encrypted Sentence

	
Encryption Method/Key






	
eelementaryschoolodequindrewhich

hasbeenattendedthisyearbyfourofth

ekowalskichildrenincloudingchristine

	
hhohphqwdubvfkrrorghtxlqguhzklfkkdvehhqd

wwhqghgwklvbhduebirxuriwk

hnrzdovnlfkloguhqlqforxglqjfkulvwlqh

	
Caesar/3 shift to the right




	
hiqkpiszdvdyfltuosiktyntgvjckmh

nkexhhisgwxjtgiizkmxehewhbjtauskzkipu

zeqynmhnlpixhrntfptagmsmflwovxnth

	
Vigenere/defg




	
ttstdtfzqknleiggsgrtjxofrktvioeiiqlwttfqzztfr

trziolntqkwnygxkgyzitagv

qslaoeiosrktfofesgxrofueikolzoft

	
Substitution/

qwertyuiopasdfghjkzxcvbnm
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Table 4. System configuration for training.
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	Component
	Description





	CPU
	Intel Cori7-7700



	GPU
	GTX 1080Ti



	Language
	Python



	Memory
	16 GB



	System type
	64-bit operating system



	OS type
	Window 10/64
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Table 5. Generated ciphertext and target ciphertext for plain-to-cipher emulation experiment.
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	Encryption Method
	Original Plaintext
	Target Ciphertext
	Generated Ciphertext





	Caeser
	medicalpiratesannuallyyouwillcomeu

pwithafrighteningtotalthatswhythef

datheamericanmedicalassociationa
	phglfdosludwhvdqqxdoobbrxzloofrphx

szlwkdiuljkwhqlqjwrwdowkdwvzkbw

khigdwkhdphulfdqphglfdodvvrfldwlrqd
	phglfdosludwhvdqqxdooxxrxzloofrphxs

zlwkdiuljkwhqlqjwrwdowkdwvzkxwkh

igdwkhdphulfdqphglfdodvvrfldwlrqd



	Vigenere
	medicalpiratesannuallyyouwillco

meupwithafrighteningtotalthatswhyt

hefdatheamericanmedicalassociationa
	piiofeqvlvfzhwftqyfrocduxanrogtshyu

clxmgivnmkxjtlrlzrxfrwlfzvamewljl

geynherkumhgqqjjlgfrdwxufmfzlssg
	piiofeqvlvfzhwftqyfrosduxanrogtshyucl

xmgivnmkxjtlrlzrxfrwlfzvamew

ljlgeynherkumhgqqjjlgfrdwxufmfzlssg



	Substitution
	medicalpiratesannuallyyouwillcom

eupwithafrighteningtotalthatswhyt

hefdatheamericanmedicalassociationa
	dtroeqshokqztlqffxqssnngxvosse

gdtxhvoziqykouiztfofuzgzqsziqzlvinz

ityrqzitqdtkoeqfdtroeqsqllgeoqzogfq
	dtroeqshokqztlqffxqssnngxvosseg

dtxhvoziqykouiztfofuzgzqsziqzlvinz

ityrqzitqdtkoeqfdtroeqsqllgeoqzogfq
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Table 6. Generated plaintext and target plaintext for cipher-to-plain emulation experiment.






Table 6. Generated plaintext and target plaintext for cipher-to-plain emulation experiment.





	Encryption Method
	Original Ciphertext
	Target Plaintext
	Generated Plaintext





	Caeser
	gdxjkwhuplvvvxvdqdqqylhwkwrpufrq

udgzdoovrqrigufrqudgzdoodqgpuvqhoo

nhqqhgbzdoowkhpduuldjhzlooehtxlhwo
	daughtermisssusanannviethtomrco

nradwallsonofdrconradwallandmrsn

ellkennedywallthemarriagewillbequietl
	daughtermisssusanannviethtomrcon

radwallsonofdrconradwallandmrsn

ellkennedywallthemarriagewillyequietl



	Vigenere
	rtzykesjsvtjkmroqxtzkiukujjiwmttwljbh

xjxdrrgqelkuwfcdwfzkvnromsms

sxylfnrlxdzkitrgqftzexgoqtywxtussxy
	opushandprodhimintotheperfectionth

eveteranmanagersawasathrillingposs

ibilitytheoldmanwasalmosttooposs
	opushandprodhimintotheperfectio

nthepeteranmanagersawasathrillingpo

ssiyilitytheoldmanwasalmosttooposs



	Substitution
	hktltfztrzgzitzgvfeqxfeossqlzfou

izqlviqzolightrvosswtzityoklzlzthofg

wzqofofuqigdtkxsteiqkztkygkzitzg
	presentedtothetowncauncillast

nightaswhatishopedwillbethefirstste

pinobtainingahomerulecharterfortheto
	Presentedtothetowncouncillastnightaswh

atishopedwillpethefirststepinoptaininga

homerulecharterfortheto
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Table 7. Hyperparmeter tuning experiments.






Table 7. Hyperparmeter tuning experiments.





	Parameter
	Default Setting
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4





	Learning rate (lr)
	1.8 × 10−4
	1.8 × 10−4
	1.8 × 10−4
	1.8 × 10−4
	1.8 × 10−4



	Batch size (bs)
	32
	8
	128
	32
	32



	Embedding space     W   e m b     and     W   t i m e    
	256
	256
	256
	128
	512



	Lambda for classification loss function (    λ   c l s    )
	1
	1
	1
	1
	1



	Lambda for reconstruction function (    λ   r e c    )
	10
	10
	10
	10
	10
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Table 8. Experimental results of the Pix2Pix, CipherGAN, and UC-GAN.






Table 8. Experimental results of the Pix2Pix, CipherGAN, and UC-GAN.





	
Emulation Method

	
Target

	
Network Model Accuracy (%)




	
Pix2Pix

	
CipherGAN

	
UC−GAN






	
Single cipher

To Plain

	
Caesar to Plain

	
99.96

	
99.53

	
99.40




	
Vigenere to Plain

	
99.84

	
99.79

	
98.33




	
Substitution to Plain

	
99.84

	
99.45

	
98.71




	
Plain to

Single cipher

	
Plain to Caesar

	
99.95

	
99.44

	
98.37




	
Plain to Vigenere

	
99.84

	
99.79

	
97.72




	
Plain to Substitution

	
99.84

	
99.45

	
99.82
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