
Citation: Camacho-Ruiz, E.;

Martínez-Rodríguez, M.C.;

Sánchez-Solano, S.; Brox, P.

Timing-Attack-Resistant Acceleration

of NTRU Round 3 Encryption on

Resource-Constrained Embedded

Systems. Cryptography 2023, 7, 29.

https://doi.org/10.3390/

cryptography7020029

Academic Editor: Jim Plusquellic

Received: 20 February 2023

Revised: 25 April 2023

Accepted: 11 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Timing-Attack-Resistant Acceleration of NTRU Round 3
Encryption on Resource-Constrained Embedded Systems
Eros Camacho-Ruiz * , Macarena C. Martínez-Rodríguez , Santiago Sánchez-Solano and Piedad Brox

Instituto de Microelectrónica de Sevilla, IMSE-CNM, CSIC/University of Seville, 41092 Seville, Spain
* Correspondence: camacho@imse-cnm.csic.es

Abstract: The advent of quantum computing with high processing capabilities will enable brute force
attacks in short periods of time, threatening current secure communication channels. To mitigate
this situation, post-quantum cryptography (PQC) algorithms have emerged. Among the algorithms
evaluated by NIST in the third round of its PQC contest was the NTRU cryptosystem. The main
drawback of this algorithm is the enormous amount of time required for the multiplication of
polynomials in both the encryption and decryption processes. Therefore, the strategy of speeding up
this algorithm using hardware/software co-design techniques where this operation is executed on
specific hardware arises. Using these techniques, this work focuses on the acceleration of polynomial
multiplication in the encryption process for resource-constrained devices. For this purpose, several
hardware multiplications are analyzed following different strategies, taking into account the fact that
there are no possible timing information leaks and that the available resources are optimized as much
as possible. The designed multiplier is encapsulated as a fully reusable and parametrizable IP module
with standard AXI4-Stream interconnection buses, which makes it easy to integrate into embedded
systems implemented on programmable devices from different manufacturers. Depending on the
resource constraints imposed, accelerations of up to 30–45 times with respect to the software-level
multiplication runtime can be achieved using dedicated hardware, with a device occupancy of
around 5%.

Keywords: hardware security; post-quantum cryptography; NTRU; embedded systems; resource-
constrained devices; IoT

1. Introduction

The security of most digital infrastructure relies on public key cryptography (PKC),
which enables secure communications between entities without sharing any pre-established
secret. PKC provides (i) protected channel establishment (key establishment) and (ii) au-
thentication of digital information (including authentication of individuals involved in
a communication protocol through the application of digital signatures). The strength
of current PKC techniques is based on the computation complexity of two mathematical
problems: the factorization of large numbers and the computation of discrete logarithms.
However, although these problems are complex for current state-of-the-art systems with
high amounts of resources and computational power, they can be solved in a reasonable
amount of time using quantum computers. As a consequence, the security of cryptographic
protocols applied in our everyday life will be compromised in the near future. For instance,
Shor’s algorithm [1] highlights the capability of quantum computers in efficiently factoring
integers. This exposes a weakness in the widely used RSA algorithm, which relies on the
complexity of factoring a large biprime number. Additionally, Shor’s algorithm can also
solve the discrete logarithm problem (DLP) in polynomial time. The DLP serves as the
foundation for other cryptographic methods, such as Diffie–Hellman (DH), the digital
signature algorithm (DSA), and elliptic curve cryptography (ECC).

Cryptography 2023, 7, 29. https://doi.org/10.3390/cryptography7020029 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020029
https://doi.org/10.3390/cryptography7020029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-3177-2260
https://orcid.org/0000-0003-3025-5736
https://orcid.org/0000-0002-0700-0447
https://orcid.org/0000-0003-1059-5338
https://doi.org/10.3390/cryptography7020029
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020029?type=check_update&version=1

Cryptography 2023, 7, 29 2 of 22

The scientific community has developed post-quantum cryptography (PQC) to deal
with this threat. The roadmap of the EU Cybersecurity Strategy identifies PQC as a key
enabling technology, as reported by ENISA (European Union Agency for Cybersecurity)
in [2]. Moreover, the NIST (National Institute of Standards and Technology) started a
post-quantum cryptography competition in 2016 to identify cryptographic algorithms able
to withstand quantum computer attacks by 2022, the year in which the first algorithms to
be standardized were presented [3]. Proposals submitted to the NIST PQC contest included
software implementations. However, the design of hardware-efficient solutions is an open
challenge for the electronics engineering community. Recent studies present the use of
hybrid hardware/software (HW/SW) co-design methodologies to combine flexibility and
efficiency when implementing PQC-based algorithms [4,5].

Among lattice-based PQC cryptosystems, the public key encryption scheme NTRU
(Nth-degree truncated polynomial ring unit) was consolidated as a reference since it offers
certain advantages over other cryptosystems with the same security level, namely, that it
is faster and works with smaller key sizes [6]. NTRU’s security is based on the shortest
vector problem (SVP), which is a difficult problem in lattice reduction. Until now, no
algorithm has been developed to solve this problem in polynomial time. The NTRU public
key cryptosystem was standardized by the Institute of Electrical and Electronics Engineers
(IEEE) in 2008 as IEEE Std 1363.1-2008 [7] and by the American National Standards Institute
(ANSI) in 2010 as ANSI Std X9.98 [8]. The original version of NTRU has been progressively
improved to be resilient against different types of attacks. NTRUEncrypt [9] and NTRU-
HRSS-KEM [10] submissions in Round 1 of the NIST PQC standardization contest were
merged in Round 2 to give rise to a new NTRU submission (NTRU [11]), which reached
Round 3. The first list of PQ algorithms to be standardized was recently announced,
on which NTRU is not among those selected. However, NTRU-based algorithms are
a fundamental pillar in PQC with a solid background. Advances to provide efficient
NTRU implementations on embedded systems are an open challenge, especially in certain
scenarios where strict restrictions make the adoption of other PQC finalists with higher
levels of complexity unfeasible.

There are a wide variety of implementations of NTRU encryption and decryption
schemes on several platforms, such as software on embedded microcontrollers [12], field-
programmable gate arrays (FPGAs) [13], and even an experimental study of hardware-
dedicated building blocks for VLSI integrations [14]. In most cases, these implementations
must be included in IoT environments where area and time constraints are very lim-
ited. This is because the evolution of programmable devices has progressed towards
systems-on-chips (SoCs), which combine one or more embedded processor cores and
programmable logic, encouraging the development of hybrid implementations following
HW/SW co-design methodologies. The idea behind HW/SW implementations is to exploit
the flexibility coming from software with the efficiency of hardware realizations for the
most demanded timing operations. In the NTRU cryptosystem, the critical operation is the
multiplication in the nth-degree truncated polynomial ring; thus, the efforts of the scientific
community have been focused on its acceleration through hardware implementations.
Most of the studies reported in the literature follow two well-distinguished methodolo-
gies. On one hand, some studies are based on a high-level synthesis (HLS) methodology,
starting from a high-level description of the NTRU algorithm [15]. On the other hand,
some employ a methodology based on a register-transfer level (RTL) description for critical
operations [16–18]. The main advantage of the first strategy is the reduction in development
time due to the use of automatic synthesis tools that do not require a solid background
of designers in hardware description languages. However, the second strategy generally
offers the most efficient implementations in terms of timing, power consumption, and area,
using ad hoc hardware realizations for critical operations.

This paper presents the implementation of the finalist NTRU version included in
the third round of the NIST PQC contest, following a HW/SW co-design methodology.
Additionally, despite the efficiency of post-quantum cryptography, implementations of

Cryptography 2023, 7, 29 3 of 22

lattice-based cryptography secure against side-channel attacks remain an open issue, as [19]
and [20] point out. The security implementation aspect of lattice-based cryptography has
yet to be explored in this regard. Some advances related to timing attacks are included
in [21]. Therefore, this work (unlike others presented on NTRU) tries to include a solution
that can involve a mitigation against timing side-channel attacks. Moreover, this implemen-
tation follows a flexible design that can mitigate timing-based side-channel attacks and also
make it suitable for the area or temporal limitations that are common in IoT environments,
establishing a compromise between area and performance. The selected platform is a
modern SoC that includes a general-purpose processor and programmable logic, where an
ad hoc serial multiplier will be implemented to accelerate the polynomial multiplications.
The main contributions of this work are as follows:

• A specific solution for the NTRU polynomial multiplier in resource-constrained de-
vices, where the availability of resources and the energy budget are very limited
(which is common in the IoT integration framework), which allows for acceleration
without generating any security breaches related to timing attacks in the system.

• The design of a highly configurable intellectual property (IP) module to implement
an ad hoc serial polynomial multiplier on the programmable logic included in the
SoC. The configuration enables the possibility to easily implement different security
parameters defined in the NTRU algorithm scheme, as well as different arithmetic
units responsible for performing the multiplication operation.

• The design of an interconnection scheme based in an AXI4-Stream protocol that
optimizes the bandwidth of communication infrastructures between the processor
core and the IP.

• The evaluation of (i) the resources used for each particular solution and comparison
with other implementations in the literature; and (ii) the acceleration factors achieved
with the proposed implementations using the software implementation of the NTRU
algorithm included in the third round of the NIST PQC contest as reference. In addi-
tion, a figure of merit called Efficiency is proposed, which enables one to know which
implementation achieves the best trade-off between a high acceleration factor and a
moderated value of power consumption and area occupation.

The organization of this paper starts with Section 2, where the mathematical back-
ground is presented and a simple implementation of the polynomial multiplication at
hardware level is illustrated. Section 3 introduces a method to accelerate the multiplication
process that avoids the possibility of applying timing attacks to the simple implementation.
Section 4 specifies the core design of the IP module and the embedded system integra-
tion. Section 5 presents the results in terms of resource consumption, timing performance,
and efficiency of the IP module operating in the NTRU Round 3 version. Finally, the main
conclusions of the work are summarized in Section 6.

2. The NTRU Encryption Scheme
2.1. Mathematical Background

The key encapsulation mechanism (KEM) for NTRU [11] is inherited from the NTRU-
HRSS-KEM version submitted to the first round of the NIST PQC contest, which was
based on a variant of the Fujisaki–Okamoto transformation [22]. Because the NTRU Round
3 version merges from the NTRUEncrypt and NTRU-HRSS-KEM cryptographic algorithms
presented in the second round of the NIST PQC contest, two complementary variants are
combined in the cryptosystem sample space: NTRU-HPS (Hoffstein, Pipher, and Silverman)
from NTRUEncrypt [23] and NTRU-HRSS (Hülsing, Rijnveld, Schanck, and Schwabe) from
NTRU-HRSS-KEM [10].

The cryptography scheme of NTRU is based on polynomial convolution rings or
quotient rings, which are a particular algebraic structure where polynomial operations
are performed [23]. The characteristics of each quotient ring are set depending on the
NTRU Round 3 security level, which is modulated by the sets of parameters defined
in [11]. The polynomial degree is configured by the parameter n, and the modulus of the

Cryptography 2023, 7, 29 4 of 22

polynomial coefficients is set by the parameter q. In this scope, any polynomial whose
coefficients are integers is denoted as Z[x].

One of the most important parts of the KEM is the encryption, whose scheme in NTRU
Round 3 [11] requires defining the quotient rings described by (1)–(3):

R/q = Z[x] / (q, Φ1Φn) (1)

S/q = Z[x] / (q, Φn) (2)

S/3 = Z[x] / (3, Φn) (3)

where

• Φ1 is the polynomial (x− 1);
• Φn is the polynomial (xn − 1)/(x− 1) = xn−1 + xn−2 + . . . + 1;
• (q, Φ1Φn) represents the operation modulus q for the coefficients and modulus Φ1Φn

for the polynomial degree;
• (q, Φn) represents the operation modulus q for the coefficients and modulus Φn for

the polynomial degree;
• (3, Φn) represents the operation modulus 3 for the coefficients and modulus Φn for

the polynomial degree.

Thus, Equations (1)–(3) can be expressed as shown in (4)–(6).

R/q = Z[x] mod (q, xn − 1) (4)

S/q = Z[x] mod
(

q,
xn − 1
x− 1

)
(5)

S/3 = Z[x] mod
(

3,
xn − 1
x− 1

)
(6)

Therefore, R/q is a polynomial with a degree of n− 1 at most, with coefficients of
{−q/2,−q/2+ 1, . . . , q/2− 1}, whereas S/q is a polynomial with a degree of n− 2 at most,
with coefficients of {−q/2,−q/2 + 1, . . . , q/2− 1}, and S/3 is a polynomial with a degree
of n − 2 at most, with coefficients of {−1, 0, 1}, which constitutes the so-called ternary
polynomial, T . In this version of the NTRU, it is necessary to define a subset of ternary
polynomials, represented by T (t), that contain exactly t/2 elements equal to +1 and other
t/2 elements equal to −1.

The NTRU Round 3 encryption scheme initially requires two polynomials: the first
one, which emerges from the public key h(x) ∈ S/q, and the blinding polynomial, which
is a ternary polynomial, r(x) ∈ T . Unlike previous versions of the NTRU cryptosystem,
the number of nonzero coefficients of r(x) is not known in this version. These two polyno-
mials are multiplied according to the convolution product described by (7):

e(x) = r(x)× h(x) mod (q, xn − 1) (7)

where e(x) ∈ R/q. On the other hand, the message, which is the other polynomial
required, is transformed into a ternary polynomial with q/16− 1 ones and q/16− 1 minus-
ones, m(x) ∈ T (q/8− 2), to increase the message obfuscation in the encryption process.
Unlike NTRUEncrypt, the padding mechanism of the message presented in [10] disappears.
However, a change in the message representation from S/3 to R/q is required for NTRU
Round 3. In NTRU-HPS, the new message m′(x) ∈ S/3 is equivalent to the message m(x).
In NTRU-HRSS, the message m′(x) is obtained after a complex process described in [11].
The operation in which the encrypted message c(x) ∈ R/q is obtained is described by (8),

c(x) = e(x) + m′(x) mod (q, xn − 1) (8)

In this encryption operation, the multiplication operation required to calculate e(x)
consumes the highest percentage of time in relation to the total encryption time [6,24].

Cryptography 2023, 7, 29 5 of 22

For that reason, the goal of this work is to provide a new implementation, suitable for
constrained devices, that accelerates the algorithm execution at the expense of a low increase
in resources.

2.2. Hardware Implementation of Polynomial Multiplication

The multiplication described in (7) follows a cyclic convolution process that can be
expressed by (9):

ek = ∑
i+j=k mod N

(hj · ri) mod q (9)

where the polynomial degree is expressed as N; ek represents the k-th coefficient of e(x); hj
the j-th coefficient of h(x); and ri the i-th coefficient of r(x). It is trivial to prove that this
operation requires N · N scalar multiplications to conclude. The first effort to accelerate
this operation at the hardware level was reported in [25]. The main changes introduced in
this work were (i) the replacement of the multiplication by adding coefficients of the public
key, h(x), to the temporal result for each nonzero element in the blinding polynomial, r(x),
now as a binary polynomial; and (ii) the substitution of r(x) by r1(x) + r2(x) reducing
the total operation cycles to (d1 + d2) · N, being d1 and d2 the nonzero coefficients of
r1(x) and r2(x), respectively. This was a direct and basic implementation of the scalar
multiplication that achieved good results at the hardware level. However, the techniques
were progressively refined to achieve improved implementations, as in the case of [26],
where the scalar multiplication was replaced by addition or subtraction depending on
whether the coefficient rj was 1 or −1, respectively. Power reduction methods were
used to provide a design specially adapted to security applications (RFIDs and sensor
nodes) reducing the amount of resources and power needed in a physical implementation.
On the other hand, due to the large number of zero elements contained in the polynomial
r(x), another important improvement in the hardware implementation of the polynomial
multiplication was the exploitation of this fact in the works presented in [27,28]. They
only consider the nonzero coefficients of r(x) polynomial to implement the convolution
product. The first one exploits their locations, whereas the second identifies the degrees of
nonzero terms in the r(x) polynomial during the load process. Using this consideration,
the operation described in (9) can be expressed as shown in Algorithm 1. Therefore,
the multiplication operation will require (N · nnz) scalar multiplications and (N − nnz)
clock cycles of null coefficients of r(x), where N is the degree of the polynomial and
nnz the number of nonzero elements (including 1 and −1) in the r(x) polynomial. This
enhancement significantly reduces the time required to complete the convolution operation.

Algorithm 1 Accelerating the polynomial multiplication using nonzero elements

for i = 0 : N − 1 do
if ri 6= 0 then

for k = 0 : N − 1 do
j = mod(k− i, N)
ek = ek + (hj · ri)

end for
end if

end for

A parallelization process of this convolution product can be carried out by adding
different scalar multiplications per operation cycle, considerably reducing the overall
operation time. With the consequent cost in terms of resources, the work in [29] presents
a fully parallelized hardware in which N scalar multiplications are performed in each
cycle using a linear feedback shift register (LFSR) structure. In [17,30], an improvement
over [29] is proposed, where the multiplication operation is accelerated by analyzing when
two, three, or four consecutive zeros are presented in the obfuscation polynomial r(x).
In [17,31], it was analyzed whether the total number of cycles, or in other words, the total

Cryptography 2023, 7, 29 6 of 22

time required to complete the multiplication operation when it is accelerated considering
consecutive elements can generate a security breach by using timing attacks that could
allow the coefficients of the obfuscation polynomial r(x) to be induced. On the other hand,
the use of fully parallel structures to reduce the number of cycles implies a high cost in terms
of resources, which constrained implementations cannot afford. To solve these drawbacks,
a low-resource architecture for NTRUEncrypt based on a partial parallelization of the scalar
multiplications that does not present any security breach against timing attacks is proposed
in [18]. In this case, the operation could be accelerated using only the 2 · dr nonzero
coefficients of the polynomial r(x) (dr is the number of coefficients that are 1 and −1),
i.e., r(x) ∈ T (dr), resulting in a number of operations equal to (N · 2dr) + (N − 2dr).
More recently, the work presented in [32] described a full hardware implementation of the
three multiplications required in NTRU Round 3. However, such implementation is not
performed on the software structure of the cryptosystem presented in [11], using a large
amount of resources to complete the operation in parallel, making its implementation on
resource-constrained devices unfeasible.

3. Robust Acceleration against Timing Attacks

In the version of NTRU submitted to the third round of the NIST PQC contest, as de-
scribed above, r(x) ∈ T , i.e., the number of nonzero coefficients, is not fixed, making it
impossible to predict the number of ones, minus-ones, and zeros before generating the
polynomial. Using a pseudocode such as the one described in Algorithm 1 would cause
a security breach if timing attacks were performed (by disclosing the information of the
number of nonzero coefficients contained in r(x)). The goal of this proposal is to achieve
some degree of acceleration of the N · N clock cycles of the convolution product without
revealing any sensitive information of the polynomial r(x).

Since it is not possible to know in advance the number of nonzero elements that the
polynomial r(x) will have, the strategy to accelerate this process consists of the evaluation
of a significant number of r(x) possible generations in order to establish an upper limit.
For the set of parameters ntruhps2048509, Figure 1 shows a distribution of the number of
nonzero elements when the polynomial r(x) is generated 106 times. The red line represents
the maximum number of nonzero elements obtained. In this case, only one case reaches the
value 390 (a probability of 0.0001%). In other words, establishing this threshold as a limit to
perform the multiplication operation would not generate any security breaches since there
is no temporal distinction between different generations of r(x). The hardware multiplier,
therefore, will have to operate for at least that number of cycles so as not to raise suspicions
about the number of nonzero elements contained in the polynomial r(x).

In a real implementation, for a specific use case, margins must be established from this
threshold of nonzero coefficients. In this particular case, for the specific set of parameters
the confidence margin is set by the blue line in Figure 1, with a value of 400 (selected by the
designer). Fitting the number of nonzero coefficients to a normal distribution, this design
threshold corresponds to a probability of 0.000034% (approximately 1 in 3 million). Thus,
we can consider that it is practically impossible to obtain a polynomial r(x) with more
nonzero coefficients than the 400 established. In the case that this happens, establishing
some design mechanism that allows for regeneration of the polynomial r(x) at the software
level would solve this remote problem. Hereinafter, this design threshold value will be
referred to as maxcoe f . This limit of coefficients will include a large number of nonzero
coefficients and a small number of zero coefficients. The procedure of threshold estimation
should be repeated for the rest of the NTRU parameter set described in [11]: ntruhps2048677,
ntruhps4096821, and ntruhrss701.

Cryptography 2023, 7, 29 7 of 22

Setting a maximum for polynomial acceleration

m
ax

im
um

 n
on

-z
er

o
va

lu
es

de
si

gn
 th

re
sh

ol
d

300 320 340 360 380 400
Non-zero elements

0

0.5

1

1.5

2

2.5

3

3.5

4

Cu
m

ul
at

iv
e

r(
x)

 w
ith

 th
e

sa
m

e
no

n-
ze

ro
 e

le
m

en
ts

10 4

Figure 1. Distribution of nonzero elements in different r(x) generations. The red line represents the
maximum obtained, while the blue line defines a confidence threshold for the implementation.

These changes can be applied to the operation of the multiplier, so the pseudocode
presented in Algorithm 1 can be upgraded to the pseudocode of Algorithm 2. In this
case, the total number of cycles totalcycles required to complete the operation will be
totalcycles = N ∗maxcoe f + (N −maxcoe f). Setting a fixed number of clock cycles avoids
the possible leakage of timing information that would allow the number of nonzero coeffi-
cients of r(x) used in the multiplication to be known. The inclusion of this countermeasure
does not entail a significant reduction in acceleration that can be achieved by taking advan-
tage of the fact that r(x) is ternary. To complete the operation, it is necessary to know the
number of nonzero coefficients of the polynomial r(x), nnz. This number must be calcu-
lated for each polynomial in each execution, which can be carried out and stored internally
at a stage prior to the multiplication phase. Therefore, with this information, the number
of zeros to be computed as if they were nonzero elements, i.e., those below the threshold
maxcoe f , corresponds to the variable defined as numberzeros−max or nzm. Therefore, in order
to avoid any leakage of timing information, the acceleration produced by the elimination
of the cycles corresponding to the null coefficients of r(x) will only take place when the
threshold determined by maxcoe f is exceeded. Thus, the pseudocode is designed so that the
operation is only performed if one of the following conditions occurs: (1) the maximum
number of zeros nzm has not yet been reached; and (2) the limit has been exceeded and the
coefficient of r(x) is not zero.

Algorithm 2 Accelerating the polynomial multiplication considering nonzero elements and
avoiding timing attacks

nzm = maxcoe f − nnz

for i = 0 : N − 1 do
if ri = 0 then

nz = nz + 1
end if
if nz ≤ nzm or (ri 6= 0 and nz > nzm) then

for k = 0 : N − 1 do
j = mod(k− i, N)
ek = ek + (hj · ri)

end for
end if

end for

Cryptography 2023, 7, 29 8 of 22

4. IP Module Design and Integration
4.1. Design of the Arithmetic Unit

The design goal of this hardware-level multiplier is to be fully compatible with the
reference version of NTRU submitted to the third round of the NIST PQC contest, so that
software routines can be interchanged with hardware routines in a much easier and more
efficient way. This implies that some particularities in both arithmetic and data types at the
software level must be taken into account for software/hardware implementation. In the
NTRU Round 3 scheme [11], the coefficients of the polynomials r(x) and h(x) are computed
as modulus 2 and modulus 2048, respectively. The efficient arithmetic unit (AU) presented
in [16–18] has been slightly modified. The new architecture uses a logic gate AND instead
of a multiplexer. The AU is controlled by the ri coefficient, whose operation is summarized
in Table 1 and shown in Figure 2.

Table 1. AU operation in function of ri.

ri Operation

00 eoutk = eink

01 eoutk = eink
+ hj

11 eoutk = eink
− hj

XOR

ADD

ADD

AND

hj ri

e_outk

ri

ri

1

0

11

11
11 11

2

11

11

11{ }

e_ink

Figure 2. Block diagram of the arithmetic unit designed in this work.

4.2. Core Design

The architecture of the polynomial multiplier used in the NTRU Round 3 encryption
scheme is described in this section. Although this work is focused on the use of encryption
for the ntruhps2048509 parameter set described in [11], the IP module is configurable
for any other parameter set. The module was developed using the RTL-based design
flow provided by Xilinx Vivado tools, and the Verilog Hardware Description Language
(HDL) was used for hardware description. A simplified block diagram that contains the
main functional blocks necessary for the hardware implementation of the polynomial
multiplication operation is shown in Figure 3.

Cryptography 2023, 7, 29 9 of 22

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

AU

in_e

r(i)

h(j)

e(k)

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

Figure 3. Simplified block diagram of the hardware polynomial multiplier architecture.

Multiplier operation is coordinated by the Control Unit block. It manages all opera-
tions in different phases: Load coefficients, Operate, and Read result. It generates the indices
i, j, and k, which are used in each phase as memory addresses in the Memory block. This
component contains the coefficients of the input polynomials, r(x) and h(x), stored in the
Load phase. It also stores the partial results during the Operate phase, as well as the resulting
polynomial, e(x), that will be provided by the module in the Read phase. The memories
included in this block were implemented as dual-port memories using the block RAMs
(BRAMs) usually available in many programmable devices. During the Operate phase,
the Control Unit obeys the operation described by the pseudocode in Algorithm 2; while
the AU carries out either addition or subtraction over hj, depending on the value of ri,
updating the partial results ek. The number of total clock cycles required to complete the
operation, CCop, including the clock cycles for coefficient loading, CCload, and reading,
CCread (both require one clock cycle per coefficient), and the number of total clock cycles
for the multiplication, CCmult, is described by (10). The number of coefficients, N, and the
threshold fixed to avoid timing attacks, maxcoe f , are the main factors determining the
overall system runtime.

CCop = CCload + CCmult + CCread
= 2N + N ·maxcoe f + (N −maxcoe f)
= N · (maxcoe f + 3)−maxcoe f
≈ N ·maxcoe f

(10)

4.3. Parallelizing the Multiplication Process

In the scheme described above, the number of clock cycles required for the system
to complete the multiplication operation can be further reduced. A possible solution in
this proposed scheme is acceleration using AUs operating in parallel. The strategy is
the inclusion of M AUs, where M is the parallelization degree of the system so that the
multiplication module can operate on M coefficients per cycle. To introduce the ability to
parallelize the system through the M parameter, the pseudocode presented in Algorithm 2
is redefined in Algorithm 3, in which the the total clock cycles due to the operation of the
AUs is reduced by a factor M. This reduction will depend on the degree of the polynomial
and the number of AUs instantiated in parallel. Therefore, the number of total clock cycles
of the parallel operation, CC∗op, including both the loading and reading of the coefficients
as well as the multiplication operation, CC∗mult, is reduced according to (11). In this case,
the estimation of the total number of total clock cycles is directly related to the M parameter.
Large values of M involve a considerable reduction in the number of clock cycles used for

Cryptography 2023, 7, 29 10 of 22

coefficient multiplication. Thus, the times required for writing and reading the coefficients
to and from the module should not be underestimated when evaluating the total time for
the module operation.

Algorithm 3 Parallelizing the polynomial multiplication considering nonzero elements and
avoiding timing attacks

M← Parallelization parameter
nzm = maxcoe f − numbernon−zero

for i = 0 : N − 1 do
if ri = 0 then

nz = nz + 1
end if
if nz ≤ nzm or (ri 6= 0 and nz > nzm) then

for k = 0 : M : N − 1 do
j1 = mod(k− i, N)
ek = ek + (hj1 · ri)
j2 = mod(k− i + 1, N)
ek+1 = ek+1 + (hj2 · ri)
...
jM = mod(k− i + M− 1, N)
ek+M−1 = ek+M−1 + (hj1 · ri)

end for
end if

end for

CC∗op = CCload + CC∗mult + CCread

= 2N +

⌈
N
M

⌉
·maxcoe f + (N −maxcoe f)

= 3N + maxcoe f ·
(⌈

N
M

⌉
− 1

) (11)

In Figure 4, a theoretical calculation to compare the strategy with maxcoe f = N and
with maxcoe f = 400 of total clock cycles required to perform the multiplication operation in
the function of M is shown. For its representation, a continuous function of the number
of clock cycles as a function of M has been taken into account. Essentially, it is the rep-
resentation of the expression presented in (11). It can be seen how the number of cycles
decays very fast until about M = 10, where the clock cycles needed for loading and reading
the coefficients begin to be significant. Furthermore, the yellow line shows the difference
of clock cycles between the two strategies of maxcoe f in terms of percentage. The method
detailed in Section 3 allows for a reduction between 17% and 20% of the operation time in
parallelized solutions.

Since the acceleration strategy is based on the parallelization of the operation, at the
hardware level, it is necessary to replicate the AUs M times. This also involves a replication
of the Memory block, which increases the size in order to provide both the addresses and
coefficients to complete the multiplication correctly. The implementation strategy followed
for the AUs, bus sizes, and Memory block replication was detailed in [18]. The Control
Unit must be also modified in order to generate the index addresses, taking into account
that there is more than one coefficient operating in the same clock cycle. The block diagram
of the hardware implementation considering acceleration is shown in Figure 5.

Cryptography 2023, 7, 29 11 of 22

0 5 10 15 20 25 30 35 40 45
M

0

2

4

6

8

10

12

14

Cl
oc

k
Cy

cl
es

10 4

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

Pe
rc

en
ta

ge
 re

du
ct

io
n

(%
)

Total Multiplication Clock Cycles

CC(max

CC(max coef = 400)

Reduction of CCs

coef = N)

Figure 4. Comparison in terms of clock cycles between strategies with maxcoe f = N and
maxcoe f = 400 versus M.

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

in_e

r(i)

h(j)

e(k)

AU [1]

r(i)

h(j)

e(k)

e_out

control

AU [2]

r(i)

h(j)

e(k)

e_out

control

AU [M]

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

Figure 5. Block diagram of the hardware polynomial multiplier architecture considering parallelization.

4.4. Embedded System Integration

The hardware architecture detailed above must be interconnected with a processing
system (PS) to build a hybrid implementation. The IP module and the PS are connected
using standard interconnection buses that facilitate design reusability. In this case, the cryp-
tosystem defined at the software level and executed on a general-purpose processor sends
the coefficients of the input polynomials; thus, this communication protocol also has to be
designed following these considerations. In order to use the proposed multiplier on system-
on-chip (SoC) solutions—for example, those that incorporate an ARM processor—the most
suitable option is to use the Advanced eXtensible Interface (AXI) bus.

Cryptography 2023, 7, 29 12 of 22

In this work, the AXI interconnection interface is implemented through an AXI4-
Stream interface. For a correct synchronization between the data sent by the processor and
the IP module, it is necessary to instantiate first-in, first-out (FIFO) structures both at the
input and output. Figure 6 shows the final multiplication module, in which the FIFOs have
been integrated into the blocks called Data In and Data Out. The memory addresses used to
store the r(x) and h(x) coefficients in the Load phase and to read the e(x) coefficients in the
Read phase are internally provided by the Control Unit.

AU [1]

r(i)

h(j)

e(k)

e_out

control

AU [2]

r(i)

h(j)

e(k)

e_out

control

AU [M]

r(i)

h(j)

e(k)

e_out

control

clk

rst

nnz

data_in_r

data_in_h

in_r

in_h

out_r

out_h in_e out_e

read

Data Out

data_out_e

Control Unit
add_i

add_j

add_k

clk

rst

control

nnz

add_i

add_j

add_k

in_r

in_h

Memory

in_e

r(i)

h(j)

e(k)

load

load

read

Data In

Figure 6. Block diagram of the hardware polynomial multiplier architecture, considering paralleliza-
tion and including AXI4-Stream interconnection interfaces.

The use of standard communication protocols such as AXI4-Stream makes the mod-
ule fully integrable with other devices. Apart from that, the design of the IP module
is completely reusable, being able to change implementation parameters related to the
cryptosystem, such as the degree of the polynomial, N, as well as others that influence the
timing performance, such as maxcoe f or M. Therefore, first, it is fully functional on any of
the parameter sets defined in the NTRU Round 3 version, and second, the implementation
can be adapted to be more or less restrictive in terms of area and timing performance
depending on the constraints imposed on the system to be implemented.

Specifically, this work has used the development board PYNQ-Z2, which integrates
the Xilinx Zynq-7000 SoC (XC7Z020-1CG400C). The device consists of a PS that operates at
650 MHz and includes a dual-core ARM-Cortex-A9, along with programmable logic (PL)
from the Xilinx Artix-7 FPGA family. The selected development board supports the Python
Productivity for Zynq (PYNQ) environment [33]. This describes a framework for Python,
which operates on an embedded Linux operating system. The framework streamlines the
process of connecting hardware modules with software components.

At the hardware level, to complete the interconnection scheme between the PS and
the IP module, shown in Figure 7, some extra modules are required: the Direct Memory
Access (DMA), AXI Interconnect, and AXI SmartConnect blocks handle the exchange of
information related to the polynomial coefficients. The IP module receives the coefficients
of the input operands at the beginning of the operation and sends the coefficients of the
result at the end of the operation from/to the DMA blocks, respectively. For the design
and implementation of the IP module, the Vivado 2020.2 design tool was used. This
facilitates both the design and its integration in embedded systems, making the design of a
parametrizable IP module possible.

Cryptography 2023, 7, 29 13 of 22

AXI_Interconnect

AXI_Smartconnect
S00_AXI
S01_AXI

S00_AXI M00_AXI

M00_AXI

AXI Direct Memory Access

S_AXI_LITE

S_AXIS_S2MM

M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S

Zynq7 Processing System

DDR
FIXED_IO

M_AXIS_GP0

S_AXI_HP0

IP Module

IN OUT

Figure 7. Block diagram of the complete embedded system and the necessary blocks to interconnect
the IP module with the Zynq Processor.

At the software level, the NTRU Round 3 version implementation used was the
optimized one presented in [11]. This is a complete C implementation of the NTRU public
key scheme presented in the third round of the NIST contest. For this work, a completely
new set of tests was designed, directly providing results relative to the acceleration of the
encryption scheme using dedicated hardware. The implementation of NTRU in C was
adjusted for the PYNQ environment by utilizing C-API, which is made available in [34].
This C-API offers a comprehensive set of C routines that can be compiled to produce
executable code. PYNQ C-API includes features that make it easier to load bitstreams
and communicate with hardware blocks located on the PL of the Zynq device through
memory-mapped and shared memory mechanisms. The utilization of these features
not only simplifies the creation of software drivers required to manage the hardware
multipliers, but also eases the programming of a series of tests to validate and characterize
their operation.

5. Results

In this Section, the multiplication module is evaluated in terms of resource consump-
tion, and the acceleration factors in both multiplication and encryption processes are
analyzed. Different versions of the multiplication module for NTRU Round 3 were imple-
mented in this work for multiple values of M and considering or not the limit established
by maxcoe f .

5.1. Resource Consumption

Using the parametrizable IP Module, it is possible to modify the degree of the poly-
nomial, N, and the number of AUs in parallel, M, as well as the maximum number of
coefficients for acceleration, maxcoe f . For the evaluation, the parameter set ntruhps2048509
was used. In other words, some parameters that characterize the IP module are set, e.g., the
degree of the polynomial, N = 509. The IP module was implemented, varying the values
of maxcoe f and M for this specific parameter set. Although it is possible to select any value,
in order to comprehensively cover the entire possible range of the parallelization coefficient,
M, that generates the different parallel implementations, all powers of two starting from
2 up to 256, both inclusive, were used.

Table 2 shows the use of lookup tables (LUTs), flip-flops (FFs), and block RAMs
(BRAMs) of the implementation with maxcoe f = 400. For the case of maxcoe f = N there is
an increase in execution time of around 10%, while the resource occupation remains the
same, which is the first remarkable result. For the case of maxcoe f = 400, it was expected
that it would require more logic to implement all the changes related to the acceleration
of multiplication in the control module. However, this increase is minimal. In terms of
the parallelization coefficient, M, Table 2 shows that as the value doubles, the resource
consumption close to doubles in the case of LUTs and BRAMs, but not in the case of FFs,
where the trend is simply upward. For the highest value of M, 256, while there is hardly
any variation in occupancy relative to FFs, around 30% of LUTs and 90% of BRAMs are

Cryptography 2023, 7, 29 14 of 22

occupied. With the increase in M, the resources required for the implementation also
increase, being even more critical to resource consumption. Summarizing the results, up to
an index M = 32, occupancy is approximately below 10%, being even around 0.5–2% in
total for M = 4.

Table 2. Comparison of the IP module resource occupation and timing performance for the imple-
mentation with maxcoe f = 400.

maxcoe f = 400

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

1 166 96 1.5 96.53 203,709 2110.43

2 241 121 2.5 97.28 102,109 1049.68

4 344 119 4.5 98.04 51,309 523.35

8 658 205 4.5 94.43 25,709 272.25

16 1032 291 8.5 94.43 12,909 136.70

32 1939 471 16.5 92.94 6509 70.03

64 4452 826 32.5 86.43 3309 38.28

128 8668 1545 64.5 79.93 1709 21.38

256 17,505 3017 128.5 77.77 909 11.70

With respect to the embedded system integration, there is a minimum use of resources
necessary to instantiate the DMAs and the communication infrastructure, adding a resource
consumption of approximately 3750 LUTs, 5300 FFs, and 2 BRAMs. The percentage of
occupation due to all these connections in the embedded system is independent of the size
of the IP module and clearly notable for the small values of M.

Table 3 firstly shows the comparison in terms of area occupation and timing perfor-
mance, with respect to the work presented in [32], which is based, as is this work, on the
NTRU submitted to NIST PQC Round 3. The comparison between the two implementa-
tions shows that the one presented in this work has less resource occupation and a better
timing performance. Moreover, this work provides both a detailed analysis of the potential
risks of timing attacks associated with this NTRU version and a balance between cost and
performance, which is crucial in the context of IoT. Thus, our contribution in this regard
is a strong and reliable version for IoT that requires minimal additional resources. In fact,
256 AUs were used for the comparison. However, this number can be reduced to any value
that satisfies the occupancy constraints of a particular IoT device. Additionally, Table 3
includes several works in the literature, such as [17,18,30,31], which present implementa-
tions for the NTRU version standardized in IEEE-1363.1, different from the one used in
this work. The works presented in [17,30,31] implement parallel structures to perform the
NTRU multiplication, while the work presented in [18] shows a serial implementation that
is very close to our work.

Table 3. Resources and timing performance comparison between this work, a recent work of the
latest NTRU version, and other works of the previous standard.

NTRU Version Work LUT FF #CC Latency (µs) #AU

Round-3
Our Work 17,505 3017 1018 11.70 256

[32] 56,218 21,406 821 12.32 509

IEEE-1363.1

[17] 29,194 19,096 245 3.23 541

[18] 603 90 7107 71.07 8

[30] 30,300 - 343 3.62 541

[31] 38,240 - 541 - 541

Cryptography 2023, 7, 29 15 of 22

5.2. Analysis of Acceleration Factors

Another aspect that requires detailed analysis is the time reduction that the IP mod-
ule achieves in both the multiplication process and the encryption of the NTRU Round
3 software version. That is, how much it allows the operation of the multiplication to speed
up when comparing a full software version, executed on the embedded system processor,
versus the use of the hardware IP module. Table 4 shows the acceleration produced by the
use of the IP module with both strategies of maxcoe f for both the multiplication and the
complete encryption process, respectively. For each value of M, 1000 tests were performed,
with software and hardware mean times obtained. The values of both the multiplication
and the encryption time in the software are the mean values of the whole tests performed
(18,000 in total).

Using this IP module in the NTRU Round 3 version with maxcoe f = 400 and with
maxcoe f = N, accelerations of over six and five times, respectively, in both multiplication
and encryption, are achieved for M = 1. As the value of M increases, the hardware opera-
tion time is reduced, also increasing the acceleration both in the multiplication operation
and in the encryption scheme. For the multiplication case in Table 4, a maximum accelera-
tion factor of 72 times is achieved with the use of the maximum degree of parallelization.
The results also reveal that the differences between both strategies of maxcoe f are more
significant for intermediate M values. The strategy of maxcoe f = 400 presents certain
temporal advantages, reducing around 10% of the time required with respect to the second
one, maxcoe f = N. As is also observed, a limit in the acceleration at around 65–70 times
is reached when M is increased. This is mainly due to the fact that the operating time
accelerates to such an extent that the times required to exchange coefficients to and from
the IP Module are no longer insignificant. This behavior was already predicted earlier in
Figure 4.

Table 4. Multiplication and encryption acceleration using the hardware implementation with
maxcoe f = 400 and maxcoe f = N, with respect to the time required for the software.

maxcoe f = 400 maxcoe f = N maxcoe f = 400 maxcoe f = N

M SW HW Acc. HW Acc. SW HW Acc. HW Acc.
(µs) (µs) (x) (µs) (x) (µs) (µs) (x) (µs) (x)

1

14,354

2219 6.47 2772 5.18

14,468

2347 6.16 2900 4.95

2 1205 11.91 1486 9.66 1334 10.76 1614 8.89

4 699 20.53 842 17.05 826 17.38 972 14.77

8 445 32.26 509 28.20 575 24.96 639 22.46

16 316 45.42 350 41.01 444 32.33 479 29.97

32 254 56.51 271 52.97 384 37.38 400 35.88

64 224 64.08 231 62.14 352 40.78 360 39.87

128 207 69.34 209 68.68 335 42.85 338 42.47

256 198 72.49 199 72.13 327 43.90 328 43.76

Multiplication Encryption

In the case of the encryption scheme in Table 4, since the software time required for
multiplication (14,354 µs) is equivalent to about 95% of the software time required for
encryption (14,468 µs), the time reductions follow the same trend. This can be verified
where as in the case of multiplication—the central values of M are where the difference
between the use of both values of maxcoe f is the greatest. On the other hand, as the degree
of parallelization increases, a limit as in the case of multiplication is reached. In this case,
the acceleration factor obtained is close to 43. The difference with respect to multiplication
is mainly due to the fact that in the encryption process of the NTRU Round 3 version, other
software functions different from the polynomial multiplication are executed, which are
necessary and should not be disregarded. No matter how much the multiplication function
is accelerated, the execution of these operations requires time that cannot be avoided.

Cryptography 2023, 7, 29 16 of 22

This can be seen in Figure 8, which shows the comparison in terms of acceleration
that occurs for the maxcoe f = 400 strategy in both multiplication (orange line) and full
encryption (blue line). The first values of the parallelization coefficient, M, make the
speed-up grow very rapidly, while from M = 32 onward, the speed-up seems to stabilize.
As the value of M increases, the separation between the accelerations produced by the
multiplication and the encryption process also increases, mainly because the times invested
in the multiplication process start to become less significant, while all encryption operations
different from the multiplication start to become more significant in time.

Figure 8. Illustrative example of the speed-up factor versus M for multiplication and encryption processes.

5.3. Optimizing Area and Acceleration

In constrained devices, it is especially important to analyze the resources required to
implement a function. In other words, evaluating how the specific use of each resource is
capable of separately speeding up the algorithm to a greater or lesser extent is fundamental
for establishing certain design decisions regarding area optimization. Since in this work
we previously presented results related to LUT, FF, and BRAM occupancy, as well as
accelerations as a function of the parallelization index M, it is possible to study how this
parameter M jointly affects the resources used and acceleration obtained. For this purpose,
a new figure of merit, Efficiency, E, is defined for each type of resource as the quotient
between the acceleration obtained and the resources (LUTs, FFs, and BRAMs) used for
each M:

ELUT(M) =
Acc.(M)

LUT(M)
(12)

EFF(M) =
Acc.(M)

FF(M)
(13)

EBRAM(M) =
Acc.(M)

BRAM(M)
(14)

Optimization of this figure of merit occurs when few resources are used and high
acceleration is obtained. This combination causes the efficiency to tend towards higher
values. For simplicity in evaluating these results, only the resources used to implement
the IP module are used. An analogy could easily be drawn in terms of occupancy with
the embedded system. In the same way, the temporal results related to the acceleration
of the multiplication are used. Again, an analogy could be established with encryption,
but the conclusions to be drawn would be completely identical. Thus, using the results
presented in Table 2 concerning the number of resources used to implement the IP module,
as well as the data in Table 4 concerning the acceleration of multiplication, both considering
the strategy of maxcoe f = 400 and maxcoe f = N, it is possible to quantify the efficiency
parameter defined above.

Cryptography 2023, 7, 29 17 of 22

Results are shown in Figure 9a,b for both strategies of maxcoe f . For simplicity and
ease of visualization, only the data up to M = 32 are shown. Results in blue are related to
efficiency in terms of LUTs; in orange, FFs; and in green, BRAMs. In general, in both cases,
it can be observed that both LUTs and FFs have a very similar trend, with BRAMs being
the elements that seem to follow a different trend. The maximum LUT optimization occurs
at around M = 4 for both cases. That is, for that value of M, the resource expenditure
associated with LUTs is the one that provides the highest accelerations with the lowest
occupancy. Following the same analogy, for FFs, it occurs around at the same M = 4 for
both cases, whereas for BRAMs, it occurs around at M = 8 for both cases. Thus, for example,
for M = 4, we have a considerable increase in efficiency for both LUTs and FFs, but not so
for BRAMs. The opposite case occurs at M = 8, where this time, the optimized resource is
the BRAMs, while LUTs and FFs lose efficiency.

0.06

0.08

0.1

0.12

0.14

0.16

0.18

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

1 2 4 8 16 32
M

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

E LUT

E FF

E BRAM

E
LU

T

E
BR

A
M

E
FF

(a) maxcoe f = 400

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 4 8 16 32
M

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

E LUT

E FF

E BRAM

E
LU

T

E
BR

A
M

E
FF

(b) maxcoe f = N

Figure 9. Resource efficiency versus M (M being power of 2) in the multiplication process.

In order to complete the study of the most efficient implementation, a new set of IP
modules was implemented for all values of M between 3 and 16 for both strategies of
maxcoe f . Table 5 shows the results relative to the IP module resource use for the strategy
of maxcoe f = 400. As was mentioned before, the strategy of maxcoe f = N increases the
execution time by around 10%, keeping the resource occupation at the same level. In terms
of timing performance, Table 6 shows the results of the multiplication acceleration using
these new implementations of the IP module. Thus, the Efficiency can be recalculated
and completed using these new results. Figure 10a,b shows the Efficiency for LUTs, FFs,
and BRAMs in the strategies maxcoe f = 400 and maxcoe f = N, respectively, for M values
between 2 and 16, both inclusive.

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

4

4.5

5

5.5

6

6.5

7

7.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M

0.04

0.045

0.05

0.055

0.06

0.065

E LUT

E FF

E BRAM

E
LU

T

E
BR

A
M

E
FF

(a) maxcoe f = 400

0.1

0.15

0.2

0.25

3

3.5

4

4.5

5

5.5

6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M

0.03

0.035

0.04

0.045

0.05

0.055

0.06

E LUT

E FF

E BRAM

E
LU

T

E
BR

A
M

E
FF

(b) maxcoe f = N

Figure 10. Resource efficiency versus M (M between 4 and 16) in the multiplication process.

Cryptography 2023, 7, 29 18 of 22

Table 5. Comparison of the IP module resource occupation and timing performance for the imple-
mentation with maxcoe f = 400 for the extended results.

maxcoe f = 400

M LUTs FFs BRAM Clk (MHz) CCmult Latency (µs)

3 288 125 3.5 97.09 68,109 701.50

5 397 124 5.5 96.90 40,909 422.18

6 443 123 6.5 97.09 34,109 351.31

7 492 124 7.5 94.43 29,309 310.38

9 720 222 5 96.53 22,909 237.33

10 791 232 5.5 96.90 20,509 211.65

11 859 244 6 93.98 18,909 201.20

12 907 253 6.5 92.25 17,309 187.63

13 980 266 7 92.59 16,109 173.98

14 1043 276 7.5 90.66 14,909 164.46

15 1104 288 8 90.66 13,709 151.21

Table 6. Multiplication acceleration using the hardware implementation with maxcoe f = 400 and
maxcoe f = N with respect to the time required for the software for the extended results.

maxcoe f = 400 maxcoe f = N

M SW (µs) HW (µs) Acc. (x) HW (µs) Acc. (x)

3

14,354

868 16.49 1045 13.69

5 595 24.12 703 20.42

6 524 27.39 619 23.19

7 476 30.16 555 25.86

9 412 34.84 482 29.78

10 389 36.90 444 32.33

11 373 38.48 423 33.93

12 358 40.09 403 35.62

13 345 41.61 388 36.99

14 334 42.98 373 38.48

15 321 44.72 358 40.09

Table 7. Summary of the M selected for the maximum efficiency in terms of resource occupancy and
timing performance of the IP module for maxcoe f = 400 and maxcoe f = N.

maxcoe f Max. Eff. M LUTs FFs BRAM Acc. (x)

400

LUT 6 443 123 6.5 27.39

FF 7 492 124 7.5 30.16

BRAM 9 658 205 4.5 32.26

N

LUT 4 309 101 4.5 17.05

FF 7 465 106 7.5 25.86

BRAM 9 690 204 5 29.78

Therefore, the values that provide the highest efficiency in the execution of the mul-
tiplication at the hardware level are for the strategy of maxcoe f = 400, M = 6 for LUTs,
M = 7 for FFs, and M = 8 for BRAMs, as well as for the strategy of maxcoe f = N, M = 4 for
LUTs, M = 7 for FFs, and M = 9 for BRAMs. Summarizing the results, Table 7 shows a
selection of the data related to the IP module occupancy and the multiplication acceleration
already presented in Table 2 and Table 4, respectively. From this selection of implementa-
tions, it is necessary to decide which is the most limited resource in a future cryptographic

Cryptography 2023, 7, 29 19 of 22

implementation where this module fulfills a given function. It can be seen that LUTs are
kept at around 1%, a significantly low occupancy value. In relation to FFs, the value of
occupancy remains lower than 0.20%. Additionally, the high efficiency of the BRAMs has
its origin in the fact that the number of BRAMs used does not follow a linear tendency,
with fluctuations when M is not a power of 2. In short, a certain trade-off between the
timing performance of the system and the resources used is evident.

6. Conclusions

This work presents a hardware-dedicated architecture to accelerate—with very limited
resource consumption—the polynomial multiplication in the encryption process of the
NTRU version presented in the third round of the NIST contest. This polynomial multipli-
cation is especially critical in the execution time of the encryption scheme. As with other
implementations in the literature, the proposed solution contemplates a reduction in the
number of clock cycles by considering the zero coefficients of the obfuscation polynomial
r(x). However, since the direct application of this procedure can introduce vulnerabilities
in the security of the NTRU Round 3 version, a new method is proposed that allows
the multiplication operation to speed up without compromising the security of the cryp-
tosystem. The replication of similar AUs operating in parallel is also explored to further
accelerate the process. This architecture is the basis of an IP module that includes standard
interfaces based on the AXI4-Stream protocol communication, which facilitates hybrid
HW/SW implementations on Xilinx’s last-generation programmable devices.

Because of the reusability and integration facility of the IP module, a wide set of
implementation results have been presented in order to compare the different alternatives
in terms of resources and execution times. This eases integration in IoT environments
that usually require strong area, power, and timing constraints. The study considers the
implementation of the embedded systems in the Xilinx Zynq-7000 programmable device.
The parameter set used for the comparison was the ntruhps2048509 for the optimized
version of the NTRU Round 3 submitted to the NIST PQC contest. Using the results ob-
tained in terms of resources and timing performance, an efficiency analysis was carried
out. The motivation of this evaluation was to obtain a strategy that requires less occupancy
while reducing the execution time as much as possible. This is a critical aspect in applica-
tions with resource-constrained devices. In general, the results show that it is possible to
accelerate the NTRU Round 3 encryption scheme between 30 and 45 times with respect to
the reference software version, with a resource consumption of approximately 5%.

In conclusion, while this paper primarily discusses the application of the NTRU Round
3 version, the suggested approach and methodology can also prove to be valuable for the
execution of other operations involving polynomial rings, such as the decryption process
of NTRU Round 3, and the creation new cryptographic modules for algorithms chosen to
be standardized by NIST.

Author Contributions: All authors contributed to conceptualization, investigation, and data curation-
related tasks. Additionally, P.B. played an important role in supervision and funding acquisition. E.C.-
R. proposed the methodology, implemented the prototypes, coded and executed the test programs,
and coordinated the final manuscript edition, incorporating the suggestions of the rest of the authors.
M.C.M.-R. worked out a first version of the manuscript. S.S.-S. contributed to the methodology,
as well as to the design and validation of the hardware modules. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported in part by the SPIRS Project with Grant Agreement No. 952622
under the EU H2020 research and innovation programme and the ARES Project PID2020-116664RB-
100 funded by MCIN/AEI/10.13039/501100011033 and the NextGenerationEU/PRTR. M.C.M.-R.
holds a Postdoc fellowship from the Andalusia Government with support from PO FSE of EU. E.C.-R.
is supported by the FPU20/03008 predoc grant from the Spanish government.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2023, 7, 29 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

ANSI American National Standards Institute
AU Arithmetic Unit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
CC Clock Cycle
DH Diffie-–Hellman
DMA Direct Memory Access
DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ENISA European Union Agency for Cybersecurity
EU European Union
FF Flip-Flop
FIFO First-In, First-Out
FPGA Field-Programmable Gate Arrays
HDL Hardware Description Language
HLS High-Level Synthesis
HPS Hoffstein, Pipher, and Silverman
HRSS Hülsing, Rijnveld, Schanck, and Schwabe
HW Hardware
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
IoT Internet-of-Things
KEM Key Encapsulation Mechanism
LUT Look-Up Table
NIST National Institute of Standards and Technology
NTRU N-th-degree Truncated polynomial Ring Unit
PKC Public Key Cryptography
PL Programmable Logic
PQ Post-Quantum
PQC Post-Quantum Cryptography
PS Processing System
PYNQ PYthon Productivity for zyNQ
RAM Random Access Memory
RSA Rivest–Shamir–Adleman
RTL Register-Transfer Level
SoC System-on-Chip
SVP Shortest Vector Problem
SW Software
VLSI Very Large-Scale Integration

References
1. Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.
2. ENISA EUROPA. Available online: https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-

quantum-mitigation (accessed on 21 July 2022).
3. NIST. Post-Quantum Cryptography Standardization. Available online: https://csrc.nist.gov/Projects/post-quantum-

cryptography (accessed on 21 July 2022).
4. Kostalabros, V.; Ribes-González, J.; Farràs, O.; Moretó, M.; Hernandez, C. HLS-Based HW/SW Co-Design of the Post-Quantum

Classic McEliece Cryptosystem. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and
Applications (FPL), Dresden, Germany, 30 August–3 September 2021; pp. 52–59.

5. Roy, D.B.; Fritzmann, T.; Sigl, G. Efficient Hardware/Software Co-Design for Post-Quantum Crypto Algorithm SIKE on ARM and
RISC-V based Microcontrollers. In Proceedings of the 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), San Diego, CA, USA, 30 October–3 November 2020; pp. 1–9.

https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

Cryptography 2023, 7, 29 21 of 22

6. Dang, V.B.; Farahmand, F.; Andrzejczak, M.; Mohajerani, K.; Nguyen, D.T.; Gaj, K. Implementation and Benchmarking of Round
2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware
Co-design Approaches. In Cryptology ePrint Archive: Paper 2020/795, 2020. Available online: https://eprint.iacr.org/2020/795
(accessed on 21 July 2022).

7. IEEE Std 1363.1-2008; IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard Problems over
Lattices. IEEE: New York, NY, USA, 2009; pp. 1–81.

8. Lattice-Based Polynomial Public Key Establishment Algorithm for the Financial Services Industry. ANSI X9.98-2010. 2011.
Available online: https://webstore.ansi.org/standards/ascx9/ansix9982010r2017 (accessed on 21 July 2022).

9. Chen, C.; Hoffstein, J.; Whyte, W.; Zhang, Z. NIST PQ Submission: NTRUEncrypt, a Lattice Based Encryption Algorithm. Tech.
Rep., NIST PQC Standardization, Round 1, 2017. Available online: https://ntru.org/resources.shtml (accessed on 21 July 2022).

10. Hülsing, A.; Rijneveld, J.; Schanck, J.; Schwabe, P. High-Speed Key Encapsulation from NTRU. In Cryptographic Hardware and
Embedded Systems; CHES 2017; Springer International Publishing: Cham, Switzerlamd, 2017; pp. 232–252.

11. Chen, C.; Danba, O.; Hoffstein, J.; Hulsing, A.; Rijneveld, J.; Schanck, J.M.; Schwabe, P.; Whyte, W.; Zhang, Z. NIST PQ Submission:
NTRU, Algorithm Specifications and Supporting Documentation. Tech. Rep., NIST PQC Standardization, Round 3, 2020.
Available online: https://ntru.org/resources.shtml (accessed on 21 July 2022).

12. Guillen, O.M.; Pöppelmann, T.; Mera, J.M.B.; Bongenaar, E.F.; Sigl, G.; Sepulveda, J. Towards post-quantum security for
IoT endpoints with NTRU. In Proceedings of the Conference on Design, Automation & Test in Europe, DATE’17, Lausanne,
Switzerland, 27–31 March 2017; pp. 698–703.

13. Farahmand, F.; Sharif, M.U.; Briggs, K.; Gaj, K. A High-Speed Constant-Time Hardware Implementation of NTRUEncrypt SVES.
In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), Naha, Japan, 10–14 December
2018; pp. 190–197.

14. Imran, M.; Abideen, Z.U.; Pagliarini, S. An Experimental Study of Building Blocks of Lattice-Based NIST Post-Quantum
Cryptographic Algorithms. Electronics 2020, 9, 1953. [CrossRef]

15. Farahmand, F.; Nguyen, D.T.; Dang, V.B.; Ferozpuri, A.; Gaj, K. Software/Hardware Codesign of the Post Quantum Cryptography
Algorithm NTRUEncrypt Using High-Level Synthesis and Register-Transfer Level Design Methodologies. In Proceedings of the
2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019;
pp. 225–231.

16. Camacho-Ruiz, E.; Martínez-Rodríguez, M.C.; Sánchez-Solano, S.; Brox, P. Accelerating the Development of NTRU Algorithm on
Embedded Systems. In Proceedings of the 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia,
Spain, 18–20 November 2020; pp. 1–6.

17. Camacho-Ruiz, E.; Sánchez-Solano, S.; Brox, P.; Martínez-Rodríguez, M.C. Timing-Optimized Hardware Implementation to
Accelerate Polynomial Multiplication in the NTRU Algorithm. J. Emerg. Technol. Comput. Syst. 2021, 17, 1–16. [CrossRef]

18. Sánchez-Solano, S.; Camacho-Ruiz, E.; Martínez-Rodríguez, M.C.; Brox, P. Multi-Unit Serial Polynomial Multiplier to Accelerate
NTRU-Based Cryptographic Schemes in IoT Embedded Systems. Sensors 2022, 22, 2057. [CrossRef] [PubMed]

19. Primas, R.; Pessl, P.; Mangard, S. Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption. In Cryptology ePrint
Archive, Paper 2017/594, 2017; pp. 513–533. Available online: https://eprint.iacr.org/2017/594 (accessed on 21 July 2022).

20. Aydin, F.; Aysu, A.; Tiwari, M.; Gerstlauer, A.; Orshansky, M. Horizontal side-channel vulnerabilities of post-quantum key
exchange protocols. ACM Trans. Embed. Comput. Syst. (TECS) 2021, 20, 1–22. [CrossRef]

21. Karimi, E.; Fei, Y.; Kaeli, D. Hardware/Software Obfuscation against Timing Side-channel Attack on a GPU. In Proceedings of the
2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, CA, USA, 7–11 December 2020;
pp. 122–131.

22. Targhi, E.E.; Unruh, D. Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms. In Theory of Cryptography, TCC
2016; Hirt, M., Smith, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9986.

23. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory, ANTS 1998;
Buhler, J.P., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1423.

24. Dang, V.B.; Mohajerani, K.; Gaj, K. High-Speed Hardware Architectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU,
and Saber. In Cryptology ePrint Archive, Paper 2021/1508, 2021. Available online: https://eprint.iacr.org/2021/1508 (accessed on 21
July 2022).

25. Bailey, D.V.; Coffin, D.; Elbirt, A.; Silverman, J.H.; Woodbury, A.D. NTRU in constrained devices. In Cryptographic Hardware and
Embedded Systems—CHES 2001; Lecture Notes in Computer Science; Springer, Berlin/Heidelberg, Germany, 2001; Volume 2162.

26. Atici, A.C.; Batina, L.; Fan, J.; Verbauwhede, I.; Yalcin, S.B.O. Low-cost Implementations of NTRU for pervasive security. In
Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors, Leuven, Belgium,
2–4 July 2008.

27. Kamal, A.A.; Youssef, A.M. An FPGA implementation of the NTRUencrypt cryptosystem. In Proceedings of the International
Conference on Microelectronics—ICM, Marrakech, Morocco, 19–22 December 2009.

28. Zhan, X.; Zhang, R.; Xiong, Z.; Zheng, Z.; Liu, Z. Efficient Implementations of NTRU in Wireless Network. Commun. Netw.
2013, 5, 485–492. [CrossRef]

29. Liu, B.; Wu, H. Efficient architecture and implementation for NTRUEncrypt system. In Proceedings of the 2015 IEEE 58th
International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4.

https://eprint.iacr.org/2020/795
https://webstore.ansi.org/standards/ascx9/ansix9982010r2017
https://ntru.org/resources.shtml
https://ntru.org/resources.shtml
http://doi.org/10.3390/electronics9111953
http://dx.doi.org/10.1145/3445979
http://dx.doi.org/10.3390/s22052057
http://www.ncbi.nlm.nih.gov/pubmed/35271204
https://eprint.iacr.org/2017/594
http://dx.doi.org/10.1145/3476799
https://eprint.iacr.org/2021/1508
http://dx.doi.org/10.4236/cn.2013.53B2089

Cryptography 2023, 7, 29 22 of 22

30. Liu, B.; Wu, H. Efficient multiplication architecture over truncated polynomial ring for NTRUEncrypt system. In Proceedings of
the IEEE International Symposium on Circuits and Systems, Montreal, QC, Canada, 22–25 May 2016.

31. Braun, K.; Fritzmann, T.; Maringer, G.; Schamberger, T.; Sepúlveda, J. Secure and compact full NTRU hardware implementation.
In Proceedings of the IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC), Verona, Italy, 8–10 October
2018; pp. 89–94.

32. Qin, Z.; Tong, R.; Wu, X.; Bai, G.; Wu, L.; Su, L. A Compact Full Hardware Implementation of PQC Algorithm NTRU. In
Proceedings of the 2021 International Conference on Communications, Information System and Computer Engineering (CISCE),
Beijing, China, 14–16 May 2021; pp. 792–797.

33. PYNQ—Python Productivity for Zynq. Available online: http://www.pynq.io (accessed on 21 July 2022).
34. Brown, N. PYNQ API: C API for PYNQ FPGA Board. Available online: https://github.com/mesham/pynq_api (accessed on

21 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.pynq.io
https://github.com/mesham/pynq_api

	Introduction
	The NTRU Encryption Scheme
	Mathematical Background
	Hardware Implementation of Polynomial Multiplication

	Robust Acceleration against Timing Attacks
	IP Module Design and Integration
	Design of the Arithmetic Unit
	Core Design
	Parallelizing the Multiplication Process
	Embedded System Integration

	Results
	Resource Consumption
	Analysis of Acceleration Factors
	Optimizing Area and Acceleration

	Conclusions
	References

