
Citation: August, D.A.; Smith, A.C.

PudgyTurtle Mode Resists

Bit-Flipping Attacks. Cryptography

2023, 7, 25. https://doi.org/10.3390/

cryptography7020025

Academic Editor: Huaxiong Wang

Received: 4 March 2023

Revised: 30 April 2023

Accepted: 5 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

PudgyTurtle Mode Resists Bit-Flipping Attacks
David A. August 1,* and Anne C. Smith 2

1 Department of Anesthesia, Massachusetts General Hospital, Boston, MA 02114, USA
2 Independent Researcher, Boston, MA 02114, USA
* Correspondence: daugust@mgh.harvard.edu; Tel.: +1-617-724-2250

Abstract: Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to
a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent
message. While authenticated encryption and message authentication codes can effectively negate
this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is
a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher
(via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and
demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits
that will be affected.

Keywords: error-correcting code; non-systematic code; symmetric encryption; stream cipher; encryption
modes; malleability; integrity

1. Introduction

Among stream-cipher systems, the ’synchronized binary-additive stream cipher’
(S-BASC) is the canonical example. In the S-BASC, a sequence of pseudo-random bits
(’keystream’) is generated by an algorithm acting on a finite-state machine (’keystream
generator’ or KSG) and then combined with the plaintext via bit-wise modulo-2 addition.
The starting state of this KSG includes a secret key and often a randomizing initial value
(IV; such as a nonce or frame number). To ensure full mixing of this initial state, the system
may also require some number of KSG iterations before encryption begins (’warm-up’).

Besides the synchronous (S-BASC) mode, stream-cipher systems can also utilize other
modes, including a recently-described one called PudgyTurtle [1]. This mode operates on
small groups of bits (’symbols’) instead of individual bits and has the unusual property
that the encryption requires an uncertain amount of keystreams: each plaintext symbol is
encoded using a variable-length section of keystream, and then each codeword is enciphered
by XOR’ing it to a separate, fixed-length section of keystream.

Some cryptanalytic techniques against stream ciphers target specific features of a
particular KSG (e.g., distinguishing and correlation attacks) [2–4], while others are generic
methods that work against any system (e.g., brute-force and time-memory tradeoff at-
tacks) [5–9]. Here, we discuss another generic approach called the ’bit-flipping attack’
(BFA), in which the opponent perturbs the ciphertext so that it will be decrypted into
something other than intended. The BFA takes advantage of malleability—a major weakness
of S-BASC systems which allows for the alteration of the ciphertext in ways undetectable
by the receiver.

The BFA has two variations (nonselective and tailored), whose essential difference
is the requirement for known plaintext. During a nonselective BFA, the attacker adds
random bits to the ciphertext, thus making the decryption unrecognizable and rendering
the channel useless. This variation is mentioned here only for completeness and is more
suitably discussed in the context of jamming in communications theory or denial-of-service
attacks in network security theory [10,11]. During a tailored BFA, known plaintext X′ is
used to craft one or more bit-flips that will produce some desired decryption X∗. Let ⊕

Cryptography 2023, 7, 25. https://doi.org/10.3390/cryptography7020025 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020025
https://doi.org/10.3390/cryptography7020025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography7020025
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020025?type=check_update&version=1

Cryptography 2023, 7, 25 2 of 33

represent modulo-2 addition (XOR), and let Y′ and K′ represent sections of ciphertext and
keystream corresponding to X′. The opponent intercepts Y′ = X′ ⊕ K′ and then transmits
the modified ciphertext Y∗ = Y′ ⊕ X′ ⊕ X∗. Since XOR is an involution, decryption of this
’flipped’ ciphertext will produce

Y∗ ⊕ K′ = (Y′ ⊕ X′ ⊕ X∗)⊕ K′

= ([X′ ⊕ K′]⊕ X′ ⊕ X∗)⊕ K′

= X∗

Standard defenses against bit-flipping include authenticated encryption and the
message-authentication code (MAC)—a keyed hash of the plaintext which allows the
recipient to detect tampering and reject nonauthentic ciphertexts (Chapter 4 [12]). Another
strategy against bit-flipping is to use an encryption mode. In 2001, for example, Golić noted
that stream-cipher modes with an ’inifite memory’ have “an inherent potential that can be
used for message integrity purposes” [13]. Modes that incorporate ciphertext feedback, for
instance, could propagate the effects of changing even one ciphertext-bit, thereby making it
difficult to tailor a BFA.

Although the connection between encryption modes and integrity pointed out by
Golić has been reported in the literature for decades, little has been written about the
actual details of using stream-cipher modes for this purpose and nothing at all about
PudgyTurtle in this context. The primary goal of this paper is to explore the behavior of
this new encryption mode against a BFA. We demonstrate that PudgyTurtle mode creates
uncertainty about where exactly the decrypted text will start showing the effects of bit-
flipping, how long these effects will persist, what the distribution of decrypted symbols
will be, and whether or not length will be preserved. We emphasize that despite these
interesting (and sometimes unique) features, PudgyTurtle provides only partial protection
against bit-flipping. It reduces, but does not completely eliminate, ciphertext malleability.

The other contribution of this manuscript is to provide a flexible implementation of
PudgyTurtle mode. To date, analysis of PudgyTurtle has focused on one particular version
with nibble-sized (4-bit) input and byte-sized (8-bit) output. To study bit-flipping more
broadly, however, we introduce a ’generalized’ PudgyTurtle (denoted as PT[s, f , d]) which
allows for variably sized symbols.

Our main results are as follows: (1) PudgyTurtle mode can be generalized, and its
performance predicted; (2) the outcomes of all bit-flipping attacks against PudgyTurtle
include an element of uncertainty; (3) some bit-flipping attacks against PudgyTurtle are
rejected by the decryption algorithm, with a probability depending on the position of the
flipped bit relative to its underlying codeword; (4) bit-flipping attacks can produce effects
ranging from altering one symbol all the way to an ’avalanche’; (5) knowing in advance
exactly how a BFA will alter the decrypted text is difficult, but generic statistical predictions
are possible; and (6) some bit-flipping attacks may increase the length of decrypted text
relative to the original plaintext.

After discussing notation (Section 2) and methods (Section 3), we review stream-cipher
encryption modes (Section 4). Next, we present and analyze the generalized formulation of
PudgyTurtle (Section 5) and use this more-flexible implementation to explore PudgyTurtle
mode’s behavior during bit-flipping attacks, including a (hypothetical) electronic banking
fraud scheme (Sections 6 and 7).

2. Notation
2.1. Numbers

Hexadecimal values are prefixed by 0x, and binary values are subscripted by 2
(e.g., 254 can be written as 0xFE or 111111102).

Cryptography 2023, 7, 25 3 of 33

2.2. Functions and Operators

Operators include⊕ for XOR (modulo-2 addition),⊗ for AND (bitwise multiplication),
� for right-shift; ‖ for concatenation, buc (due) for the floor (ceiling) of real-valued u, and
h(V) for the Hamming weight (i.e., number of 1 bits) in binary vector V. The Hamming
distance (`1-norm) between binary vectors V and V′ is h(V ⊕V′).

2.3. Symbols and Sequences

PudgyTurtle mode operates on small groups of bits (’symbols’, denoted by uppercase
letters) rather than individual bits (lowercase letters). Let bj represent j-th bit of binary
sequence B, where j = 1, 2, 3, . . . , |B|. The i-th (nonoverlapping) s-bit symbol within this
sequence is

B[s]i = bs(i−1)+1 ‖ bs(i−1)+2 ‖ bs(i−1)+3 ‖ . . . ‖ bsi

where i = 1, 2, 3, . . . , N[s]B, and N[s]B = b|B|/sc. For convenience, [s] can be dropped
in favor of the simpler notations Bi and NB whenever the number of bits per symbol is
unambiguous or irrelevant to the context.

X, Y, and K stand for plaintext, ciphertext, and keystream, respectively. Symbols
with primes are ’known’ (e.g., the known plaintext and its corresponding ciphertext are
represented by X′ and Y′). Symbols with asterisks occur during bit-flipping attacks (e.g., Y∗

is the modified ciphertext that has been subjected to bit-flipping, and X∗ is the decryption
of this ’flipped’ ciphertext).

2.4. Keystream Generator

PudgyTurtle is cipher agnostic: it takes bits from a ’black-box’ KSG operating on an
n-bit state S. The t-th keystream bit is kt = o(π(St−1)), where o : {0, 1}n → {0, 1} is the
output function, π : {0, 1}n → {0, 1}n the state-update function, t = 1, 2, 3, . . . , |K|, and
initial state S0 contains the secret key and IV.

3. Methods

In the experiments described below, the plaintext source (unless otherwise specified)
is an 800,000-bit ASCII-encoded English-language text. Encryption is done via one of two
’toy’ ciphers: (1) RC4 with a 40-bit key and (2) a simple, maximal-period 24-bit NLFSR with
primitive polynomial 1 + x + x8 + x9 + x15 + (x7 · x18) [14]. We emphasize that these KSGs
are chosen for simplicity and used for illustrative purposes only. Neither is intended as a
practically secure stream-cipher, either with or without PudgyTurtle.

We study the simplest attack, in which a single ciphertext bit is flipped (Y → Y∗), this
modified ciphertext is decrypted (Y∗ → X∗), and this decryption is then compared to the
original plaintext (X∗ vs. X). Measured outcomes include the following:

• PREJECT is the fraction of attacks for which the ciphertext is rejected. Rejection (de-
scribed in detail later) occurs if bit-flipping produces an invalid codeword during
decryption;

• p(X∗) is the frequency distribution of values taken by all the decrypted symbols;
• p(X∗i) is the frequency distribution of values taken by the i-th decrypted symbol;
• Hd(i) = h(xi ⊕ x∗i) is the Hamming distance between the i-th original plaintext bit

and i-th bit in the decryption of Y∗;
• Hd is the normalized Hamming distance between the original plaintext and decrypted

(flipped) ciphertext:

Hd =
∑i Hd(i)
|X| =

h(X⊕ X∗)
|X|

4. Stream-Cipher Modes

Here, we briefly review PudgyTurtle mode and also discuss stream-cipher modes in
general.

Cryptography 2023, 7, 25 4 of 33

4.1. PudgyTurtle Mode

In one implementation of PudgyTurtle, the plaintext is broken into 4-bit groups
(’nibbles’), each of which is encrypted in four steps. First, an 8-bit mask is created by
concatenating two nibbles of keystream. Next, keystream nibbles are generated until one of
them matches the plaintext nibble—either exactly or to within a one-bit tolerance. This step
produces two important quantities: the ’failure counter’ (the number of keystream nibbles
that failed to match the plaintext nibble) and the ’discrepancy code’ (a number describing
the relationship between the two matching symbols: 0 for an exact match or 1–4 to indicate
the mismatched bit’s position). This match is then encoded by concatenating the failure
counter (taken as a 5-bit number) and the discrepancy code (taken as a 3-bit number), and
the resulting codeword is enciphered by XOR’ing it with the mask.

There is one important question: What happens if so many failures (>32) occur during
plaintext-to-keystream matching that their number can no longer be described with five
bits? Whenever such an overflow event occurs, a special codeword is enciphered by XOR’ing
it with the current mask and then inserting it into the ciphertext. After this, a new mask
is created; the failure counter is reset to zero, and attempts to match the current plaintext
nibble continue.

This special ’all-1’ codeword, 0xFF, comes from concatenating the maximum failure
counter (25 − 1 = 31 = 111112) with one particular discrepancy code (1112) reserved for
overflows. Note that the maximum failure counter alone does not always indicate an
overflow (e.g., an exact match between a plaintext nibble and the 32 nd keystream nibble
would produce codeword 111112 ‖ 0002 = 0xF8, not the overflow codeword).

Decryption is a straightforward reversal of this procedure. First, a mask is built by
concatenating two keystream nibbles. Next, the mask is XOR’ed with the current 8-bit
ciphertext byte to unmask (decipher) the underlying codeword. This codeword is split
into its failure counter (upper 5 bits) and discrepancy code (lower 3 bits). A number of
keystream nibbles are generated (specifically, one more than the failure counter), the last
one of which matches the plaintext nibble to within a bit. The discrepancy code is then
used to ’reverse engineer’ (decode) this keystream nibble back into the correct plaintext
nibble; the result is output, and decryption of the next ciphertext byte commences.

If an overflow is detected during decryption (i.e., when unmasking produces the
special all-1 codeword 0xFF), then no decrypted symbol is output. Instead, 32 keystream
nibbles are generated and discarded, a new mask is built, the next ciphertext byte is
unmasked, and decryption continues as decsribed above.

4.2. Classical Modes: Synchronous and Asynchronous

A ’general binary stream cipher’ operating without delay has state-update and en-
cryption equations

St+1 = πKEY(St, xt), and yt = xt ⊕ oKEY(St)

where KEY is the initial KSG-state (S0). Stream ciphers are classically described as hav-
ing two encryption modes: synchronous (S-BASC) and asynchronous [15,16]. In the syn-
chronous mode, the state-update function operates independently of plaintext or ciphertext:
St+1 = πKEY(St). In the asynchronous mode, this no longer holds. Golić further subclas-
sified asynchronous systems into those with finite and infinite memory [13]. For the
finite-memory type, designated as ’self-synchronizing stream ciphers’, the KSG state itself
includes feedback from n previous ciphertext bits: St = (yt−1, yt−2 and . . ., yt−n). For the
infinite-memory type, designated as ’stream cipher with memory’, π operates not only on
St but also on xt.

More recently, Hamann, Krause, and Meier proposed FP(1)-mode, which has been
instantiated in the lightweight stream cipher LIZARD [17,18]. FP(1)-mode—designed
for packet-based operations in which each key/IV only generates a limited amount of
keystream—consists of three phases: key loading (creating a KSG state from the secret key

Cryptography 2023, 7, 25 5 of 33

and IV), key-mixing (repeatedly iterating this KSG-state while feeding back its nominal
output), and key hardening (XOR’ing this mixed KSG-state with the secret-key).

Synchronous mode, asynchronous mode, and PudgyTurtle mode are illustrated in
Figure 1. Here, ’key’ is the initial KSG state (secret-key ± IV), black boxes represent the
KSG, and the gray box stands for PudgyTurtle’s error-correcting code (ECC). Figure 1A
illustrates synchronous (S-BASC) mode, also called ’memoryless’ and ’key-autokey’. This
mode is used in numerous stream-cipher systems and by block ciphers operating in CTR
(counter) mode.

Figure 1. Stream cipher modes. Diagrams (left) and terminology (right) for various stream-cipher
encryption modes. X and Y represent plaintext and ciphertext; the black boxes represent a keystream
generator, which produces keystream K from some initial state (key); and the gray box is an error-
correcting code. (A) The synchronous mode follows the simple rule that Y = X ⊕ K. (B) In the
asynchronous mode, the keystream generator’s state includes feedback from some previous ciphertext.
(C) PudgyTurtle mode utilizes the keystream in two different ways. When the toggle is down, K is
used to encode a multibit plaintext ’symbol’. When the toggle is up (shown here), a different portion
of K is XOR’ed with this codeword to encipher it. The toggle remains in the down position for a
variable duration so that the total amount of K required to encrypt varies from symbol to symbol.

Figure 1B depicts the asynchronous mode (e.g., finite-memory type), also called
’ciphertext-autokey’ and ’self-synchronizing’. Here, the KSG state incorporates some num-
ber of previous ciphertext bit(s). Errors from a flipped ciphertext bit ’wash out’ after n KSG
updates (where n is the KSG-state size), thereby resynchronizing the system. Asynchronous
modes are used by the stream-ciphers SAVILLE (an older Suite-A system jointly designed
by NSA and GCHQ) [19], PKZIP [20,21], Hiji-bij-bij [22], WAKE [23], the T-function system
of Klimov and Shamir [24], and by block ciphers in the CFB (cipher feedback) mode.

Figure 1C shows PudgyTurtle mode. As suggested by the toggle-switch selector, this
mode uses different segments of keystream for different purposes. Some keystream is used
to encode a multi-bit plaintext symbol (when the toggle is ’down’), and another section of
keystream is XOR’d to this codeword to encipher it (when the toggle is ’up’). PudgyTurtle
shares some features with the synchronous mode (keystream can be generated in advance)
and others with asynchronous mode (memory), but it also has unique features (the amount
of keystream required to encrypt each plaintext symbol varies, X and K are not combined
by a simple XOR, and ’memory’ is not due to feedback from Y to the KSG state but rather
due to an iterative encoding process between X and K).

Cryptography 2023, 7, 25 6 of 33

4.3. Synchronization, Linkage, and Connection

Some new terminology is helpful to describe the relationships between plaintext,
keystream, and ciphertext in PudgyTurtle mode. Synchronized is reserved for describing
encryption modes themselves, not the sequences upon which they operate. Linkage is a
low-level concept describing the mathematical relationship between plaintext, keystream,
and ciphertext symbol indices. Connection is a high-level concept emphasizing that unam-
biguous decryption can be possible even for sequences that are not linked. During normal
PudgyTurtle operation, X, Y, and K are unlinked but connected. A BFA, however, may
cause disconnection as well.

In more detail, linked describes two sequences whose identically indexed elements are
functionally related. Figure 2a shows that during typical stream-cipher encryption, X, K,
and Y are linked: yi is a function of xi and ki. Even with asynchronous modes, where ki may
be a more complex function of previous ciphertext or plaintext bits, linkage is maintained.
With PudgyTurtle mode, however, these sequences become unlinked (Figure 2b): Yj is now
a function of Xi and kt—the first bit of the relevant section of keystream. Overflows cause
the j to drift ahead of i, and the uncertainty of each plaintext-to-keystream match causes
t to drift ahead of both j and i. Despite being unlinked, however, the sequences remain
connected, and so decryption is still possible. 1

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x6

(a) Linked

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

X1 X2 X3 X4 X5 X6

(b) Un-linked

X1 X2 X3 X4 X5 X6

Y ∗
1 Y ∗

2 Y ∗
3 Y ∗

4 Y ∗
5 Y ∗

6 Y ∗
7 Y ∗

8

X∗
1 X∗

2 X∗
3 ? ? ? ?

(c) Disconnected

Figure 2. Other encryption modes, PudgyTurtle, and bit-flipping. (a) For non-PudgyTurtle
encryption modes, each plaintext bit (xi) is linked to its corresponding ciphertext bit (yi)
through keystream bit ki – whether the KSG-state that generated ki includes feedback
(asynchronous-mode) or not (synchronous-mode). (b) PudgyTurtle-mode un-links the in-
dices of plaintext-symbol Xi, its corresponding ciphertext-symbol Yj , and the first bit of
keystream used during its encryption, kt. Overflows (e.g., when X3 is encrypted into Y3/Y4,
and X5 into Y6/Y7) cause j to drift ahead of i; and the inherent uncertainty in each plaintext-
to-keystream match causes t to drift ahead of i and j. Despite being un-linked, though,
unambiguous decryption of Yj into Xi from keystream bit kt is still possible. (c) A bit-
flipping attack against PudgyTurtle may disconnect the ciphertext (Y ∗) from the plaintext.
In this cartoon, bit(s) within the fifth ciphertext-symbol (gray circle) have been flipped. If
these flipped bits alter a failure-counter, then the keystream-symbol actually used during
decryption (i.e., the one that supposedly ’matched’ X4) will be incorrect. Not only will dis-
connection affect how Y ∗

5 gets decrypted, but will also cause subsequent ciphertext-symbols
to be ’unmasked’ into apparently random values (’?’ symbols) rather than into the correct
codewords.

Figure 2. Other encryption modes, PudgyTurtle, and bit-flipping. (a) For non-PudgyTurtle encryption
modes, each plaintext bit (xi) is linked to its corresponding ciphertext bit (yi) through the keystream
bit ki—whether the KSG state that generated ki includes feedback (asynchronous mode) or not (syn-
chronous mode). (b) PudgyTurtle-mode unlinks the indices of plaintext symbol Xi, its corresponding
ciphertext symbol Yj, and the first bit of keystream used during its encryption, kt. Overflows cause
j to drift ahead of i, and the inherent uncertainty in each plaintext-to-keystream match causes t to
drift ahead of i and j. Despite being unlinked, unambiguous decryption of Yj into Xi from keystream
bit kt is still possible. (c) A bit-flipping attack against PudgyTurtle may disconnect the ciphertext (Y∗)
from the plaintext. In this cartoon, bit(s) within the fifth ciphertext symbol (gray circle) have been
flipped. If these flipped bits alter a failure counter, then the keystream symbol actually used during
decryption (i.e., the one that supposedly ’matched’ X4) will be incorrect. Not only will disconnection
affect how Y∗5 gets decrypted but will also cause subsequent ciphertext symbols to be ’unmasked’
into apparently random values (’?’ symbols) rather than into the correct codewords.

Cryptography 2023, 7, 25 7 of 33

During a bit-flipping attack, however, Y and K may disconnect. Figure 2c shows what
happens when a flipped bit within the fifth ciphertext symbol (gray circle) causes Y∗5 to be
unmasked into a new, incorrect codeword whose failure counter differs from what is should
be. Now, decryption no longer works: the PudgyTurtle algorithm ’thinks’ that the wrong
keystream symbol should be used to decrypt Y∗5 into X∗4 . Disconnection affects not only
this symbol but also triggers an avalanche effect: all subsequent ciphertext symbols will be
unmasked into seemingly random values (?-symbols) rather than into correct codewords.

5. Generalized PudgyTurtle

To study bit-flipping attacks most broadly, it would be useful for PudgyTurtle to allow
input and output symbols of many sizes—not just nibble-sized input and byte-sized output.
Toward this end, we introduce the ’generalized’ PudgyTurtle implementation PT[s, f , d].
Here, s is the size (in bits) of each plaintext symbol, f is the size of each failure counter,
d is the size of each discrepancy code, and c = f + d is the size of each codeword, mask,
and ciphertext-symbol. In this notation, the original implementation was PT[4,5,3], which
encrypted a 4-bit plaintext symbol into 8-bit ciphertext symbols.

5.1. Match Function

PudgyTurtle requires matching (to within a 1-bit tolerance) some s-bit plaintext symbol
Xi to some s-bit keystream symbol KF. The details of this match are captured by a (0–s)-
valued discrepancy code D, which can be expressed as the output of a match function, δ:
{0, 1}s → {−1, 0, 1, 2, . . . , s}:

δ(Xi, KF) =

0, if h(Xi ⊕ KF) = 0
1 + log2(Xi ⊕ KF), if h(Xi ⊕ KF) = 1
−1, if 2 ≤ h(Xi ⊕ KF) ≤ s

For example, if the 5-bit plaintext and keystream symbols match everywhere except
their fourth bit, then h(Xi ⊕ KF) = 1, Xi ⊕ KF = 010002 = 8, and so D = δ(Xi, KF) = 1 +
log2(8) = 4. If, on the other hand, these two symbols match exactly, then D would be
h(00002) = 0. Notice that δ() = −1 is simply a ’place holder’ for when Xi and KF differ by
>1 bit—this value will not become part of any discrepancy code.

5.2. Encryption

To encrypt the s-bit plaintext symbol Xi into the c-bit ciphertext-symbol Yj with
keystream starting at bit kt, the following steps are taken:

1. MASK

• Create a mask of c keystream bits: M = (kt‖kt+1‖ . . . ‖kt+c−1);
• Update t, the new ’current’ keystream bit: t← t + c.

2. MATCH Starting from kt, generate successive s-bit keystream symbols K0, K1, K2, . . .,
until either

(a) One of these keystream symbols, designated as KF, matches Xi exactly or
differs from it by a single bit. In either case, proceed to Step 3;

or . . .

(b) 2 f keystream symbols have failed to match. If this overflow event happens

• Output the c-bit ciphertext-symbol Yj = (2c − 1)⊕M;
• Update the index of kt: t← t + (2 f)s;
• Update the ciphertext-symbol index: j← j + 1;
• Return to Step 1.

Cryptography 2023, 7, 25 8 of 33

3. ENCODE Make a c-bit codeword, C = (F‖D), where failure-counter F (the number of
s-bit keystream symbols just tested against Xi that failed to match) is represented by f
bits, and discrepancy code D = δ(Xi, KF) is represented by d bits.

4. ENCIPHER

• XOR this codeword with its mask: Yj = C⊕M;
• Output Yj.

5. UPDATE

• Update the keystream-bit index: t← t + (F + 1)s;
• Update the plaintext-symbol index: i← i + 1;
• Update the ciphertext-symbol index: j← j + 1;
• Return to Step 1.

For example, consider encoding a plaintext-to-keystream match using PT[4,5,3], which
has 4-bit symbols (s = 4), 5-bit failure counters (f = 5), and 3-bit discrepancy codes (d = 3),
and produces 8-bit codewords (c = 5+3 = 8). Suppose plaintext-symbol Xi matches the tenth
keystream symbol against which it is tested everywhere except its high-order bit. Then
F + 1 = 10, and so KF = K9 = (kt+36 ‖ kt+37 ‖ kt+38 ‖ kt+39), and D would be δ(Xi, K9) =
1 + log2(10002) = 4. The resulting codeword would be C = (9‖4) = 010012 ‖ 1002 =
010011002 = 0x4C, and thus the final ciphertext symbol would be 0x4C XOR’d with its
corresponding 8-bit mask.

5.3. Decryption

To decrypt the c-bit ciphertext symbol Yj into Xi using keystream starting at bit kt, the
following occurs:

1. MASK

• Create a c-bit mask M = (kt‖kt+1‖ . . . ‖kt+c−1);
• Update the initial keystream bit-index: t← t + c.

2. DECIPHER Unmask the ciphertext symbol to reveal its underlying codeword C = Yj⊕M.
3. OVERFLOW? If C is the ’all-1’ overflow codeword, then

• Generate and discard 2 f (s-bit sized) keystream symbols;
• Update the keystream bit-index: t← t + (2 f)s;
• Update the ciphertext symbol index: j← j + 1;
• Return to Step 1.

4. UNPACK If C was not the overflow codeword, then split it into two components:
extract failure-counter F from its f highest-order bits and discrepancy-code D from
its d lowest-order bits: F = (C � d)⊗ (2 f − 1), and D = C⊗ (2d − 1).

5. VALIDATE If D > s, then halt the decryption and return ⊥.
6. DECODE Use F and D to ’reverse engineer’ the original plaintext-to-keystream match:

• Generate (F + 1) s-bit keystream symbols K0, K1, K2, . . . , KF;
• Recover the plaintext symbol from KF by inverting the discrepancy-code:

Xi =

{
KF if D = 0;
KF ⊕ 2D−1 if 1 ≤ D ≤ s

7. UPDATE

• Output Xi;
• Update the index of kt: t← t + (F + 1)s;
• Update the ciphertext-symbol index: j← j + 1;
• Update the decrypted-symbol index: i← i + 1;
• Return to Step 1.

The VALIDATE step may seem redundant: at this point in the algorithm, discrepancy
codes should always be in range (i.e., since the codeword is not an overflow, D should

Cryptography 2023, 7, 25 9 of 33

be between 0 and s). However, this step is made explicit because ciphertexts that have
been subjected to bit-flipping attacks may produce invalid discrepancy codes at this point.
In such cases, the ciphertext is rejected and no decryption is returned.

As an example (again using PT[4,5,3]), suppose that ciphertext Y = 0xAB is deci-
phered by mask M = 0xE7, producing the codeword C = (0xAB ⊕ 0xE7) = 0x4C. Since
this is not the overflow codeword (i.e., C 6= 0xFF), we proceed with the unpacking step:
0x4C = 010011002 = 010012 ‖ 1002 = (9 ‖ 4) = (F ‖ D). The validation step succeeds because
the discrepancy code is within range (i.e., D is not > 4). Next, since F = 9, we must
generate ten new (4-bit) keystream symbols to reach the one that matched the current
plaintext symbol. Since D = 4, the plaintext symbol must have differed from K9 in its
fourth (high-order) bit: that is, 2D−1 = 23 = 8 = 10002. Thus, the decrypted symbol is
Xi = K9 ⊕ 10002 = (1⊕ kt+36) ‖ kt+37 ‖ kt+38 ‖ kt+39.

5.4. Indexing

For a stream-cipher in synchronous mode, indexing is trivial: yi = xi ⊕ ki for all i.
For PudgyTurtle mode, this is not the case: it can be challenging to cross-index sequences or
even to unambiguously index one sequence that may be split into different-sized symbols
(e.g., s-bit and c-bit symbols within K).

Regarding X and Y, although the symbol size for each sequence differs (i.e., s-bit
groups for the plaintext, and c-bit groups for the ciphertext), this size remains fixed through-
out encryption. Thus, both sequences can be indexed continuously:

X = X1, X2, X3, . . . , Xj, . . . , XN[s]X

Y = Y1, Y2, Y3, . . . , Yj, . . . , YN[c]Y

Because of overflows, N[c]Y may exceed N[s]X , causing these two sequences to become
unlinked: Yj no longer represents an encrypted version of Xj but rather of Xi where i < j.
This issue is easily understood and just requires careful description of exactly what ’i’ in Xi
(or ’j’ in Yj) means in a specific context.

Keystream indexing is more difficult because PudgyTurtle uses different-sized symbols
within K for different tasks (i.e., c-bit symbols for masks, and s-bit symbols to match the
plaintext). For PT[4,5,3], it so happens that the each 8-bit mask is exactly twice the length of
each 4-bit keystream (or plaintext) symbol. Thus, making a mask means ’concatenating
two keystream symbols’, a coincidence which allows continuous indexing of the entire
keystream as 4-bit symbols.

For PT[s, f , d] however, the mask is not necessarily a concatenation of some whole
number of s-bit symbols, nor is the index of the keystream bit at which matching begins
necessarily a multiple of s. Thus, instead of indexing the entire keystream, only shorter
keystream subsequences K0, K1, K2, . . . , Ku, . . . , KF are indexed, where 0 ≤ F < 2 f and
simplified notation Ku is used instead of K[s]u. Each subsequence falls in between two
masks. Assuming that the relevant section of keystream starts at kt, then Ku can be
expressed in a precise but awkward way as follows:

Ku = kt+c+us ‖ kt+c+us+1 ‖ . . . ‖ kt+c+us+(s−1)

However, since t depends on the outcomes of all previous plaintext-to-keystream
matches, each bit’s index above becomes a history-dependent function of the plaintext and
the secret key.

5.5. Bit Padding

In PT[s, f , d], the plaintext and ciphertext symbol lengths may not split evenly into
groups of 8 bits. Thus, bit padding (specifically, Method #2 of ISO/IEC 9191-1) is employed
so that input and output can be stored and displayed as bytes. In this padding technique,
a single bit is appended to the original data, followed by zero or more 0 bits to achieve a
context-specific total length. Bit padding during encryption is conducted in two steps:

Cryptography 2023, 7, 25 10 of 33

• First, the plaintext is bit-padded to make a whole number of s-bit symbols;
• Next, the ciphertext is bit-padded to make a whole number of 8-bit bytes.

During decryption, an initial layer of bit-padding is removed from the ciphertext to
obtain a whole number of c-bit symbols. After decryption into s-bit plaintext symbols,
another layer of bit-padding is removed to obtain a whole number of 8-bit bytes.

5.6. PT[s, f , d] Performance

PudgyTurtle produces a bandwidth expansion called the ciphertext expansion factor
(CEF) and also uses more keystream bits than plaintext bits (keystream expansion factor or
KEF). CEF consumes memory, and KEF expends time. Since previous work described
these measures only for PT[4,5,3], here we examine CEF and KEF for the generalized
implementation and compare predictions to observed data.

Overflows

For PT[4,5,3], overflows are infrequent (one per ∼80,000 bytes). For PT[s, f , d], over-
flows can be more common, even occurring several times in a row. To describe this clearly,
some new terminology is useful:

• An overflow means that attempts to match a plaintext symbol to 2 f successive keystream
symbols have all failed;

• An overflow event is the occurrence of one or more overflows during encryption of a
single plaintext symbol;

• The order of an overflow event is the number of overflows it contains: 1-order refers
to a single overflow, 2-order refers to a double overflow, and so on. The case of ’no
overflows’ can also be formally described as a 0-order event. Note that for PT[4,5,3],
all overflow events observed thus far are 1-order, so the total number of overflows
equals the number of overflow events. When higher-order events occur, however, the
number of overflows exceeds the number of events.

During plaintext-to-keystream matching, the chance of an exact match or one-bit
mismatch between any two s-bit symbols is

p =

(
s + 1

2s

)
In addition, the probability of a successful match after m failures is (1− p)m p. Let discrete
random variable O ∈ {0, 1, 2, . . .} represent the order of an overflow event. The probability
of no overflows (i.e., a successful plaintext-to-keystream match within 2 f attempts) is

Pr{O = 0} =
2 f−1

∑
m=0

(1− p)m p

The probability of any overflows (i.e., an overflow event of order ≥1) is

PO = 1− Pr{O = 0} =
∞

∑
j=1

Pr{O = j} (1)

where the probability of each j-order event above is

Pr{O = j} =
(j+1)·2 f−1

∑
m=j·2 f

(1− p)m p

Figure 3 shows the observed (•) and predicted (◦) overflow-event probabilities plotted
against s/ f . This X-axis parameter was chosen because overflows occur more often when
symbols become bigger and/or fewer failures are allowed (larger s/ f). The observed proba-
bilities are from 121 different PT[s, f , d] implementations, obtained by systematically varying

Cryptography 2023, 7, 25 11 of 33

s and f between 4 and 14, and – since the discrepancy-code does not affect PO – setting d
to the smallest value provides a sufficient number of codewords (i.e., 2d ≥ s + 2). For each
implementation, the plaintext was encrypted using a randomly keyed 24-bit NLFSR. Observed
data (•) came from dividing the actual number of overflow events by the number of plaintext
symbols. Predicted probabilities (◦) came from substituting each s and f into (1). Notice
that predictions are very similar to the observed data and that overflows increase with s/ f
as anticipated. When s/ f < 1.25, PO reaches a floor value, and when s/ f > 2, overflows
become common enough to dominate the behavior of PudgyTurtle mode.

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
●

●
● ● ●

●

●

●

●

●
● ● ● ● ● ●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●
● ●

●
●

●

●

●

●

●

●
●

● ● ●

●
● ● ●

●
●

● ● ●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

OBSERVED●

PREDICTED●

0.25

0.5

0.75

1

0 1 2 3 4

s f

P
r

(
O

ve
rf

lo
w

 E
ve

nt
)

Figure 3. Overflow events. The probability of overflow events as a function of s/ f , where s is the
number of bits per plaintext symbol, and f is the number of bits per failure counter. Open symbols (◦)
are predicted using Equation (1). Filled symbols (•) represent observed data, tallying the number
of overflow-events during randomly-keyed NLFSR encryption of an 800,000-bit message for many
different PT[s, f , d] implementations. Note that predictions and observations are similar and that
overflow events are rare for small s/ f , then become more common when s/ f > 1.25 and reach a
high-probability plateau when s/ f > 2.

5.7. Expansion Factors

Since overflows were uncommon for PT[4,5,3], their effects on CEF and KEF can be
ignored. For PT[s, f , d], however, new expressions for these expansion factors are required
to properly account for overflows.

Observations. Data were obtained from 1859 different PT[s, f , d] implementations, in which
s, f , and d all ranged between 4 and 16. For each implementation, the same plaintext was
encrypted using an NLFSR with a unique, randomly chosen key. CEF and KEF were then
calculated as |Y|/|X| and |K|/|X| respectively, and plotted in Figure 4.

Figure 4A plots CEF against s/ f —again using this X-axis parameter since ’more over-
flows’ obviously also implies ’more ciphertext’. Interestingly, the CEF curve is U-shaped,
with a minimum when s/ f ≈ 1. Above this, CEF increases because of more overflows (i.e.,
larger s and/or smaller f reduce the likelihood of each plaintext-to-keystream match). Be-
low this, CEF increases not because of overflows but because of arithmetic: traveling leftward
along the X-axis makes s smaller, f larger, or both, which in turn makes c/s = (f + d)/s—a

Cryptography 2023, 7, 25 12 of 33

major determinant of CEF—bigger (see ’Predictions’ below). This local minimum can be better
appreciated in Figure 4B, which is a close-up of 0 < s/ f < 2. This graph also includes lines
fitted to discrepancy-code sizes d = 4 and 12. These lines suggest that for a given s/ f ratio,
increasing d increases CEF—again illustrating its dependence on (f + d)/s.

KEF depends strongly upon s, as shown in Figure 4C. Once s exceeds ∼10, keystream
expansion is in the hundreds, and encryption takes noticeably longer. Figure 4D provides
a close-up view of KEF values for 4 < s < 7, along with lines fitted to codeword lengths
c = 10 and 15. These lines suggest that changing c (which could be done by altering f , d, or
both) affects KEF less than does changing s.

●
●●●

●● ●
●

●●
●

●
●

●
●●

●
●
●●

● ●●●●●

●
●●

●
●
●●●
●●

●●
●

●
●●

●●
● ●●

●●●
● ●

●●●●●
●●

●
●●
●●●

●●●● ●
●●

●
●

●● ●●

●●●●
●
●

●
●
● ●
●●

●

●●

●●● ●
● ●
●●●
●
●

●
●

●
●● ●

●●
● ●●
●
●

●
●●

●
● ●
●

●●
●

●●
●

●●
●●●

●●●
●●●

●●

● ●
●●
●●● ●● ●●
●●

●
●

●
●
●●

●
●
●●
●●●

● ●●
●●●

●●
●
●

●
●

●

●
●

● ●●
● ●
●

●
●●●
●

●●●●●
●●●

●●●
●●

●●●●● ●
●● ●

●● ●
●

●●●●
● ●

● ●●
●●
● ●

●
●●●●

●
●

●
●

●
●

●

●

●●●● ●
●

●●●
●

●

●●

●
●

●
●●

●
●

●
●● ●

●●

●
●●

●●
●

●
●●●

●
●

●

●●
●
●● ●●

●
● ●●

● ●

● ●●
●● ●
●

●●
●

●
●

●

●
● ●
●

●●
●
●

●
●
●●

●

●
● ●
● ●
●●

●● ●● ●
●

●
●● ●●●

●●●
●

●●
●

●●
● ●●●●

●
●

●
●●●

● ●●● ●●
●● ●●

●●
●

●
●●●

●● ●
●●●●
●●

●
●●●

●
●

●
●

●●
●
●●

●
●●●

●●
●

●
●

●● ●●

●●
●● ●●●

●●
●●

●●

●●
●

●
●●

●
●
●

●
●

● ●

●●●
●●

●
●
●● ●

●●
●

●
●●●

●●
●●●

●●●●

●●
●●●●
●●

●●●
●●

●●
●●

●
●●●●●●●●

●
● ●

●●
●

●
● ●●●

●
●

●

●
● ●●

●●●
●●●●

●

●● ●●●
●●●●

●●
●●

●●
●●
●●●
●
●

●●
●

●

●●●
● ●●

●
●

●●●●
●

●●●
●●●
●

●
●

●
●
● ●
●●●

●●●●
●●

●● ●●

● ●●
●●● ●●

●
●

●
●●

●
●

●

● ●●● ●
●

●●
●●

●● ●
● ●
●● ●●

●● ●●
● ●

●●
●

●●●●●
●●

●

●●
●●●●
●●
●●●●●
●
●

●
●●

● ●● ●●
●●●

● ●●●
●●

● ●
●●●

●
●

● ●
●●●●

●●
●
●

●
●

●

●
● ●● ●●●●

●●
●●
●

●●●●
● ●●

●●●●
●●

●●●
● ●
●

●
●● ●●●●

● ●●●
●●
●

●●●
●●●

● ●●●
● ●● ●●●● ●●

●●●●● ●●●● ●
●●●

●●●
●●●●

●●●
● ● ●

●
●● ●
●●●●●●
●●

●

●
● ●

● ●
●●●

●●●
●●

●●
●● ●●

●●
●●●●

●

●
●

● ●●●
●●

●●●
● ●

●●●
●

●
●●●

● ●
●●● ●●

●●
●●●

● ●●
●●
●

●
●

●●● ●●
●

●
●
●●
●

●●
●●

●
●
●●● ●●●

●

●●
●
●

●● ●● ●●●
●●

●●●
●
●

●●
●● ●● ●
●

●
● ●●
●

●
●●● ●

●●
●

●
●●●

●●●
●● ●

●●●

●●
●

●
●●●

●●●● ●●●
●●

●●● ●●

●
●●

●●

●●●●●
●
●

●●●●●●

●●●●●●●● ●●●
●●
●●●
●

● ●● ●
●

●
●
●●

●●●
●● ●●●
● ●

●●●

●

●
●

●●
●●

●●
●

●●

●

●●
●

● ●●

●●●●
●

●●

●●●●●
● ●●●●

●●●

●● ●
●
●●
●●●
●●

●●

●●●●●
●●● ●●●●●

●
●●

● ●
●●

●●●●
●

●
● ●● ●●●●●●●●●

●

●

●●
● ●

●
●
●

●●
●●

●

●
●●●

●
●
●
●
●● ●●●

●
●● ●●●●
●

●
●
●●
●

●●
●

● ●●●
● ●

●
●● ●

●●
●
●●●● ●●

●●●
●

●
● ●

●●
●●●●●●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●
●●

●
●

●●

●●

●
●

●●
●●
●
●

●●
●●

●●●

●●●
●● ●●

●● ●●●●

●●●
●●

● ●
●●●●

●
●

●
● ●●

●
●●
●
●●

●●
●

●●●●●
●

●● ●
●●●●

●●
●

●
●●

●● ●●
●●●

●● ●●●
●

●● ●● ●●
●

●
●● ●●

● ●●● ●●
●●

●●●●●
●●

●
●
●
●● ●

●
●● ●●●●●●

●
●●●

●●●
●●● ● ●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●
●

●●

●

●
●

●●
●●

●
●●

●●

●
●

●
●●

●
● ●●
●

●
● ●
● ●

●●
●●●

●●●● ●
●●

●

●
●

●●
●

●
●

● ●
●●●
●

●●
●● ●●●
●● ●●

●●

●●
●

●●●
● ●

●
●

●●●●●
●

●
●●
●●●

●●●●

●
●●●●

●●●●●●
●●

●
●●●●

●●
●●● ●●●

●
●

●●●
●

●●●●●●
●

●●
●●●●●●

● ●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●
●

●
●
●

●
●●

●●

● ●
●

●●
●

● ●

●●●
● ●

●●●●●
●
●

●

● ●
● ●

●
● ●

●●
● ●
●●

●
●

●
●

●
● ●● ●●●●

●

●●
●●
●● ●
●●●●
●

●
●

●
●

●
●●

●●●● ●●
●

●
●●● ●●
●●●

●●● ●
●●● ●●

●
●

●
● ●

●●●●●●●●●●●
● ●
●

●
●

●
●● ●●●

●
●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●
●●

●●
●●●

● ●
●

●
● ●

●●●●●
●
●● ●●

●●●●
●
●●
●●

●
● ●●

●
●
●●●●● ●●

● ●
●

●
●●●● ●●●●

●
●●●

●

●●
●●
●
●
●

●
●● ●●●●● ●●●

●
●●
●

●
●

●
●

● ●●
●●
●

●●
●

●
●

●
●

● ●●●● ●●● ●●
●

●
●

A

0

25

50

0 1 2 3

s / f

C
 E

 F

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

● ●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●●

●●

● ●

●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●
●

● ●
●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●

●
●

●●

●

●
●

●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●

●
●

●●

●

●●

● ●

●

●
●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●●

●

●
●

●●

●●

●●

●

●●
●

●
●

●
●

● ●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●●

●
●

●

●
●

●●

●
●

●
●

●

●●
●

●
●

●●

●●
●

●

●

●●
●

●
●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●●

●
●

●

●
●●

●

●●

●

●
●

●

B

d = 12
d = 4

0

1

2

3

4

5

0 1 2

s / f

●●● ●●● ●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●● ●●●●●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●●●● ● ●●●● ●●●●●●●●●● ●●●●●● ●● ●●●●●●●● ●●● ●●● ●●● ●● ●●●● ●● ● ●● ●● ●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●● ●●●●● ●● ●● ●●●● ●●●●●●●●● ●●●●●● ●● ●●●●●●● ●● ●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●●●● ●●●●●●●● ●●● ●● ●●● ●●●●● ●●● ●● ● ●● ●●●●● ●●●●●●●●●●●●●● ● ●●●● ●● ●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●●● ●●●●●●● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●●●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●● ●●●●●●●● ●● ●●●●●●●●●● ●●● ●●●●●● ●● ●● ●●●●●●●● ●●● ●●● ●●●●● ● ● ●●●●●●●●● ●●● ●● ●●●●●●● ●●●● ●●● ●● ● ●●●● ●●● ●● ●● ●●● ●● ●● ●●● ●●●●● ●●●● ●● ●●●●●●●● ●● ●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●●●●●●● ●●● ●●●● ●●●●● ●●
●●●●●●●●●●● ● ●●●●●●●●●● ●●●●●● ● ●●● ●●●●●● ●●● ●●● ●●● ●●●● ● ●● ●● ●●● ●● ●●●●● ●● ●●● ●●●●● ●●● ●● ●●●●●●● ●●●●● ●● ●●●●●●● ●●●●● ●●● ●●● ●●●● ●● ●●● ●●●●● ●●●●● ●●●●● ●●● ●●●● ●● ●●●●● ●●●●●●●● ●● ●● ●●●●●●

●●● ●● ●●●● ●●●● ●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●● ●●● ●●●● ●● ●● ●●●● ●●● ●● ●●●● ●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●● ●●● ●● ●●●●

●●● ● ●●●●●●●● ●
●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●● ●●●●●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●●● ●● ●●●●●●●●●● ●● ●●● ●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●● ●● ●●●●●● ●● ●● ●●●●●●

● ●●●●●●● ●●● ●●
● ●● ●●●● ● ●●●● ●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●● ●●● ●●●●● ●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●●●●● ●●●●●●● ●●● ●●●●● ●●● ●●● ● ●●●●●●● ●●●● ●●●●● ●● ●●●●●● ●●● ●●● ●● ● ●●●●●●●● ●● ●●●● ●●●● ●●● ●●●●● ●

●●●● ●●●●●●●● ●

● ●●●●●● ●●●●●●
●●●● ●●●●●●●● ●

● ●●●●●● ●● ●●●●●● ●●●●●●● ●● ●●● ●● ●●●●●●● ●●●● ●● ●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●●●● ●●●● ●●●●●● ●●●●● ●● ● ●● ●●●●● ●●●● ●● ●●●● ●●● ●●●●●●● ● ●

●●
●●●

●●●●●
● ●●

● ●●● ●●●
● ●

●● ●●

●●●●●●●
● ●●●● ●
●● ●

● ●●●● ●●● ●●
●● ●
● ●●●●●●●●●●●●●●●●● ●● ●

●●● ●
● ●● ●●●●●● ●●●●●● ●●● ●● ●●● ●● ●●● ●

●●●●●●●●● ●●●●●●●●
●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●

●
●

●

● ●●
● ●●

●●●
●

●●
●
●●●●
●●
●● ●

●

● ●●
●
●●

●●●
●● ●● ●

● ●●●●
●

●
●

●●● ●
●●●●● ●●●
●

●● ●●●
● ●● ●

●
●●● ●●

●●
● ●●●●●●●
●
●●●●●

●
● ●●

●●●●
●● ●●●●●

● ●
●●●● ●●●●●●

●
●●● ●

●
●●● ●●●

●
● ●●●●

● ●●
●●●● ●

●● ●●
●●

●● ●●
●●●●●●● ●● ●● ●●●C

0

400

800

1200

4 8 12 16
s

K
 E

 F

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●

●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●
●

●
● ●
● ●

●●
●

●
●

●
●●

●
●

●●
● ●
● ●

●
●

●
●●

● ●
●

● ●●
●

●

●●
●

●●
● ●

●
●
●

● ●
●

●
●● ●●

●
● ●●
●

●●
●

●
●●

●
●● ●

●
●

●
●● ●

●
●●

●
●●

●●
●

●
●

●
●

●
●●●

●●
●

● ●
●

●●
●

●
●

●
● ●

● ●
●

●
●●
●

●

●●
●

●●
●

●
●

●
●●

●●

●
●

●
●
● ●●

●
● ●

●
●●

●
●

● ●
●

●
●

●
● ●

●
●

●

●●
●●

●
●

●●
●

●●
●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

● ●
●

●
●●

●●
●

●●
● ●
●●

●

● ● ●●
●●

●●
●●●

●
●

●
●● ●

● ●
●●
●● ●●

●

●
● ● ●●

●
● ●●

●●●●

●●
●

● ●
●●●● ●

●
● ●

● ●●
●

●●
● ●

●●●
●

●

●● ●
●

●
●●

●
●●

●●●

●●●
● ●

●
●●

●●
●● ●

●
●

● ●● ●
● ●

●
●● ●●

● ●
● ● ●

●
● ●

●●
●

●●

● ●
●●

●
● ●● ●●

● ●
●

D

c = 15
c = 105

10

15

20

4 5 6 7
s

Figure 4. Observed expansion factors. CEF and KEF for >1800 NLFSR encryptions of the same plaintext,
each using a unique secret key and a different PudgyTurtle implementation. Panel (A) depicts CEF
as a function of s/ f . Panel (B) shows a close-up of this data for 0 < s/ f < 2, along with fitted
curves for d = 4 and 12. Notice that CEF is minimized when s/ f ≈ 1 and increases with d for a given
s/ f . Panel (C) illustrates KEF as a function of s. Panel (D) provides a close-up view of KEF when
4 < s < 7. The fitted lines here for codeword-sizes c = 10 and 15 (where c = f + d) suggest that
PudgyTurtle’s other two parameters have relatively less impact on KEF than does s. Abbreviations:
CEF—ciphertext expansion factor; KEF—keystream expansion factor; NLFSR—nonlinear feedback
shift register; s—plaintext-symbol size; f —failure-counter size; d—discrepancy-code size.

5.7.1. Predicted CEF

Regarding bandwidth (ciphertext) expansion, recall that CEF was 2 for PT[4,5,3] when
overflows were ignored. This value was obtained by dividing the size of each ciphertext
symbol (c = 5 + 3 = 8 bits) by the length of each plaintext symbol (s = 4 bits). Thus, without
overflows, it would be expected that CEF = c/s for PT[s, f , d].

The total number of overflows is the number of overflow events (N[s]X · PO) multiplied
by the typical number of overflows per event. With this latter quantity, the expected value
of random variable O, is

EO = ∑
j

j · Pr{O = j} = Pr{O = 1}+ 2 Pr{O = 2}+ 3 Pr{O = 3}+ . . . (2)

Cryptography 2023, 7, 25 13 of 33

Since each overflow adds one more c-bit symbol to the ciphertext, all the overflows
together will add c× (N[s]X · PO)× EO more bits in total. Thus, a more accurate prediction
of ciphertext expansion would be

CEF =
|Y|
|X| =

1
|X| (c · N[s]X + c · N[s]X · POEO)

=
(c

s

)
× (1 + POEO) (3)

where N[s]X = |X|/s.
With EO above as an infinite sum, how many of its terms should be used when calculating

CEF? Recall that PO, the probability of an overflow event in Equation (1) can be calculated two
different ways. One way (the complement of the no-overflow probability) yields its definitive
’true’ value. The other way approximates PO with an infinite sum. We first determine how
many terms are required to make this summation converge to within 10−8 of the true PO and
then use this same number of terms to calculate EO in Equation (2) as well.

5.7.2. Predicted KEF

Regarding keystream expansion, recall that KEF was 5.2 for PT[4,5,3] when overflows
were ignored. This value was obtained by adding the number of keystream symbols per
mask (2, the number of 4-bit nibbles in an 8-bit mask) to the average number of keystream
symbols required for a successful plaintext-to-keystream match (16/5 = 3.2, the mean of a
geometric distribution with p = (s + 1)/2s = 5/16). Thus, without overflows, it might be
expected that KEF = c/s + 1/p for PT[s, f , d].

To account for overflows, consider the keystream as being composed of two (noncon-
tiguous) parts: KO includes all the bits consumed by overflow events and Kmatch includes
all the bits consumed by successful (nonoverflow) plaintext-to-keystream matches. Thus,
KEF = |K|/|X| = (|KO| + |Kmatch|)/|X|. To determine |KO|, note that each overflow
consumes one c-bit mask plus 2 f symbols or c + s(2 f) keystream bits total. This number,
multiplied by the total number of overflows, will equal |KO|:

|KO| = N[s]X · PO · EO · (c + (2 f)s)

To determine |Kmatch|, let 〈#〉 represent the average number of keystream symbols
required for a match. The amount of keystream needed to represent all the matches will be

|Kmatch| = N[s]X · (c + s〈#〉)

Combining these two quantities and using 〈#〉 = 1/p = 2s/(s + 1) as mentioned
earlier, we acquire the new expression for KEF as follows:

KEF =
|K|
|X| =

|Kmatch|+ |KO|
|X|

=
1
|X|N[s]X

(
c + s〈#〉+ POEO(c + (2 f)s)

)
=

c
s
+

1
p
+ POEO(

c
s
+ 2 f)

=
c
s
(1 + POEO) +

1
p
+ POEO2 f (4)

Before examining the accuracy of this formula, however, one point must be addressed.
In theory, the average number of keystream symbols needed for a successful plaintext-
to-keystream match is 〈#〉 = 1/p. However, in practice, 〈#〉 ≤ 2 f since an overflow is
triggered after 2 f failures. Thus, if 1/p� 2 f , KEF predicted by Equation (4) will exceed
the observed KEF.

Cryptography 2023, 7, 25 14 of 33

Figure 5 illustrates the accuracy of CEF and KEF predictions according to the above
data from 1859 different PT[s, f , d] implementations. Panel A plots the predicted (Y-axis)
vs. the observed (X-axis) CEF for values < 25. As expected, points generally fall along
the identity line. Panel B is a similar plot for KEF values < 50. Most points fall along the
identity, but some predictions overestimate the observed data (arrows above the identity
line). These prediction errors should be minimal when 1/p is small compared to 2 f and
become increasingly obvious as 1/p gets larger and eventually surpasses 2 f . Panel C shows
the relative error (i.e., ∆(KEF) = (KEFpredicted − KEFobserved)/KEFpredicted plotted against a
dimensionless parameter

log2
(1/p)

2 f = log2
2s− f

s + 1

When (1/p) = 2 f , their ratio is 1, and this parameter is zero (vertical line at X = 0).
Negative X values represent predictions when 1/p is small compared to 2 f , and positive X
values represent predictions in the converse situation. As expected, the error in predicting
KEF is small when 1/p� 2 f and becomes substantial when 1/p� 2 f . A transition zone
of increasingly inaccurate predictions extends ∼ ±1–2 log-units from the vertical line.

●
●

●
●

●

●●

●●

●
●

●
●

●

●
●

●

● ●●●

●
●

●
●●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●●

●
●

● ●
●
●
●

●

●
●

●●
●

●
●

●

●●
●

●●
●

●
●
●

●

●

●

● ●
●
●

●

●●

● ●
●●

●
●

●

●
●● ●●

●

●
●

●●

●
●

● ●
●
●

●

● ●● ●

●
●

●

●

●
●

●
●●

●
●

●
●

●
●●

●

● ●

●

●

●
●
●

● ●

●

●
● ●

●

●
●●

●●

●●

●
●●

●●

●●
● ●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●●
●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●
●

●
●

● ●●
●

● ●

●
● ●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●
●

●●● ●●

● ●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●
●

●
●●

●
●

●

●●

●●
●

●

●●

●●

●

●

●●

●●
●

●

●●

●
●

●
●

●

●

●

●
●

● ●
●

●
●
●

●

●
●

●
●

●

●
●

●
●

●

● ● ●●
●

● ●
●

●●

● ● ●

●

●
●

●
●

●
●●
●

●
●●●●

●●

●
●

● ●

●●●

●
●

●
●
●●
●
●

●● ●
●

●●

●

●
●
●

●

●

●

●

●
● ●

●●
● ● ●

●
●

●
●

●

●
●

●● ●
●

●

●
●
●●

●

●●●
●●

●

●●

●
●

●

●

●

●

● ●
●

●

● ●
●

●

●

●
● ●

●

●●

●

●
●●

●
●

●●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●● ●
●

●● ●●

● ●
●

● ●

●

●
●●
● ●●

●

●

●

●●●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●●

●

●

●● ●
● ●

●

●
●

●●

●

●
●

●
●

●
●

●

● ●
●

●●

●

●
●

●

●●
●

●

●
●●

●
●

●

●
●

●
●●

●
● ●

●●

●●●

●●
●

●●

●
●

●
●

● ●
●
●

●●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

●

●
●

●●●● ●

●

●

●

●

●

●●
● ●

●

●
●

● ●
● ●

●●

●
●●

● ●

●●
●

●

●●

●

●

●

●
●

●
●
●
● ●

●

●

●
●

●

●

●

●

●
●

● ●
●
●●

●
● ●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●●
●

●
●

●
●
●●

●●

● ●

●●●
●

●●

●

●

●

●●

●
●

●
●

●
●●

●
●●

●

●

●

●

●

● ●
●●

●

●●
●

●
●

●

●
●

●●●

●

●

●

●

●

●●●

●

●
●

●
●

●● ●
●

●●

●●

● ●●●
●

●
●

●
●
● ●

●
●

● ●
●

●●
●●
● ●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●
●
●

● ●●

●
●
● ●

●●
●

●

●

●

●
●

● ●

● ●

●

●
●

●
●

● ●

●●

●

●●●
●

● ●●

●●
●

●

●●
● ●

● ●
●●

● ● ●

●

●
●

●
●

●

●

●

●
●

● ●●

●

● ●

●
●

●
● ●●

● ●

●
●

●

●

●

●
●

● ●●●

●

●
●

●●

●

●
●

●

●

●
● ●

● ●
●

●

●

●●

●●
● ●●

●
●

●

●

●
●

●●

●

●

●●
●

●●
●

●●
●

●

●
●

●●
● ●

●

●●
●

●
●

●

●

●

●

●

●
●

●●
●

● ●●

●
●

●
●●

●
●●

●

●●●
●

●●

●●

●

●
●●

●●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●●

●● ●

● ● ●
●

●

●

●

●

●

●
●

●●
●

●● ●

●
●

●

●

●●

●●
●●

●
●

●
●

● ●

●

●

●●
●

●

●● ●
●

●

●
●●

●
●

● ●
●

●●

●
●

●
●

●●

●●

●● ●●

● ●●
●

●

●●

●
●

●●

●
●

●
●

●●

●
● ●

●

●●● ●

●

●

●

●

●
●●

●

●●
● ●

●●

●●

●●

●

●

●

●

●

●

●● ●
●

●

●
●

●● ●

●
●
●

●●
●

●
●

●

●● ●

●

●●

●
●

●

●

●●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●●
●

● ●●
●

●
●

●

●

●
●

●
●●

●
●

●

●

● ● ●●

●

●

●
●
●

●

●

●

●

●
● ●

●
●

●

●●

●
●

●●
●

●●

●

●
●

●

● ●●
● ●

●
●

●
●

● ●●●

●

●

●●

●

●
●

● ●

●

●

●

●

●●
●

●

●
●●

●
●●

● ●
●

●

●
●

●

●●
●

●●
●
●

●
●

●

●●●
● ●●

●

●●
●

●
●

●
●

●●
●●

●●
●

●

●
● ●

●●

● ●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●

●
●

● ●●

●

●●

●
●

●

●

● ●●
●

●
●

●

● ●●

●

●

●

●
●
●●

●

●

●

●
●●

●●
●●

●

●
●

● ●●

●
●

●

●

●
●

●

●

●

●

●●●

●

●
●

●● ●
●

●
●
●●

●

●

●
●

●

●

●
●

●●●
●

●

●●

●

●●●
●●

● ●
●●

●
●

●

●

●
●●●

●
●

●
●●
●

●

●

●●
●

●

●
●
●

● ●

●

●

●●

●

●

● ●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

● ●

●
●

●

●
●

●

●●

●●
●

●
●

●

●

●

●

●
●●

●
●
●

●

●

●
●●

●
●

● ●

●

●

●
●

●●●

●
●

●

●

●
●
● ●

●●

●
●

●● ●

●

●●
●

●

●

●
●●

●

●
●●

● ●●

●

● ●
●●

●
●

●

●

●

●

●●●
●

● ●
●

● ●

●

●
●

● ●

●

●

●
●

●
●●

● ●
●

●

●

●
●●

●●
●●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●
●

● ●

●● ●

●●

●

●

●
●

●

●
●

●●●●

●

●
●

●
●

●
●

●
●●

●
●●

●
●●

●●

●

● ●
●

●
●

●

●

● ● ●

●
●

●

●
●

●
●●

●

●●
●

●

● ●

●●
●

● ●
●●

●

●●

●●

●

●

●
●●

●
●

●
●

●
●
●●

●

●
●●
●

●
●

●

●

●● ●●
●●

●●
●

●
●●

●

A

0

5

10

15

20

25

0 5 10 20

CEF(observed)

C
E

F
(

pr
ed

ic
te

d
)

●●●●
●

●● ●
●
●

●
●

●

●
●●

●
●
●

●●
●●
●

●●

● ●
●
●
●

●●
●
●●

●
●
●

●
●●

●
●

●
●

●●●
●

● ●

●●
●

●

● ●
● ●●● ●

●●

●●●
●
●

●
●

●●
●

●●●

●
●

●●●
●●●●

●

●●
●

●
●●●

●
●

●
●

● ●●

●●

●●

● ●●

●
●
●●

●
● ●

●

●
●

●●
●●

●●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●●●

●

●
●●●

● ●●●●
●

●
●●

●●
●

●
●
●

●●
●●

●● ●

●●
●● ●●

●
●

●
●

● ●
●

●●● ●●
●●
●
●
●●

●
●

●
●

●
●

●●●

●●
● ●

●
●

●
●

●●
●

●
●

● ●●
●●●

●
●●

●
●

●●●

●●
●

●●

●●
●

●
●

●
●●●

●● ●●

●
●● ●●●

●
●
●
● ●

●●

●
●
●●
●●

●
●
●
● ●●●

●●●

●
●

●●
●
●
●
●●

●

●
●

●●
●

●
●●●

●●● ●

●●●●

●
●

●●● ●●
●●

●●
●●●

●●●
●

●●● ●

●●●●
●●

●
●

●

●●
●●

●
●
●
●● ●●●●

● ●●●

●
●

● ●
●
●

●
●
●
●

●

●●

●

●●
● ●

●

●●● ●●
●●

●
●
●●●

●
●

●●
●●
●
●

●●●●
●

● ●●

●
●
●
●●

●
● ●●

●
●
●
● ●

●●●
●

●
●● ●

●●●●
●●●●

●

●●●●
●

●●
●

●
●●●

●

●● ●●
●●

●● ●
●

●●
●

●● ●
●
● ●

●●●
●
●
●●

●
●●●
●●
●
●●● ●●●

●
●● ●

●
●●● ●

●
●

●●

●●●
●

●●
●

●●
●●

●
●

●● ●
●

●●
● ●

●●●
● ●

●
●
●
●●●
●●●●

●

●
●

●●● ●● ●●●
●
●●●

●

●
●
●●
●●

●
●

●
●●
●●

● ●●●
● ●●●

●●
●

●

●

●

●●●●
● ●
●
● ●●

● ●

●●
●
●●

●
●

●●●

●
●
●

●
●
●

●
●●
●● ●
●●● ●

●●
●●

●●●
●

●● ●
●
●

●
●

●●●
● ●●

●
●

●●
●

●● ●●●
●

●
●●
●
●●

●

●
●
●●●
●
●

●
●●
●

●
●

●
●● ●
●

●
● ●●
●

●●
●

●
●●

●
●

●●
●●●●●

●

●
●
●

●
●

●
●● ●●

● ●●

●
●●●
●

●
●

●●

●
●

●
●

●
●● ●●

●

●

●●
●

●
●●

● ●●● ●●
●
●●
●
●●

●

●●●

●●●●
●

●
●●●
●

●●●
●

●
● ●●

●
●

● ●●

●●●●●●

●
●

●●●●
●

●●●
● ●●●●

●● ●
●●

●●●●●
●
●
●

●
●
●

●●
●
●●

●●
●

●● ●●●

●
●

● ●

●●
●

●

●
●●●
●
●

●

B

0

10

20

30

40

50

0 25 50

KEF(observed)

K
E

F
(

pr
ed

ic
te

d
)

●●
●

●●
●

●

●●●●
●

●
●
●

●●

●

●●●
●
●●

●
●

●

●
●
●●●
●
●●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●●●●
●

●
●●
●

●●
●●

●
●

●
●
●

●●
●
●

●●

●●

●●●

●
●●●

●●
●

●●
●
●●●

●●
●

●
●

●

●
●

●

●

●

●●

●
●
●●

●●●
●

●
●

●
●

●
●●
●

●
●●●

●

●●

●
●

●●

●

●
●

●
●

●●

●●
●

●

●
●

●
●●

●
●
●● ●

●

●●
●

●●
●
●●

●●
●●●●
●
●

●
●

●

●

●

●
●
●
●●●

●
●

●

●
●
●●
●●
●●

●
●●
●●

●
●●●

●●●
●

●
●

●
●●

●
●

●
●

●
●●

●

●●
●
●●●

●
●
●

●●●●
●●●

●

●

●
●

●●●

●

●

●●●●

●●

●

●
●

●
●●
●●

●
●

●●●
●
●●

●
●

● ●
●●●●●

●●●●●

●

●
●

●
●
●

●

●●
●
●●●●●

●
●●●

●

●●
●●●
●
●●●
●

●

●

●
●

●●●

●

●●●

●

●●

●

●

●
●
●●

●
●
●

●●

●
●●●
●

●
●
●
●

●●

●

●

●
●
●
●●

●
●

●●

●●●●
●●

●
●

●

●●
●

●

●●●

●
●
●
●

●●

●●●●●
●
●

●

●

●
●●●

●●
●

●●●●●
●
●●
●

●
●
●
●
●●●

●

●●
●●

●
●●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●●●

●●
●
●

● ●

●
●

●●

●

●●●●
●●●●

●●
●
●

●●
●
●●

●

●●●●

●

●●

●

●
●●●

●

●

●

●
●
●
●

●

●●
●
●●●

●

●
●
●

●
●●
●

●●●●

●

●

●
●●●

●
●

●●
●
●●
●●

●●●●
●
●●●●●●

●●

●
●

●
●●●
●●●
●●

●
●

●●

●
●●●●

●
●●●●

●●

●
●

●●

●

●

●●

●

●

●
●

●

● ●●
●●

●

●
●

●●

●
●

●
●●

●●●
●●
●●

●
●
●●

●

●●
●

●●
●
●

●●

●
●●●

●
●

●

●

●●●

●
●●●●●

●●
●
●

●

●●●●●
●

●
●●●●●

●
●

●
●●

●

●
●●

●

●●

●

●●
●
●
●●

●
●●

●
●
●

●
●

●

●

●

●●

●

●

●●
●
●
●
●

●

●

●
●●

●

●●●
●

●
●
●

●

●

●
●

●
●

●●
●●
●
●

●●
●

●
●
●
●

●
●●
●●●
●●●●●●●

●●
●
●●●

●
●●
●
●
●

●●●
●●

●
●●

●

●●
●

●

●
●

●

●●
●●
●
●
●●●

●●
●●

●
●●●●●
●●●

●
●

●

●

●●●

●

●

●
●●
●●●

●
●

●
●●

●
●

●●

●●

●●
●

●
●●●●●

●
● ●
●

●
●

●

●
●●●●

●
●●●
●●

●●

●
●

●
●●

●
●

●●●
●

●

●●
●
●●
●
●●●
●

●
●

●
●

●
●

●
●●

●
●
●●●●●

●
●●
●

●
●

●
●

●●●
●
●

●

●
●●

●●●

●

●●
●
●

●

●●
●
●

●
●●●

●
●

●●

●●●
●●●

●
●●
●●●
●
●●

●●●
●
●
●
●●
●●

●
●

●●●●

●●
●
●●

●●

●

●

●●
●●

●●
●
●●●●

●●

●
●

●

●●

●

●
●●●

●
●
●

●
●●

●
●●
●
●

●●

●

●

●

●●●●●

●
●●

●●●
●●

●●

●
●
●●

●●
●
●●
●

●

●●

●
●●●●

●●●●●●●
●●

●

●●●

●
●●●

●
●

●
●●

●

●
●

●●
●●

●

●
●

●
●

●

●
●

●
●

●
●●
●

●
●

●
●●●
●●

●

●
●

●●

●●

●
●
●

●
●
●●●

●
●

●●

●

●
●

●

●
●●

●● ●

●

●
●●

●●● ●

●

●
●
●

●●
●

●●
●●

●●●

●
●

●●
●
●

●

●
●

●●

●

●
●

●●
●
●●

●●●

●

●

●
●●

●
●●

●

●●●●

●
●
●●

●
●

●

●
●●

●

●●●●
●●●

●●

●
●

●
●

●

●

●●●●
●●

●●●

●

●●

●
●

●

●
●

●
●●

●●●
●●●

●
●

●
●●●
●●●
●
●

●

●
●

●●

●
●●●●

●
●●
●

●●
●●●●●
●●

●●●●

●

●●

●

●

●

●●

●
●●
●

●

●●●
●●●
●

●

●
●

●●●

●●
●

●
●
●
●

●●●

●

●

●●

●

●
●

●●●

●
●
● ●

●

●

●

●

●●
●●
●●
●●●

●

●
●●●

●

●
●

●
●

●●●●●
●

●
●

●

●●

●

●●

●
●

●

●
●●●●

●

●
●●

●
●●

●●

●
●●●

●●

●●
●●

●
●●●

●

●●
●●

●

●

●●

●●
●●

●

●
●●

●

●●
●

●●
●
●

●

●

●●
●●

●
●●●●●

●

●
●
●●●

●

●●●

●

●
●
●

●

●
●
●

●●●
●

●●●
●

●

●
●

●
●●●

●●

●

●●
●
●

●
●●
●
●

●●
●

●●

●
●

●●
●
●●
●●●●

●●
●●

●

●

●
●
●●●
●

●
●
●●●
●

●

●●

●

●
●●

●●
●●●●

● ●

●
●
●

●
●
●
●
●

●●
●

●
●

●
●

●
●

●●●●●

●

●
●

●●
●

●

●
●

●

●

●
●
●●

●●●●
●●
●●

●
●

●

●
●

●

●

●●
●
●●

●●
●
●
●

●

●
●

●
●
●

●

●●

●
●●

●●

●●●

●

●●●

●
●●●●
●

●
●●
●
●

●
●

●

●
●●

●●

●
●●●
●
●

●

●
●

●

●
●

●

●

●●●●
●

●
●●
●
●
●●

●

●●●

●●
●●●●●

●●●●
●●

●
●

●

●

●●●●

●

●
●●
●
●

●
●

●

●●●

●●●●
●●
●
●

●●●●
●

●

●

●●●
●●
●
●●●

●
●

●●

●●
●

●
●●

●
●
●
●●●

●

●●●●●●
●
●

●●●

●

●

●
●●

●●●●
●

●

●●
●●

●●

●●●
●

●
●
●

●

●
●●●

●
●●●

●
●●

●

●●●

●●

●
●●
●

●●

●
●
●
●

●
●●

●● ●●
●

●
●●●●●
●

C

−0.1

0

0.25

0.5

0.75

1

−12 −8 −4 −2 0 2 4

log2(2s−f / (s + 1))

∆
(

K
E

F
)

Figure 5. Observed and predicted expansion factors. Observed and predicted bandwidth expansion
(CEF) and keystream expansion (KEF) were compared using encryption data from >1800 different
PT[s, f , d] implementations. (A) Predicted CEF (Y-axis) vs. observed CEF (X-axis) for CEF val-
ues < 25. Most points fall along the identity line. (B) In this similar plot for KEF < 50, notice that
predictions sometimes overestimate the observations (arrows). (C) The error in predicting KEF (i.e.,
∆(KEF) = (predicted − observed)/predicted) is plotted against the base-2 logarithm of (1/p) divided
by 2 f , where p = (s + 1)/2s is the probability of two s-bit symbols matching to within a one-bit
tolerance. The vertical line at X = 0 indicates a ratio of one, meaning that these two quantities are equal.
The error is low when (1/p) is small compared to 2 f (negative X-axis) and higher once (1/p) exceeds
2 f (positive X-axis). Abbreviations: CEF—ciphertext-expansion factor; KEF—keystream-expansion
factor; s—plaintext-symbol size; f —failure-counter size; d—discrepancy-code size.

6. PudgyTurtle and Bit-Flipping Attacks

We investigate the simplest possible BFA, in which one ciphertext bit is flipped, the
modified ciphertext (Y∗) is decrypted, and this decryption (X∗) is compared against the
original plaintext (X). Insight into how this mode behaves during such attacks is gained

Cryptography 2023, 7, 25 15 of 33

by varying the PudgyTurtle implementation parameters s, f , and d, and by changing the
position of the flipped bit (within Y as a whole and within any given c-bit symbol).

6.1. Rejected Ciphertexts

One important concept is that a flipped ciphertext bit may produce an invalid discrepancy-
code during decryption. When this occurs, the ciphertext will be rejected: the decryption
algorithm halts at Step #5 (VALIDATE) and returns ⊥. For instance, PT[4,5,3] has 23 = 8
possible discrepancy codes, but only six are actually assigned:

0002 0012 0102 0112 1002 1012 1102 1112

Valid (to encode plaintext- NOT NOT Valid (to encode
to-keystream matches) valid valid overflows)

Flipping a bit could cause the new ciphertext symbol to be ’unmasked’ into an invalid
codeword containing D = 1012 or 1102 (both invalid) or containing D = 1112 (valid) paired
with a failure counter F 6= 111112. In all, PT[4,5,3] has 95 invalid (8-bit) codewords, with
32 ending in 1012, 32 ending in 1102, and 31 more ending in 1112 but not beginning with
111112—none of which would allow KF to be converted back into a plaintext-symbol.

6.2. Two Categories of Tailored BFA

Each ciphertext symbol is created by XOR’ing a codeword to a same-sized mask of
keystream. In turn, each codeword is a failure counter concatenated with a discrepancy
code (F‖D), including the special overflow case, where F and D are both ’all-1’. Symbolizing
bit #u of ciphertext-symbol #j as yj

u,

Yj = (y(j−1)c+1 ‖ y(j−1)c+2 ‖ . . . ‖ yjc)

= (yj
1 ‖ yj

2 ‖ . . . ‖ yj
c)

= (yj
1 ‖ yj

2 ‖ . . . ‖ yj
f︸ ︷︷ ︸) ‖ (yj

f+1 ‖ yj
f+2 ‖ . . . ‖ yj

f+d︸ ︷︷ ︸)
Enciphered Enciphered

Failure counter Discrepancy code

Let yj
b denote the bit within Yj that is flipped during an attack. Depending upon its

position, there are two categories of BFAs:

FLIP-F attacks alter a failure-counter: yj
1 ≤ yj

b ≤ yj
f ;

FLIP-D attacks alter a discrepancy-code: yj
f+1 ≤ yj

b ≤ yj
f+d.

These two kinds of attacks have qualitatively different effects. During a FLIP-F attack,
the keystream and ciphertext usually become disconnected, causing an avalanche effect:
many bits of X∗ and X will differ. In contrast, during a FLIP-D attack, the keystream and ci-
phertext usually remain connected: only a few bits of X∗ and X will differ. Here, ’avalanche’
means simply that flipping one ciphertext bit changes about half of the decrypted bits. We
do not claim that a ’strict avalanche criterion’ (SAC) is satisfied since this requires formal
statistical testing of all input/output bit combinations. The reason for not using SAC is that
avalanches often contain invalid discrepancy codes. In such cases, decryption returns ⊥,
and no data are available for statistical inference.

6.3. Localizing the Effect of a Flipped Bit

Encryption modes can affect the number and position of bits in X∗ that differ from
their corresponding bits in X. For synchronous mode, flipping yb affects only x∗b . For asyn-
chronous/self-synchronizing mode, flipping yb affects the decryption starting x∗b , and these

Cryptography 2023, 7, 25 16 of 33

changes persist for n bits (i.e., the KSG size). For PudgyTurtle mode, flipping yb can lead to
variability in both the starting point and duration of these changes.

To begin studying these positional effects, a 256-bit message (extracted from the
longer ASCII English plaintext) was encrypted under PT[8,4,4] using RC4 and a randomly
generated key. One ciphertext bit (specifically one of the eight bits between y128 and y135)
was then flipped. The result was decrypted, and the first and last bit index where X∗ and X
differed was tabulated. Enough secret keys were chosen to produce 100 ’successful’ attacks
against each of the eight bit positions (i.e., 27,749 total attacks to obtain 800 that were not
rejected). Figure 6A illustrates the first bit index at which X∗ and X differed (Y-axis) for
each flipped ciphertext bit on the X-axis. Figure 6B, organized similarly, shows the last bit
index at which the decryption and original plaintext differed.

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●

●
●

●

●

●

●

●●●

●●

●

●

●

●

A

0

25

50

75

100

125

128 129 130 131 132 133 134 135

F
IR

S
T

 d
iff

er
in

g
bi

t−
in

de
x

●

●

●●●
●

●

● ●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

● ●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●●
●

●

●

●

●

●●●●●

●

●

●●●●● ●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●● ●●● ●

●

●●●●● ●●●●●●●

●

●● ●● ●●

●

●

●●●●

●

●●●

●

●

●

●● ●

●

● ●● ●●● ●●●●● ●

●

●● ●● ●

●

●

●

●●

●

●

●

●●

●

●● ●●

●

●●

●

●●

●

● ●

●

●●●

●

●

●

●●● ●

●

●

●

●

●●

●

●●

●

● ●●●●●●●●●

●

●●●●● ● ●●●

●

●● ●●● ●●●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●● ●●●●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

●

●●● ●●

●

●
●

●

●

● ●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●● ●

●

●●

●
●

●

●

●●

●●

●●

●

●

● ●●

●

●

●●●

●

●●

●

●

●

●

●

●●● ● ●●

●

● ●●●● ●● ●●● ●●●● ●● ●●●●●●●● ●●●●● ●●●

●

●

●

●

●●● ●●●

●

●●

●

●

●

●

●

● ●

●

●

●

●●●●●●●●●●● ●●●●

●

● ●●●● ●●●●●●●● ●●●

●

● ●●

●

●●● ●●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●● ●

●●
●

●

●
●

● ●●

●●

●

●

●

●

B

0

50

100

150

200

250

128 129 130 131 132 133 134 135
INDEX of flipped ciphertext−bit

LA
S

T
 d

iff
er

in
g

bi
t−

in
de

x

Figure 6. Variable effects of flipping a single ciphertext bit. Using PT[8,4,4], a 256-bit plaintext was
RC4-encrypted under a randomly generated key. For each encryption, one ciphertext bit (between
bit positions #128 and #135, shown on the X-axis) was flipped. A sufficient number of attacks were
mounted to produce 100 decryptions at each bit position. Then, each decryption (X∗) and the original
plaintext (X) were compared via a bit-wise Hamming distance measure Hd(i) = h(x∗i ⊕ xi). (A) The
index of the first bit at which the decryption and plaintext differ (the smallest i for which Hd(i) = 1).
(B) The last bit index at which X∗ and X differ (the largest i for which Hd(i) = 1). For some attacks, the
effect of bit-flipping continues throughout the entire message (white arrows near bit #256), while in
other cases, the effect is more limited (solid arrow near bit #100). PudgyTurtle mode adds uncertainty
about exactly where X∗ will start to diverge from X and for how long this change will persist.

These results emphasize that PudgyTurtle mode makes it harder to predict the effect
of flipping even a single ciphertext bit: the bit position at which changes in X∗ are first
observed (Figure 6A) varies considerably as does the total number of affected bits (Figure
6B). The attacker can guess on average where and how many bits of X∗ might change
but would find it hard to know the exact effects of flipping a particular ciphertext bit.
PudgyTurtle also affects qualitative attack outcomes. For example, flipping some ciphertext
bits (#129 through #133) can affect the whole decryption—as shown in Panel B by the points
scattered near bit #256 on the Y-axis—while flipping other bits (#128, #134, or #135), only
affects a limited segment of the decryption—typically not much beyond bit #100.

Cryptography 2023, 7, 25 17 of 33

6.4. Positional Effects within a Codeword

The position of the flipped bit within a codeword (FLIP-F vs. FLIP-D) also affects the
outcome of a BFA. Compared to flipping a discrepancy-code bit, flipping a failure-counter
bit more often triggers an avalanche, increasing the chance of an invalid discrepancy code
and leading to higher PREJECT . In one example using PT[6,5,3] and RC4 key 0x1122334455,
we observed the rejection rate for eighty BFAs (produced by flipping each bit from the first
ten ciphertext symbols). Overall 63.8% of BFAs were rejected, but the flipped bit’s position
had a substantial effect: 96% of FLIP-F attacks were rejected, compared to only 10% of the
FLIP-D attacks.

This suggests that for a given plaintext symbol size s, changing f and d while keeping
codeword length c fixed should influence PREJECT predictably: larger d means more ’unas-
signed’ discrepancy codes, creating more opportunities for invalid discrepancy codes to
inadvertently appear during a BFA, ending with a higher rejection rate. This was confirmed
using the same protocol as above, but using PT[6,5,d] with d = 3, 4, 5, and 6. Figure 7
shows that PREJECT does not change much among FLIP-F attacks (dotted line), which are
rejected with high probability. Most of the variation in PREJECT occurs during FLIP-D
attacks (dashed line), for which rejections rise from 10% with the lowest d-value to 56.7%
with the highest d-value. Overall, the rejection rate was in the 65–75% range (solid line).

●

● ●
●

FLIP−F group

ALL attacks

FLIP−D group

0

50

100

3 4 5 6

Discrepancy−code size (d)

R
ej

ec
te

d
bi

t−
fli

p
at

ta
ck

s
(%

 o
f t

ot
al

)

Figure 7. BFA outcomes are position-dependent. Bit-flipping attacks were mounted against PudgyTurtle
implementations PT[6,5,d] with d = 3, 4, 5, and 6 by flipping each bit from the first ten ciphertext
symbols. The Y-axis shows the fraction of attacks in which the ciphertext was rejected. Overall
∼60–75% of all attacks failed (solid line, ’ALL attacks’). Most attacks in which a failure counter
was altered were rejected regardless of whether d was (FLIP-F, dotted line). Attacks in which a
discrepancy code was altered were rejected less often and showed more dependence on d (FLIP-D,
dashed line). Abbreviations: BFA—bit-flipping attack; FLIP-F—attacks in which a failure counter is
altered; FLIP-D—attacks in which a discrepancy code is altered; d—discrepancy-code size.

Is this result somehow specific to PT[6,5,d] or does it generalize to other PudgyTurtle
implementations? This was tested using the same RC4 key and again by flipping each
bit within the first ten ciphertext-symbols. This time, however, all legal PT[s, f , d] imple-
mentations with s, f , and d ∈ {4, 5, 6, 7, 8} were used, producing a total of 15,000 separate

Cryptography 2023, 7, 25 18 of 33

BFAs. Overall 79.32 ± 4.57% (mean ± s.d.) of ciphertexts were rejected. Among FLIP-F
attacks, more were rejected more reliably (99.72 ± 1.33%) than among FLIP-D attacks (57.25
± 13.33%). Together, these observations illustrate how the BFA outcome is affected by the
relative position of the flipped bit within any c-bit ciphertext symbol and by the system
parameters themselves.

6.5. Predicting PREJECT

Since PREJECT is consistently high for FLIP-F attacks, a more interesting question is
whether it can be predicted for FLIP-D attacks. With two examples, we demonstrate that
specific attacks can be analyzed individually, but there does not appear to be an all-purpose
predictive formula.

These examples use PT[8,5,4] and a 24-bit NLFSR, with 1000 unique, randomly chosen
secret keys. For each encryption, attacks were performed against bit y6, y7, y8, and y9 (the
ciphertext bits associated with the first discrepancy-code). Although all of these attacks are
FLIP-D, their effects on PREJECT differ. Just over half (56%) of the attacks against bit y6 were
rejected, but only about one-third (36%) of attacks against the other three ciphertext bits were
rejected.

Table 1 illustrates how these four attacks affect discrepancy codes. Columns 1 and 2
list the original discrepancy code (D) in decimal and binary. Of 2d = 16 possible values, one
(D = 11112) is for overflows, nine others (D = 0 through 8) describe plaintext-to-keystream
matches, and the remaining six (gray background) are unassigned and would not occur
during encryption. Columns #3–6 show the new discrepancy codes (D∗) after flipping
ciphertext bits #6, 7, 8, and 9 respectively. Again, the gray background means that D∗ is
invalid, and ’-’ stands for discrepancy codes that could not be produced during a BFA (i.e.,
because the original D from which D∗ is derived would never occur). One entry in this
table deserves special mention. In Column 3 (Flip y6), the parentheses around D∗ = 11112
mean that this all-1 discrepancy code only produces a valid codeword when paired with
the all-1 failure counter F = 111112. In this case, the resulting codeword is decodable as
’overflow’. If D∗ = 11112 is paired with any other failure counter, however, the resulting
codeword will be invalid, and the attack will be rejected.

To predict PREJECT , our analysis assumes that D = 11112 = 15 is identical to an over-
flow event, and so Pr{D = 15} = PO = 0.3181 from (1). Additionally, we assume that all
(s + 1) = 9 valid nonoverflow discrepancy codes are uniformly distributed with probabil-
ity pD—unlike failure counters, which are geometrically distributed. Since probabilities
sum to unity, pD = (1 − PO)/9 ≈ 0.076. Another useful probability (used shortly) is
Pr{F = 111112}, the failure counter that can occur either as part of an ’all-1’ overflow
codeword (when paired with D = 11112) or as part of a codeword representing a suc-
cessful plaintext-to-keystream match to K31 (when paired with D ∈ {0, 1, . . . , 8}). Thus,
Pr{F = 111112} = PO + (1− p)31 p = 0.3297, where p = (s + 1)/2s = 9/256 = 0.0352 is
the usual probability of a successful plaintext-to-keystream match.

Consider first the FLIP-D attack against bit y6, shown in Column 3 of Table 1. The orig-
inal codeword in Y can contain any of ten discrepancy-codes (D = 0–8 and 15), while the
new codeword in Y∗ can contain only four (D∗ = 0, 7, 8, and 15). Thus,

Pr{D∗ = 00002} = Pr{D = 10002} = pD

Pr{D∗ = 10002} = Pr{D = 00002} = pD

Pr{D∗ = 01112} = Pr{D = 11112} = PO

Pr{D∗ = 11112} = Pr{D = 01112 ∩ F = 111112} = (0.3297)pD

Three of these new discrepancy codes (D∗ = 0, 7, or 8) would cause a codeword to
be decoded as ’successful plaintext-to-keystream match’. The remaining one (D∗ = 15)
would cause a codeword to be decoded as ’overflow’ (when paired with failure counter
F = 111112) or as ’invalid’ (when paired with any other failure counter).

Cryptography 2023, 7, 25 19 of 33

Table 1. FLIP-D attacks against the first ciphertext symbol. For PT[8,5,4], this table shows possible
outcomes of flipping each ciphertext bit corresponding to the first discrepancy code (y6, y7, y8, and
y9). Columns 1 and 2 show the original discrepancy code (D) in decimal and binary; and Columns 3,
4, 5, and 6 show the new discrepancy codes (D∗) produced by flipping the first, second, third, and
fourth bit of D, respectively. Gray indicates invalid codes, and ’-’ indicates codes that would not
occur. One special case (parentheses: eighth row, third column) occurs when the first bit of D = 01112

is flipped, producing D∗ = 11112. The new codeword (F ‖ 11112) is only valid if the failure counter
happens to be F = 111112. In this case, the codeword represents an incorrect but valid ’overflow’;
otherwise, the attack will be rejected. FLIP-D attacks behave differently depending upon which bit is
flipped (e.g., flipping y6 produces four possible D∗’s and allows for overflows, while attacks against
y7, y8, and y9 produce eight D∗’s but no overflows).

Original Flip y6 Flip y7 Flip y8 Flip y9
D D∗ D∗ D∗ D∗

0 0000 1000 0100 0010 0001
1 0001 1001 0101 0011 0000
2 0010 1010 0110 0000 0011
3 0011 1011 0111 0001 0010
4 0100 1100 0000 0110 0101
5 0101 1101 0001 0111 0100
6 0110 1110 0010 0100 0111
7 0111 (1111) 0011 0101 0110
8 1000 0000 1100 1010 1001
9 1001 - - - -
10 1010 - - - -
11 1011 - - - -
12 1100 - - - -
13 1101 - - - -
14 1110 - - - -
15 1111 0111 1011 1101 1110

The probability that this BFA will not be rejected is the sum of the four values above,
PACCEPT = pD(2 + 0.3297) + PO = 0.4709, which is similar to the observed value of 48.5%.
The probability that the attack will be rejected is

PREJECT = Pr{9 ≤ D∗ ≤ 14}+ Pr{D∗ = 11112 ∩ F 6= 111112}
= Pr{1 ≤ D ≤ 6}+ Pr{D = 01112 ∩ F 6= 111112}
= 6pD + pD Pr{0 ≤ F < 32})

= pD(6 +
31

∑
i=0

(1− p)i p)

= 0.5053

which is again similar to the observed value of 51.5%.
FLIP-D attacks against y7, y8, and y9 all behave similarly to one another but differently

from the attack against y6. As a specific example, consider the attack against y9. Applying
the same reasoning to the last Column of Table 1,

PACCEPT = Pr{0 ≤ D∗ ≤ 7}
= Pr{0 ≤ D ≤ 7}
= 8pD = 0.6061

and

PREJECT = Pr{D∗ = 10012}+ Pr{D∗ = 11102}

Cryptography 2023, 7, 25 20 of 33

= Pr{D = 10002}+ Pr{D = 11112}
= pD + PO = 0.3939

Again, both predictions are similar to the observed values of 59.2% accepted and
40.8% rejected.

These two examples (BFAs against y6 and y9) show the mechanistic steps involved
in calculating PREJECT . While a similar approach can be applied to any FLIP-D attack
against any PT[s, f , d], the details matter: there is no all-purpose formula, and the ultimate
probability of interest depends on various inter-relationships between the position of the
flipped bit within a c-bit codeword and the system parameters s, f , and d.

6.6. Decrypted Symbol Frequencies

How exactly will the decrypted bits change? In other words, how does the distribution
of decrypted symbols p(X∗) compare to that of the original plaintext p(X)? Since most
FLIP-F attacks will be rejected, again, it is easier to explore this question using FLIP-
D attacks. In this section, we present two experiments: one examines p(X∗) the entire
decryption, while the other is limited to one decrypted symbol p(X∗1).

EXPERIMENT 1. A 16-byte test pattern was encrypted with RC4 under 100 different secret
keys. PudgyTurtle implementation, PT[8,4,4], was chosen to make each decrypted symbol
one byte (s = 8 bits), so that its value can be plotted on a 16 × 16 grid with the Y (or
X)-axis as its high (or low)-order nibble. The plaintext X = 0x00112233 44556677 8899AABB
CCDDEEFF was chosen to visually stand out on this grid as a diagonal line running from
lower left (0,0) to upper right (0xF,0xF). For each ciphertext, every possible FLIP-D attack
was carried out (i.e., flipping bits y5–y8 within Y1, flipping bits y13–y16 within Y2, and so
on). For each attack, Y∗ was decrypted, and the identity of each decrypted byte tabulated.

Figure 8 shows a ’heat map’ histogram of the observed distribution p(X∗). Bytes
matching the original plaintext are set off as white squares surrounded by dotted lines.
On this diagonal (lower left to upper right), white is for visualization only—not for repre-
sentation of any particular probability. For the off-diagonal squares, byte frequencies are
represented via a normalized gray scale, where light gray stands for a frequency of ∼0.05%,
and the black for ∼1.19%. (Note: a frequency of 0.4% would be expected for 250 uniformly
distributed bytes.) Notice that the histogram does not appear to be completely uniform
(e.g., the 4 × 4 squares in the upper left and lower right seem less common than do other
similarly sized areas). What is more important than these details, however, is the fact that
every off-diagonal cell is shaded to at least some degree: although the original plaintext
distribution p(X) contained only sixteen bytes, p(X∗) contains all 28 = 256 possible bytes.

EXPERIMENT 2. A more granular view can be obtained by focusing on the distribution
of one decrypted symbol rather than all of X∗ This experiment examines the distribution
of the first decrypted byte p(X∗1) in response to FLIP-D attacks against bits within the
first ciphertext symbol. One subtle point is the following: if Y∗1 happens to decrypt as an
overflow, then X∗1 actually corresponds to a decrypted version of Y∗2 , not of Y∗1 .

The plaintext (whose first byte is X1 = 0x20) was encrypted using PT[8,5,4] and the
24-bit NLFSR. For each encryption, one ciphertext bit (either y6, y7, y8, or y9) was flipped.
Then, 4000 randomly selected keys were used, producing 1000 unique FLIP-D attacks
against each of these four ciphertext bits. For each FLIP-D attack, the identity of decrypted
symbol X∗1 was tabulated. This process resulted in four empirical p(X∗1) distributions,
which were plotted as 16 × 16 heat maps. Figure 9 shows this data, with panels A, B, C,
and D representing p(X∗1) during attacks against bits #6, #7, #8, and #9, respectively.

These results hint at the difficulty of predicting the identity of the first decrypted byte
even after changing just one bit of the first ciphertext symbol. For example, there is an obvious
qualitative difference between Figure 9A and the other three distributions: the former is spread
fairly evenly over most of its domain but has a single peak (p(X∗1 = 0xA0) ≈ 0.32), while the
latter consist of four equiprobable values, which are assigned to different bytes in each case.

Cryptography 2023, 7, 25 21 of 33

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F
LOW−order nibble

H
IG

H
−o

rd
er

 n
ib

bl
e

Figure 8. Distribution of the decrypted bytes. With PT[8,4,4], the 16-byte plaintexts 0x00, 0x11, 0x22,
and . . .0xFF were encrypted 100 times, each with a unique secret key. Each ciphertext was then
subjected to all possible FLIP-D attacks, and a histogram of the identity of decrypted bytes was
produced. This histogram is illustrated as a heat map, with the high-order nibble of each byte on the
Y-axis, the low-order nibble on the X-axis, and the byte frequency on a normalized gray scale with
black representing ∼1.19%—the maximum observed frequency. Bytes corresponding to the original
plaintext are set off along the diagonal from (0,0) to (0xF,0xF) as white squares surrounded by dotted
lines (where white is for emphasis only and does not signify zero probability). Notice that, although
the distribution does not appear uniform, every possible byte occurs in at least some decryptions.

A

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Flipping bit #6

B

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Flipping bit #7

C

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Flipping bit #8

D

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Flipping bit #9

Figure 9. Distribution of the first decrypted byte. With PT[8,5,4], FLIP-D attacks were performed against
each bit of the first discrepancy code (y6, y7, y8, and y9), with each attack being repeated with 1000
randomly chosen keys. Each panel shows the distribution of values taken by the first decrypted
symbol, p(X∗1). Since this symbol is one byte long, the distribution can be represented as a 16 × 16
heat map with high-order nibbles on the Y-axis, low-order nibbles on the X-axis, and frequency as a
grayscale. (A) During attacks against bit y6, the first bit of the first discrepancy code, X∗1 can take many
different identities. (B) During attacks against y7 however, X∗1 only takes four different values—each
with similar probability. Attacks against y8 (C) and y9 (D) also yield four nearly equiprobable bytes.

Cryptography 2023, 7, 25 22 of 33

6.6.1. Attacks against Bit y6: Qualitative Aspects

Here, we explain the qualitative (distribution shape) differences among these FLIP-D
attack outcomes, starting with the attack against bit y6. In this case, the first discrepancy
code (D∗1) was observed to take only four different values: 00002 = 0, 01112 = 7, 10002 = 8,
11112 = 15. At first, this seems at odds with Figure 9A. How can an attack produce only four
discrepancy codes, and yet X∗1 can still take so many (∼180) different identities? The table
below shows each of these new discrepancy codes being decrypted into X∗1 . Columns 1 and
2 are the original (F1 ‖ D1) and flipped (F1 ‖ D∗1) codewords. Column 3 gives the expression
used during decryption to obtain X∗1 , and Column 4 evaluates this expression. Note that if
D1 = 01112 is changed to D∗1 = 11112, and the resulting codeword (F1 ‖ D∗1) will only be
valid if F1 happens to be 111112 = 31—the ’all-1’ failure counter associated with overflows
(symbolized by 31 in the last row of Column 2).

Original Flip y6 First Decrypted Symbol (X∗1)
F1 ‖ D1 F1 ‖ D∗1 Expression Value

F1 ‖ 10002 F1 ‖ 00002 KF1 ⊕ 000000002 0xA0
31 ‖ 11112 31 ‖ 01112 K31 ⊕ 010000002 any byte
F1 ‖ 00002 F1 ‖ 10002 KF1 ⊕ 100000002 0xA0
F1 ‖ 01112 31 ‖ 11112 KF2 ⊕ D∗2 any byte

The most common decrypted symbol during this attack is X∗1 = 0xA0. Row 1 shows
how X∗1 becomes 0xA0 when D1 = 10002 = 8 (i.e., when X1 matches keystream sym-
bol KF1 everywhere except bit #8). In the absence of a bit-flipping attack, the first de-
crypted symbol ’should’ therefore be KF1 ⊕ 100000002, which means that KF1 should be
X1 ⊕ 0x100000002 = 0x20⊕ 0x80 = 0xA0. A FLIP-D attack against y6 changes the dis-
crepancy code from D1 = 10002 to D∗1 = 00002 while leaving failure counter F1 unchanged.
Thus, the first decrypted symbol in Y∗ becomes X∗1 = KF1 ⊕ 000000002 = KF1 = 0xA0.

Row 3 shows how X∗1 becomes 0xA0 when D1 = 00002 = 0 (i.e., when X1 matches
KF1 exactly—meaning that KF1 = 0x20). Here, the FLIP-D attack changes the discrepancy
code from D1 = 0 to D∗1 = 10002 = 8 without affecting the failure counter. Thus, when Y∗ is
decrypted, its first symbol will be KF1 ⊕ 100000002 = 0x20⊕ 0x80, which again equals 0xA0.

Besides 0xA0, the other values of X∗1 appear to be scattered uniformly, as suggested by
Rows 2 and 4 of the above table. In Row 2, an overflow occurs when encrypting the first plain-
text symbol, and so decryption of the resulting ’all-1’ codeword (F1 ‖ D1) = (111112 ‖ 11112)
would not produce any output. The FLIP-D attack, however, changes the discrepancy code
from 11112 to 01112, without changing F1. Since this new discrepancy code means ’a match
everywhere except bit #7’, decryption now produces X∗1 = K31 ⊕ 010000002, which can
take any value since, by definition, the keystream is pseudo-random.

Row 4 shows the other way in which X∗1 can be decrypted into an arbitrary byte: the
attack changes D1 = 01112 into D∗1 = 11112. The original codeword (F1 ‖ D1) would have
been interpreted as ’X1 matched KF1 everywhere except bit #7’ and would have produced a
decrypted symbol accordingly. The new codeword (F1 ‖ D∗1) = (F1 ‖ 11112) will only be
valid if F1 is also all 1’s, in which case this new codeword will be interpreted as ’overflow’.
Therefore, no decrypted symbol will be output, and the first symbol in the decrypted text
(X∗1) will actually be a decryption of the second ciphertext symbol Y∗2 and not the first
ciphertext-symbol. Since the second failure counter and discrepancy code are unrelated to
X1, the decryption can produce any value for X∗1 . (This assumes of course, that Y∗2 does
not also decrypt as an overflow. If it does, the same argument applies but with the third
failure-counter and discrepancy-code rather than the second, and so on.)

6.6.2. Attacks against Bit y6: Quantitative Aspects

This explains the qualitative appearance of p(X∗1) for the attack against bit y6 (i.e., 0xA0
is relatively common but any byte is possible). Regarding the actual probabilities, 557

Cryptography 2023, 7, 25 23 of 33

of these attacks were rejected and 443 led to successful decryptions. Among these, X∗1
was observed to be 0xA0 33.18% of the time (147/443) and to take all other values 66.82%
of the time (296/443). To help explain these values, Columns 1 and 2 of the table below
show the values of and observed frequencies (out of 1000) of the first discrepancy code, D1;
Columns 3 and 4 show the values and observed frequencies (out of 443) of the new code D∗1
during the attack; and Column 5 gives the predicted frequencies (see below), assuming that
PO/pD—the relative frequency of overflow to nonoverflow discrepancy-codes—remains
fixed, where PO = 0.318144 from Equation (1).

Original Flip y6 Attack

D1 #/1000 D∗1 #/443 Predicted

00002 0.079 10002 0.178330 0.161019
00012 0.085 - 0 -
00102 0.080 - 0 -
00112 0.078 - 0 -
01002 0.078 - 0 -
01012 0.073 - 0 -
01102 0.068 - 0 -
01112 0.097 11112 0.004515 0.001801
10002 0.066 00002 0.148984 0.161019
11112 0.296 01112 0.668172 0.676162

D∗1 = 00002 and 10002 should occur with equal probability, which we denote as p∗.
D∗1 = 01112 arises from the original discrepancy code for an overflow, D1 = 11112, and thus
has probability (PO/pD) · p∗. Since the original discrepancy-code probabilities sum to unity,
(s + 1)pD + PO = 1, and so PO/pD = 4.199268. Finally, D∗1 = 11112 can only be observed
within an ’all-1’ overflow codeword (i.e., when failure counter F1 = 111112 = 31); otherwise,
the attack would be rejected. Thus, Pr{D∗1 = 11112} = p∗ ·Pr{F1 = 31} = (p∗) · (1− p)31 p.
Since the probability of these different D∗1 values must sum to one,

Pr{D∗1 = 00002}+ Pr{D∗1 = 01112}+ Pr{D∗1 = 10002}+ Pr{D∗1 = 11112} = 1

p∗ + p∗
(

PO
pD

)
+ p∗ + p∗ Pr{F1 = 15} = 1

from which we obtain p∗ = 0.161019 and the other predicted probabilities in the last
column of the table above.

6.6.3. Attacks on Bits y7, y8, and y9

FLIP-D attacks against bits y7, y8, and y9 behave similarly to each other but differently
than from the attack against y6. Rather than a large number of possible X∗1 values, each
of these other three FLIP-D attacks produces only four X∗1 values. Interestingly, however,
each of these three attacks can involve eight (not four) ’flipped’ discrepancy codes. In the
attack against y6, a smaller number of discrepancy codes (4) lead to many X∗1 values. Here,
the opposite pattern is observed: a larger number of discrepancy codes (eight) lead to a
smaller number (four) of X∗1 values. Why does this occur?

Consider as an example the 1000 attacks against bit y9, of which 638 succeeded and
362 were rejected. The observed frequencies of the original and ’flipped’ discrepancy codes
(along with predicted values for the latter) are shown below:

Cryptography 2023, 7, 25 24 of 33

Original Flip y9 Attack

D1 #/1000 D∗1 #/638 Predicted

00002 0.079 00012 0.133 1/8
00012 0.085 00002 0.123 1/8
00102 0.080 00112 0.122 1/8
00112 0.078 00102 0.125 1/8
01002 0.078 01012 0.114 1/8
01012 0.073 01002 0.122 1/8
01102 0.068 01112 0.152 1/8
01112 0.097 01102 0.107 1/8
10002 0.066 10012 0 -
11112 0.296 11102 0 -

D1 = 0–8 each occur with probability ∼ pD = (1− PO)/9 = 0.0758. Although 10002
and 11112 are legal values for D1, flipping the last bit of either will make it invalid (gray
background). Thus, the ’flipped’ discrepancy code D∗1 can take eight possible values, each
of which is observed to occur near its expected frequency of 1

8 .
The eight corresponding D1 values can be paired into four ’dyads’, in which one

member becomes the other when y9 is flipped, but both cause Y∗1 to be decrypted into
the same value. For example, discrepancy codes 4 and 5 are a dyad: flipping the final
bit of 4 yields 5, and flipping the final bit of 5 yields 4. When the original discrepancy
code is D1 = 5, the first plaintext symbol and its matching the keystream symbol must
have differed in their fifth bit. Thus, KF1 = X1 ⊕ 000100002 = 0x20 ⊕ 0x10 = 0x30. During
the FLIP-D attack, however, D1 = 5 becomes its dyadic partner D∗1 = 4. Under this new
(incorrect) discrepancy code, Y∗1 will be decrypted into X∗1 = KF1 ⊕ 000010002 = 0x38. Had
the original discrepancy code been D1 = 4 (i.e., the dyadic partner of D1 = 5), then by the
same reasoning KF1 would be 0x20 ⊕ 000010002 = 0x28. The bit-flip attack would alter this
discrepancy code to D∗1 = 5, leading to the (incorrect) decryption X∗1 = 0x28⊕ 000100002
= 0x38. Thus, both (KF1 = 0x30, D∗1 = 4) and (KF1 = 0x20, D∗1 = 5) produce the same
decrypted symbol, X∗1 = 0x38.

In a similar manner, the other three dyads for the attack against y9 (0 and 1, 2 and 3, 6
and 7) will produce the other three observed values of X∗1 . The probability of each value of
X∗1 is the sum of the probabilities of its corresponding dyad, which is just 2

8 = 25%. (The
same argument applies also for attacks against bits y7 and y8—only differing in the details
of which discrepancy-codes are paired into which dyads.)

To summarize, we have shown how p(X∗) can span the entire domain of 256 possible
bytes, even though the original X had only sixteen unique bytes. We have also discussed
how flipping different bits within one discrepancy code (e.g., y6 vs. y7, y8, or y9) can
produce qualitatively and quantitatively different distributions for the corresponding
decrypted symbol.

6.7. Reconnection

One seemingly anomalous finding must still be explained. FLIP-F attacks should
trigger an avalanche and therefore be rejected—especially for a lengthy plaintext like
800,000-bit message used here. However, Figure 7 shows that some (<1%) FLIP-F attacks
are not. This is not due to mere statistical chance but rather due to a specific phenomenon
called reconnection.

Recall that during normal PudgyTurtle decryption, Y and K are unlinked but con-
nected. During a FLIP-D attack, Y∗ and K usually stay connected: KF is still the appropriate
keystream symbol to use for decryption (although the altered value of D will cause KF to
be reverse-engineered into the wrong plaintext symbol). During a FLIP-F attack, however,
Y∗ and K usually disconnect: KF is no longer the correct keystream symbol for reverse-
engineering since by definition the failure counter F is wrong. Disconnection then causes
each subsequent ciphertext symbol to be ’unmasked’ into an effectively random value
rather than the appropriate codeword, producing an arbitrary decryption with a high

Cryptography 2023, 7, 25 25 of 33

probability of being rejected. If rejection does not occur, it is likely that K and Y∗ have re-
connected. This occurs by chance if the running total of keystream symbols consumed while
decrypting Y∗ up to some point coincides with the running total of keystream symbols that
would have been consumed decrypting Y up to that same point.

To illustrate reconnection, consider an example using PT[8,5,4] and a randomly keyed
24-bit NLFSR, in which 1000 FLIP-F attacks are mounted against bit #1 (the first failure-
counter bit). To better visualize the raw data, the plaintext is a 32768-bit message containing
a simple repeating 16-byte test pattern. As expected, most attacks were rejected (990/1000),
but a few (0.1%) led to successful decryptions. The partial hex dump of one such decryption
(secret key 0x5A286F) is shown below, along with the original plaintext:

X (original) 00112233 44556677 8899AABB CCDDEEFF 00112233...
X∗ (BFA) A4480333 44556677 8899AABB CCDDEEFF 00112233...

The first three decrypted bytes differ from the original plaintext, but all remaining
bytes are identical. The cartoon below compares the failure counters during decryption
of the original and ’flipped’ ciphertexts. Column 1 shows the index of the symbol being
decrypted. Failure counters are shown for decryption of each symbol in Y (Column 2)
and Y∗ (Column 4). Running totals (∑) of the required number of keystream symbols
for plaintext-to-keystream matching which are given for Y (Column 3) and Y∗ (Column
5). (Recall that for failure counter 0 ≤ F < 2 f , an overflow or successful plaintext-to-
keystream match consumes F + 1 keystream symbols). The running-total does not include
the keystream involved in constructing each mask. Including this data would not change
the results but would require keeping a running total of s(F + 1) + c keystream bits for each
entry, rather than of F + 1 keystream symbols.)

Reconnection during a FLIP-F Attack

Original (Y) Flipped (Y∗)
F ∑ F ∑

1 13 14 29 30
2 23 38 14 45
3 25 64 18 64
4 21 86 21 86
5 21 108 21 108
...

...
...

The running-totals match after decryption of the third symbol (∑ = 64, circled). Thus,
X∗1 , X∗2 and X∗3 may differ from X1, X2, and X3, but will be the same thereafter. During this
FLIP-F attack, Y∗ disconnects from K immediately (during decryption of Y∗1), but then—due
to a coincidence of running-totals—reconnects after decryption of the third ciphertext symbol.
Decrypting either Y or Y∗ up to this point would require 64 keystream symbols.

It would seem that the attacker could leverage this behavior to their advantage by
tailoring a BFA to affect only a certain segment of plaintext, but reconnection is an uncertain
prospect. Although it is easy to visualize after the fact (given Y, Y∗, and K), it is difficult
to know in advance whether or not it will occur, and—if it does—where exactly it will
happen. Moreover, BFAs in this paper are limited to flipping only one bit. For attacks
involving multiple bit flipping, the chance of maintaining a reconnected state for the entire
remaining Y∗ would diminish. Both of these factors make it harder for an attacker to exploit
a reconnection (also see Section 7).

6.8. Symbol Insertion

Bit-flipping attacks against PudgyTurtle can also produce an unusual behavior called
symbol insertion, in which the decryption contains an ’extra’ symbol. This violation of length

Cryptography 2023, 7, 25 26 of 33

preservation appears to be unique to PudgyTurtle and would not occur during bit-flipping
attacks against other stream-cipher encryption modes.

The root cause of symbol insertion is overflows: when a flipped bit changes an
overflow symbol into a valid nonoverflow codeword, a new decrypted symbol is produced
rather than the ’no output’ that would otherwise have occurred. Flipping bit y6 while using
PT[4,5,3], for instance, might change an overflow codeword (111111112) into 111110112.
The former would not produce any decrypted symbol, but the latter—which PudgyTurtle
would interpret as “K31 matched the plaintext-symbol everywhere except bit #3”—would
produce the ’extra’ decrypted symbol K31 ⊕ 01002.

Data from Section 6.7 also provide an example of symbol insertion. Hex dumps from
this attack (with secret key 0x9D5EA3) are as follows:

X (original) 00112233 44556677 8899AABB CCDDEEFF 00112233...
X∗ (BFA) D7201722 33445566 778899AA BBCCDDEE FF001122...

After its third byte, X∗ is immediately recognizable as X shifted rightward by one
byte. The failure counters and running totals for this attack are presented below.

Symbol Insertion during a FLIP-F Attack

Original (Y) Flipped (Y∗)
F ∑ F ∑

1 15 16 31 32
2 (31) 48 24 57
3 17 66 8 66
4 16 83 16 83
5 19 103 19 103
...

...
...

Y2 is normally decrypted as an overflow—indicated by parenthesis around its associ-
ated failure counter (F = 31 in Row 2)—and therefore has no corresponding output symbol.
Thus, Y1 and Y2 together only yield one decrypted symbol. On the other hand, during the
bit-flip attack, Y∗2 no longer decrypts as an overflow, and so Y∗1 and Y∗2 together produce
two decrypted symbols: X∗ now contains one more symbol than did the original plaintext
(To be clear, the first failure counter during the bit-flip attack (F∗1 = 31, Row 1, Column 4)
is the same value that occurs during an overflow. However, the discrepancy code paired
with F∗1 is not 11112, and so the resulting codeword of (F∗1 ‖ D1) is not interpreted as an
overflow but rather as a plaintext-to-keystream match between X1 and K31. This numerical
coincidence has nothing to do with reconnection or symbol insertion). Reconnection occurs
after the third ciphertext symbol (identical running-totals 66), and thus the remainder
of Y∗ is decrypted correctly, but each symbol’s position is shifted one s-bit (8-bit) symbol
rightward compared to X.

Illustrated differently, the decryption of the original (unmodified) ciphertext—including
the Y2-overflow—is as follows:

Y1 Y2 Y3 Y4 Y5 . . .
↓ ↓ ↓ ↓ ↓

X1 X2 X3 X4 . . .
0x00 0x11 0x22 0x33 . . .

Meanwhile, the decryption of the flipped ciphertext is as follows:

Y∗1 Y∗2 Y∗3 Y∗4 Y∗5 . . .
↓ ↓ ↓ ↓ ↓

X∗1 X∗2 X∗3 X∗4 X∗5 . . .
0xD7 0x20 0x17 0x22 0x33 . . .

Cryptography 2023, 7, 25 27 of 33

Y∗4 correctly decrypts to 0x22, for example, but this byte is now the fourth decrypted symbol,
not the third.

Another clue about symbol-insertion comes from the normalized Hamming distance.
For this attack, Hd = 46.9%. This value seems odd: although Hd is nearly 50%, the
decryption is not ’random-looking’ at all but quite recognizable as a shifted version of the
original test pattern.

When comparing a message to a shifted version of itself, the normalized Hamming
distance may take a recognizable value. With natural languages, this value is known (e.g.,
for a one-byte shifted version of our ASCII-encoded English plaintext source, it would be
≈ 36.2%), and for study purposes, it could even be manipulated with specially designed
plaintexts (e.g., Hd would be ’1’ for the plaintext 0xFF00FF00... shifted by one byte, etc.).
For a 1-byte shift and this particular test pattern, Hd just happens to be nearly 50%—the
same value expected during an avalanche.

The original intuition about FLIP-F attacks triggering avalanches, altering many bits
of Y∗ and being rejected, is sound. However, among the few FLIP-F attacks that are
not rejected, reconnection and sometimes symbol insertion will be observed. A rejected
ciphertext should have Hd ≈ 50%, but in practice, there may not be any data to analyze.
With reconnection, Hd reflects the number of bits over which disconnection persists. With
symbol insertion, Hd may take a recognizable value for a certain plaintext (or class of
plaintexts).

7. Robbing the Bank

This section discusses a bit-flip attack against a hypothetical banking transaction.
The goal of this exercise is to change a very simple 15-byte plaintext (“DEPOSIT:$500.00”)
into a new message specifying a larger deposit. The decryption must match the original
format except that it may contain up to 4 digits before the decimal point—thus allowing the
attacker to take advantage of potentially inserting an ’extra’ decrypted symbol to deposit
more than $999.99.

To preview the results, most attacks fail. Among successful attacks, only a few de-
cryptions are ’meaningful’: most violate pre-specified formatting guidelines. Among
meaningful decryptions, the deposited amount is unpredictable: it may be less than, greater
than, or exactly equal to $500. Among successful deposits >$500, the profit varies over a
ten-fold range. Although PudgyTurtle does not completely prevent successful attacks, it
adds significant uncertainty about which bit should be flipped to make a profit.

This experiment uses PT[8,4,4] and RC4 with 1000 randomly chosen 40-bit secret keys.
For each key, attacks were performed against ciphertext symbols starting with Y10 (the first
one that might represent an encrypted digit—assuming no overflows) and ending with the
penultimate ciphertext symbol, YNY−1. For each ciphertext-symbol, all eight of its bits were
flipped in succession, resulting in 223,272 individual bit-flip attacks in total. Each attack
was categorized into one of four outcomes:

• REJECT: decryption returned ⊥ due to an invalid discrepancy-code.
• NONSENSE: decryption occurred, but was not meaningful. The bank itself (not the

decryption algorithm) would likely reject these transactions for being ill-formatted.
Meaningful decryptions were required to contain the string “DEPOSIT:$” followed
by 1–4 decimal digits, a decimal point, and two more digits. Nonsense decryptions
included things like “DEPzSIT:$100.00” (mis-spelling), “DEPOSIT:$50a.00” (nondigi-
tal value), “DEPOSIT:$500+00” (no decimal point), “DEPOSIT:$.05” (too few digits
before the decimal point), and “DEPOSIT:$500.1” (too few digits after the decimal
point). Leading zeros (e.g., “DEPOSIT:$0010.00”) and null transactions (e.g., “DE-
POSIT:$000.00”), however, were accepted.

• LOSS: a meaningful decryption specified a deposit ≤$500.00. A $500.00 deposit
exactly also counted as a ’LOSS’ due to the uncompensated time and effort required
to mount the attack

• GAIN: a meaningful decryption produced a deposit >$500.00.

Cryptography 2023, 7, 25 28 of 33

Figure 10A shows that valid decryptions were rare: about three-quarters of BFAs were
rejected (76.1%), and most others decrypted into nonsense (21.4%). Meaningful decryptions—
by which we mean those that were not rejected and decrypted into something besides
nonsense—occurred only ≈2.5% (5604/223272) of the time. The ultimate goal of this
exercise (GAIN) was even less common—although gains did constitute a majority of
meaningful decryptions (4667/5604 = 87%, but only 4667/223272 = 2.1% of all attacks).

●

●

●

●

A

(0.3%)

(2.2%)GAIN

LOSS

NONSENSE

REJECTED

0 25% 50% 75%

B

0.025

0.05

0.075

10 20 30 40 50
Modified ciphertext−symbol

F
re

qu
en

cy

C

0.1

0.3

0.5

1 2 3 4 5 6 7 8
Flipped bit

F
re

qu
en

cy

●

●

●D
PT[8,4,4]

PT[8,6,4]

PT[8,7,4]

−20 0 50 100 150

NET CHANGE (deposit − $500)

Figure 10. Attacking a hypothetical bank transaction. Over 220,000 bit-flipping attacks were mounted
against a hypothetical PudgyTurtle-mode-encrypted message specifying a $500 deposit. (A) This
histogram of attack outcomes shows that most attacks were either rejected (REJECTED) or produced
incorrectly formatted output (NONSENSE). Only ∼2.5% led to ’meaningful’ decryptions, categorized
as LOSS or GAIN. (B) This histogram illustrates which ciphertext symbol contained the flipped bit
for attacks with meaningful decryptions (� bars) and for attacks in the rejected/nonsense category
(� bars). (C) A histogram showing which bit (within any 8-bit ciphertext symbol) was flipped, again
representing meaningful decryptions as � and rejected/nonsense outcomes as �. (D) The average
net change (i.e., ’decrypted deposit’ minus $500) for successful attacks against PudgyTurtle imple-
mentations PT[8,4,4], PT[8,6,4], and PT[8,7,4]. Depending on the implementation (and specifically, its
failure counter f = 4, 6, or 7), attacks could produce more profit ($163), less profit ($16), or even a loss
(−$11).

Can the attacker predict which bit to target in order to have the bank accept the
transaction? The results suggest not. Figure 10B shows histograms of which ciphertext
symbol contained the flipped bit, both for meaningful decryptions (black bars, �) and for
rejected attacks or nonsense decryptions (gray bars, �). Although these two histograms
have different shapes, they overlap significantly. Thus, targeting symbols that occur early
or late in the ciphertext is suboptimal: these symbols coincide with low-probability tails of

Cryptography 2023, 7, 25 29 of 33

the black (’meaningful’) histogram. Yet, targeting the remaining ciphertext symbols near
the peak of the black curve is also not ideal: their positions fall along the plateau of the
gray (’nonsense/rejected’) histogram. Therefore, such attacks are equally likely to fail as
attacks against early ciphertext symbols.

Figure 10C shows similar information about which bit (within any 8-bit ciphertext-
symbol) was flipped. While FLIP-D attacks against the two final bits of any codeword seems
like the best strategy, such attacks still have a similar probability of REJECTED/NONSENSE
outcomes as do attacks against the other six bits.

So far, GAIN and LOSS have been lumped together as ’meaningful’ decryptions.
However, it is not clear how certain the attacker be about the actual dollar amount of the
final result or which bit should be flipped to turn a profit. After all, decrypted deposits
varied widely—from $0.00 to $9500.00. If we define the net change as a ’decrypted deposit’
minus $500.00, then its average would $163.12—reflecting an average LOSS of −$272.25
and an average GAIN of $227.00.

Higher profits occur among decryptions with an extra symbol (i.e., changing the
dollar amount before the decimal point from a 3-digit to a 4-digit value). Since symbol
insertion occurs when an overflow codeword is changed into something else, extra digits
should be more common when overflows are more common, and vice-versa. The attack so
far has only involved a single PudgyTurtle implementation (PT[8,4,4]) with a substantial
overflow rate of PO = 56.40%. Would ’robbing the bank’ be less profitable in situations
with fewer overflows?

To test this, another set of bank robberies was attempted against implementations
with larger failure counters (f = 6 and 7) and therefore fewer overflows (i.e., PO = 10.12%
for PT[8,6,4] and 1.02% for PT[8,7,4]). The rest of the protocol was identical to the one
above, but this time only 100 keys were used. For each implementation, the net change was
averaged over all meaningful decryptions. As illustrated in Figure 10D, overflows indeed
affected the profit margin. When overflows were most likely (PT[8,4,4]), the average net
change was a GAIN of $163; when overflows were somewhat less likely (PT[8,6,4]), the
net-change was a GAIN of only $16; and when overflows were rare (PT[8,7,4]), the net
change was a LOSS of $11.

This analysis adds little to what the bank robber could simply have assumed from the
outset: the best strategy is a FLIP-D attack against some ciphertext symbol ’in the middle’
that probably represents an encrypted plaintext digit. While these observations can be taken
as limited conclusions for a 1-bit attack against one particular plaintext and PudgyTurtle
implementation, a broader interpretation is also possible: predicting the actual results
of bit-flipping attacks in the presence of PudgyTurtle is difficult. The ultimate outcome
depends on factors controlled by the attacker (i.e., which bits(s) are flipped) and by the
sender/receiver (i.e., implementation parameters s, f , and d) but also has some inherent
uncertainty due to the stochastic nature of PudgyTurtle mode’s plaintext-to-keystream
matching process.

8. Discussion

This manuscript has explored how the stream-cipher encryption mode PudgyTurtle
affects ciphertext malleability in the context of bit-flipping attacks. In these attacks, the
opponent captures the ciphertext, alters one or more bits, and then retransmits this modified
ciphertext. Here, we investigated only the simplest attack: flipping a single bit.

PudgyTurtle’s plaintext-to-keystream matching process implements a nonsystematic,
1-bit error-correcting code, transforming an s bit input into a c = f + d bit output. Many
other stream-ciphers also utilize error-correcting codes, such as the ’noisy keystream
encryption’ (NKE) model of Kara and Erguler [25,26] and several variants of the ’learning
parity with noise’ (LPN) problem [27] including LPN-C by Gilbert and colleagues [28], a
matrix-based system by Applebaum [29], and a homophonic system by Mihaljevic and
Imai [30]. In these examples, the plaintext is typically encoded with an error-correcting code,
and then the codewords are purposely mixed with noise as well as keystream. This ’encode

Cryptography 2023, 7, 25 30 of 33

before enciphering’ idea has been analyzed in depth by Bellare and Rogaway [31] and even
relates in some ways back to Shannon’s observations about how easy it would be to encipher
a perfectly- ncoded (i.e., zero redundancy) artificial language [32]. What differentiates
PudgyTurtle mode from these other systems is that the underlying motivation for the ECC
is not to combat external noise but rather to describe the match (to within a 1-bit tolerance)
between each plaintext symbol and some keystream symbol. Essentially, the keystream
functions as an ’internal’ noise source, against which each plaintext symbol is compared.
The stochastic nature of each plaintext-to-keystream match introduces history (feedback)
into the encryption process, thereby adding qualitative and quantitative uncertainty to the
outcome of bit-flipping attacks.

Good protection against bit-flipping can be provided by authenticated encryption
modes (Chapter 4 [33]) or message-authentication codes (Section 18.14 [34]). However,
these authentication strategies themselves may be vulnerable. The MAC, for instance, has
security issues including attacks based on replay, length-extension, padding, variable key
lengths, collisions of suffix-based constructions, and side channels (timing of string compar-
isons) [35–37], (Chapter 7 [38]), (Chapter 4 [12]), (Chapter 3 [33]). Therefore these methods
may necessitate yet another layer of complexity (e.g., sharing another [authentication] key,
including a counter or nonce, lengthening the authentication tag size above some threshold,
and so on).

Another protection against bit-flipping is to use a stream-cipher encryption mode other
than synchronous (S-BASC). These modes enhance message integrity to some degree, and
thus offer limited defense against bit-flipping—although not the full protection afforded by
a MAC. Taking the ’effect’ of a one-bit BFA to mean the point at which X∗ begins to diverge
from X and the number of bits over which this continues, we can say, for example,that
against S-BASC mode, the effect is immediate and short lived (one bit). Against the
asynchronous/self-synchronizing mode, the effect is also immediate, but persists for n bits
(the size of the KSG inner state). Against PudgyTurtle mode, the effect has a variable starting
point and duration. This unpredictability is because PudgyTurtle includes uncertainty about
how much keystream will be required to encrypt each plaintext symbol.

This paper first introduced a ’generalized’ PudgyTurtle implementation (PT[s, f , d])
which allows variably sized input and output symbols. This implementation takes s-bit
plaintext symbols as input and produces c-bit ciphertext symbols as output, where c = f + d,
f is the failure-counter size, and d the discrepancy-code size. In previous research using one
particular implementation (PT[4,5,3]), overflows were rare, its bandwidth expansion was
∼2, and its keystream expansion was ∼5.2. For generalized PudgyTurtle, overflows can be
more common (even occurring as multioverflow events) and scales with s/ f , bandwidth
expansion scales with c/s, and keystream expansion with s. Many (s, f , d) combinations
can achieve both adequate speed and compactness (i.e., keystream expansion <5–10, and
bandwidth expansion <2–3), with Equations (1), (3), and (4) predicting the performance of
any proposed PT[s, f , d] implementation.

Next, this paper explored the several ways in which PudgyTurtle mode affects message
integrity during single-bit bit-flipping attacks:

• The attacker may be able to predict the effects of a BFA (i.e., the first and last affected
bits) on average, but not exactly.

• The decryption algorithm itself rejects attacks that produce an invalid codeword. Each
codeword is the concatenation of an f -bit failure counter and a d-bit discrepancy code
(F ‖ D). In PudgyTurtle, all 2 f failure counters are possible, but only (s+ 2) discrepancy
codes are needed—not all 2d of them. A BFA may produce one of these unassigned
discrepancy codes or may lead to an incorrect pairing of the ’all-1’ discrepancy code
(associated with overflows) with an F that is not all 1’s. Either way, the resulting
codeword will be invalid.

• Depending upon which bit within a c-bit ciphertext-symbol is flipped, attacks can
be grouped into those that alter a failure counter (FLIP-F) and those that alter a dis-
crepancy code (FLIP-D). Rejections are more likely during FLIP-F attacks than FLIP-D

Cryptography 2023, 7, 25 31 of 33

attacks. When a failure counter is altered, the keystream and ciphertext become dis-
connected, after which the decryption algorithm returns seemingly random outcomes.
When a discrepancy-code is altered, in contrast, the keystream and ciphertext remain
connected: except for one affected ciphertext-symbol, decryption proceeds normally,
affecting only a few bits overall.

• Flipping even a single ciphertext-bit can change the distribution of decrypted symbols
substantially compared to the original plaintext, altering its domain (all vs. just a few
s-bit symbols) and shape (uniform vs. peaked). These distributions can be computed
on a case-by-case basis but may not be amenable to a generalized formula.

• Avalanches sometimes self-terminate. If the keystream and ciphertext ’reconnect’, the
attack will not be rejected. Reconnection happens when the running-total number of
keystream symbols used to decrypt the modified ciphertext coincidentally equals what
it would have been for the original ciphertext. The length of disconnected ciphertext
and the position at which reconnection happens are both uncertain, however, due to
the statistical nature of each plaintext-to-keystream match.

• A new symbol is sometimes inserted into the decryption during a BFA. This occurs
when a ciphertext symbol that should have been unmasked as an overflow (and
therefore not trigger any output) is instead unmasked as a codeword that specifies a
plaintext-to-keystream match (and therefore does trigger the output of a decrypted
symbol). Symbol insertion also involves uncertainty with respect to its location
and identity.

Together, these effects of PudgyTurtle mode make it harder for an attacker to tailor
the correct set of bit flips to achieve a desired outcome and increase the likelihood that
the modified ciphertext will be rejected. In the final section of this paper, we attacked a
hypothetical bank transaction with the goal of depositing more than the specified amount
of money. The results of this experiment confirmed all of these observations: most attacks
were rejected by the decryption algorithm itself; most attacks that were decrypted contained
obvious formatting errors which would not have been accepted by the bank; the content
of the remaining decryptions (∼2% of all attacks) was uncertain: losses could occur as
well as gains, and even among attacks resulting in a net gain, the actual profit could
vary substantially.

One limitation of this manuscript is only including BFAs in which a single bit was
flipped. This simple case made it easier to interpret the effects of bit-position on attack
outcomes but artificially limited the power of each attack. However, some of the observed
effects may be even less likely if multiple bit flips are allowed. Reconnections, for example
would likely be shorter if multiple bit-flips caused disconnection at many points. Another
limitation is the toy ciphers used in our experiments: a 40-bit RC4 and a simple 24-stage
NLFSR. While neither of these is appropriate for secure systems, both can nevertheless
generate sufficiently random keystream for the purposes of this study. Potentially, however,
subtle bit correlations could have influenced some of our results (e.g., attacks targeting
Y1, the outcomes of which rely more heavily on early keystream). To reduce this effect,
we chose KSG starting states at random and when feasible used a different one for each
bit-flip attack.

The extent to which various stream-cipher modes increase the work effort and decrease
the success-rate of bit-flipping attacks remains an open question. PudgyTurtle mode by
itself should not be relied upon to prevent such attacks. Future research, however, may
focus on improving its effectiveness in this regard. For example, as probabilistic encryption
(such as the ’noisy keystream’ [25,26]) could in theory render tailored bit-flipping infeasible,
could PudgyTurtle also be modified to achieve randomized encryption?

Author Contributions: Conceptualization, D.A.A. and A.C.S.; methodology, D.A.A. and A.C.S.;
software, D.A.A.; validation, D.A.A.; formal analysis, A.C.S. and D.A.A.; writing—original draft
preparation, D.A.A.; writing—review and editing, A.C.S. and D.A.A. All authors have read and
agreed to the published version of the manuscript.

Cryptography 2023, 7, 25 32 of 33

Funding: This research received no external funding.

Data Availability Statement: Software for the PT[4,5,3] PudgyTurtle instance is available at https://
github.com/smaugust/PudgyTurtle. Software for generalized PT[s, f , d] instances is being developed
for GitHub release as well.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. August, D.A.; Smith, A.C. PudgyTurtle: Using keystream to encode and encrypt. SN Comput. Sci. 2020, 1, 226. [CrossRef]
2. Jönsson, F.; Johansson, T. A fast correlation attack on LILI-128. Inf. Process. Lett. 2002, 81, 127–132. [CrossRef]
3. Mattsson, J. Stream Cipher Design: An Evaluation of the eSTREAM Candidate Polar Bear. Master’s Thesis, Royal Institute of

Technology (KTH CSC), Stockholm, Sweden, 2006; ISSN-1653-5715.
4. Paul, S.; Preneel, B. Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator. In Proceedings of the

Progress in Cryptology—INDOCRYPT 2003, New Delhi, India, 8–10 December 2003; Johansson, T., Maitra, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 52–67.

5. Babbage, S. Improved “exhaustive search” attacks on stream ciphers. In Proceedings of the European Convention on Security
and Detection, Institution of Engineering and Technology, Brighton, UK, 16–18 May 1995; pp. 161–166.

6. Golić, J.D. Cryptanalysis of Alleged A5 Stream Cipher. In Proceedings of the Advances in Cryptology—EUROCRYPT ’97,
Santa Barbara, CA, USA, 17–21 August 1997; Fumy, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 239–255.

7. Biryukov, A.; Shamir, A. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In Proceedings of the Advances in
Cryptology—ASIACRYPT New York, NY, USA, 13–14 April 2000; Okamoto, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2000;
pp. 1–13.

8. Biryukov, A.; Shamir, A.; Wagner, D. Real Time Cryptanalysis of A5/1 on a PC. In Proceedings of the Fast Software Encryption,
Yokohama, Japan, 2–4 April 2001; Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 1–18.

9. Saarinen, M.J.O. A Time-Memory Tradeoff Attack Against LILI-128. In Proceedings of the Fast Software Encryption, Leuven,
Belgium, 4–6 February 2002; Daemen, J., Rijmen, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 231–236.

10. Arjoune, Y.; Faruque, S. Smart Jamming Attacks in 5G New Radio: A Review. In Proceedings of the 10th Annual Computing and
Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 1010–1015. [CrossRef]

11. Patrikakis, C.; Masikos, M.; Zouraraki, O. Distributed Denial of Service Attacks. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 8–11 October 2000.

12. Katz, J.; Lindell, Y. Introduction to Modern Cryptography, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 107–130.
13. Golić, J.D. Modes of Operation of Stream Ciphers. In Proceedings of the Selected Areas in Cryptography, Toronto, ON, Canada,

16–17 August 2001; Stinson, D.R., Tavares, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 233–247.
14. Dubrova, E. A List of Maximum Period NLFSRs; IACR Cryptology ePrint Archive, Report 2012/166. 2012. Available online:

https://eprint.iacr.org/2012/166 (accessed on 1 March 2023).
15. Rueppel, R. Stream ciphers. In Contemporary Cryptology: The Science of Information Integrity; Simmons, G., Ed.; IEEE Press: New

York, NY, USA, 1991; pp. 65–134.
16. Sarkar, P. Modes of Operations for Encryption and Authentication Using Stream Ciphers Supporting an Initialisation Vector;

Cryptology ePrint Archive, Report 2011/299. 2011. Available online: https://eprint.iacr.org/2011/299 (accessed on 1 March
2023).

17. Hamann, M.; Krause, M. On Stream Ciphers with Provable Beyond-the-Birthday-Bound Security against Time-Memory-Data
Tradeoff Attacks. Cryptogr. Commun. 2018, 10, 959–1012. [CrossRef]

18. Hamann, M.; Krause, M.; Meier, W. LIZARD—A Lightweight Stream Cipher for Power-Constrained Devices. IACR Trans.
Symmetric Cryptol. 2017, 1, 45–79. [CrossRef]

19. Wikipedia. SAVILLE. 2021. Available online: https://en.wikipedia.org/w/index.php?title=SAVILLE&oldid=1050698835 (ac-
cessed on 28 February 2023).

20. Biham, E.; Kocher, P.C. A known plaintext attack on the PKZIP stream cipher. In Proceedings of the Fast Software Encryption,
Leuven, Belgium, 14–16 December 1994; Preneel, B., Ed.; Springer: Berlin/Heidelberg, Germany; pp. 144–153.

21. Pkware, I. General Format of a ZIP File, technical note. Included in PKZIP 1.10 distribution, 1989. (pkz110.exe: file appnote.txt).
22. Sarkar, P. Hiji-bij-bij: A New Stream Cipher with a Self-synchronizing Mode of Operation. IACR Cryptol. ePrint Arch. 2003,

2003, 14.
23. Wheeler, D.J. A bulk data encryption algorithm. In Proceedings of the Fast Software Encryption, Leuven, Belgium, 14–16

December 1994; Anderson, R., Ed.; Springer: Berlin/Heidelberg, Germany; pp. 127–134.
24. Klimov, A.; Shamir, A. New Applications of T-Functions in Block Ciphers and Hash Functions. In Proceedings of the Fast

Software Encryption Workshop, Paris, France, 21–23 February 2005.
25. Kara, O.; Erguler, I. A New Approach to Keystream Based Cryptosystems. In Proceedings of the State of the Art of Stream

Ciphers (SASC 2008), Lausanne, Switzerland, 13–14 February 2008; pp. 205–221.

https://github.com/smaugust/PudgyTurtle
https://github.com/smaugust/PudgyTurtle
http://doi.org/10.1007/s42979-020-00221-z
http://dx.doi.org/10.1016/S0020-0190(01)00208-3
http://dx.doi.org/10.1109/CCWC47524.2020.9031175
https://eprint.iacr.org/2012/166
https://eprint.iacr.org/2011/299
http://dx.doi.org/10.1007/s12095-018-0294-5
http://dx.doi.org/10.46586/tosc.v2017.i1.45-79
https://en.wikipedia.org/w/index.php?title=SAVILLE&oldid=1050698835

Cryptography 2023, 7, 25 33 of 33

26. Kara, O.; Erguler, I.; Anarim, E. A new security relation between information rate and state size of a keystream generator. Turk. J.
Electr. Eng. Comput. Sci. 2016, 24, 1916–1929. [CrossRef]

27. Fossorier, M.; Mihaljević, M.; Imai, H.; Cui, Y.; Matsuura, K. An Algorithm for Solving the LPN Problem and Its Application to Se-
curity Evaluation of the HB Protocols for RFID Authentication. In Proceedings of the Progress in Cryptology—INDOCRYPT 2006,
Kolkata, India, 11–13 December 2006; Barua, R., Lange, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4329, pp. 48–62.

28. Gilbert, H.; Robshaw, M.J.; Seurin, Y. How to encrypt with the LPN problem. In Proceedings of the Automata, Languages
and Programming: 35th International Colloquium (ICALP 2008), Reykjavik, Iceland, 7–11 July 2008; Part I—Lecture Notes in
Computer Science 5125—ICALP-35; Aceto, L., Damgaard, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 679–690.

29. Applebaum, B.; Cash, D.; Peikert, C.; Sahai, A. Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard
Learning Problems. In Proceedings of the Advances in Cryptology 29th Annual International Cryptology Conference (CRYPTO
2009), Santa Barbara, CA, USA, 16–20 August 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2009; Volume 5677, pp. 595–618. [CrossRef]

30. Mihaljević, M.J.; Imai, H. Employment of Homophonic Coding for Improvement of Certain Encryption Approaches Based on the
LPN Problem. In Proceedings of the Symmetric Key Encryption Workshop—SKEW 2011, Copenhagen, Denmark, 16–17 February
2011.

31. Bellare, M.; Rogaway, P. Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for Efficient
Cryptography. In Proceedings of the Advances in Cryptology—ASIACRYPT 2000, Kyoto, Japan, 3–7 December 2000; Lecture
Notes in Computer Science; Okamoto, T., Ed.; Springer: London, UK, 2000; Volume 1976, pp. 317–330.

32. Shannon, C. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
33. Wong, D. Real-World Cryptography; Manning Publications Co.: Shelter Island, NY, USA, 2021.
34. Schneier, B. Applied Cryptography, 2nd ed.; John Wiley & Sons, Inc: Indianapolis, IN, USA, 2015.
35. AlFardan, N.J.; Patterson, K.G. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols; Royal Holloway University—College

of London: London, UK, 2013. Available online: https://isg.rhul.ac.uk/tds/Lucy13.html (accessed on 16 February 2023).
36. Ferguson, N. Authentication Weaknesses in GCM. 2005. Available online: https://csrc.nist.gov/CSRC/media/projects/Block-

Cipher-Techniques/documents/BCM/comments/CWC-GCM/Ferguson2.pdf (accessed on 20 February 2023).
37. Vaudenay, S. Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC, WTLS. In Proceedings of the Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT ’02),
Amsterdam, The Netherlands, 28 April–2 May 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 534–546.

38. Aumasson, J.P. Serious Cryptography: A Practical Introduction to Modern Encryption; No Starch Press, Inc.: San Francisco, CA,
USA, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3906/elk-1311-54
https://doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://isg.rhul.ac.uk/tds/Lucy13.html
https://csrc.nist.gov/CSRC/media/projects/Block-Cipher-Techniques/documents/BCM/comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.gov/CSRC/media/projects/Block-Cipher-Techniques/documents/BCM/comments/CWC-GCM/Ferguson2.pdf

	Introduction
	Notation
	Numbers
	Functions and Operators
	Symbols and Sequences
	Keystream Generator

	Methods
	Stream-Cipher Modes
	PudgyTurtle Mode
	Classical Modes: Synchronous and Asynchronous
	Synchronization, Linkage, and Connection

	Generalized PudgyTurtle
	Match Function
	Encryption
	Decryption
	Indexing
	Bit Padding
	PT[s,f,d] Performance
	Expansion Factors
	Predicted CEF
	Predicted KEF

	PudgyTurtle and Bit-Flipping Attacks
	Rejected Ciphertexts
	Two Categories of Tailored BFA
	Localizing the Effect of a Flipped Bit
	Positional Effects within a Codeword
	Predicting PREJECT
	Decrypted Symbol Frequencies
	Attacks against Bit y6: Qualitative Aspects
	Attacks against Bit y6: Quantitative Aspects
	Attacks on Bits y7, y8, and y9

	Reconnection
	Symbol Insertion

	Robbing the Bank
	Discussion
	References

