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Abstract: All anonymous identity-based encryption (IBE) schemes that are group homomorphic
(to the best of our knowledge) require knowledge of the identity to compute the homomorphic
operation. This paper is motivated by this open problem, namely to construct an anonymous group-
homomorphic IBE scheme that does not sacrifice anonymity to perform homomorphic operations.
Note that even when strong assumptions, such as indistinguishability obfuscation (iO), are permitted,
no schemes are known. We succeed in solving this open problem by assuming iO and the hardness
of the DBDH problem over rings (specifically, ZN2 for RSA modulus N). We then use the existence
of such a scheme to construct an IBE scheme with re-randomizable anonymous encryption keys,
which we prove to be IND-ID-RCCA secure. Finally, we use our results to construct identity-based
anonymous aggregation protocols.
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1. Introduction

The problem we tackle in this paper relates to a primitive known as identity-based
group homomorphic encryption (IBGHE), which is defined in [1]. Basically, IBGHE is
identity-based encryption that is homomorphic for some group operation, and the ci-
phertext space for every identity forms a group. Moreover, the decryption function is a
group homomorphism between the ciphertext group and the plaintext group. GHE has
several applications, discussed in [1], and an IBGHE facilitates those applications in an
identity-based infrastructure.

It is an open problem to construct an IBGHE that is simultaneously anonymous and
homomorphic for addition. There are only two IBGHE schemes that support modular addition
to the best of our knowledge, namely the XOR-homomorphic variant of the Cocks IBE scheme
in [1] and the more recent IBGHE scheme from [2] that is homomorphic for addition modulo
smooth square-free integers. Now, Joye has discovered that the Cocks IBE scheme itself is
XOR-homomorphic [3], but the scheme is not an IBGHE since the ciphertext space with the
homomorphic operation forms a quasigroup and not a group. Some readers might wonder
about schemes that are considered multiplicatively homomorphic, which allow addition in
the exponent, and question why we do not classify them as IBGHE schemes for addition.
The reason is that the corresponding additive group has exponential order, and decryption can
only recover messages using Pollard’s lambda algorithm that are less than some polynomial
bound, so the valid message space does not form an additive group. Now the two IBGHE
schemes supporting modular addition that we are aware of are not anonymous, but there
are variants of these schemes that achieve anonymity. However, although such schemes gain
anonymity, they lose the homomorphic property. Most usually, we need to know the identity
associated with a ciphertext in order to correctly compute the homomorphic operation, and
so when the identity is hidden from us, as it is when the scheme is anonymous, we cannot
compute the homomorphic operation. Therefore, in a nutshell, the open problem we address
in this paper is to construct an IBGHE for addition that is anonymous while retaining the
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homomorphic operation. Note that while we have concentrated on GHE, it is important to point
out that there are no other additively homomorphic schemes (such as quasigroup homomorphic
schemes, such as Cocks, as observed by Joye) that achieve simultaneous anonymity and the
ability to carry out the homomorphic operation without knowing the identity associated with
a ciphertext. Of course, our focus is not on bounded homomorphisms, such as LWE-based
schemes that incorporate noise, but instead on those with an algebraic structure and support
for a theoretically unbounded number of operations. One of the reasons we opt for GHE over
linearly homomorphic LWE-based schemes is that the former enjoy the desired property of
strong unlinkability; that is, an evaluated ciphertext is distributed the same as a fresh ciphertext
in the view of the key holder (recipient), whereas LWE-based schemes achieve this only by
requiring an expensive bootstrapping operation and making a circular security assumption.

1.1. Motivation and Applications

Beyond theoretical interest, there are applications that motivate consideration of this
open problem. We construct an anonymous IBE using an anonymous IBGHE as a building
block. We prove this scheme IND-ID-RCCA secure (note that RCCA is a slight relaxation of
CCA2). Our anonymous IBE scheme has two interesting properties. First, it allows one to
generate anonymous keys associated with a particular identity. Therefore, an encryptor can
encrypt a message using an anonymous key for some unknown recipient. Secondly, such
keys can be rerandomized such that the resulting anonymous key is computationally un-
linkable to the original anonymous key. This finds an immediate application in anonymous
aggregation, as we describe below.

Consider the following application scenario. Suppose we have a collection of sensor
nodes that collect data and send it to a central server. Suppose the data are numerical
measurements, and there are different recipients depending on external factors. Each sensor
data encrypts a measurement with the recipient’s identity and sends it en route to the central
server. It is desirable that ciphertexts that are seen by potential adversaries do not reveal the
associated recipient’s identity. Along the route there are nodes that function as aggregators
that can be authorized independently by each sensor node to aggregate the data coming
from that sensor node. If a sensor node give authorization to the aggregator, then the
aggregator should be able to aggregate data for the same recipient coming from any of the
sensor nodes that have given authorization. Addition (summation) is a common type of
aggregation since perhaps only an average measurement is needed by the recipient. To fulfill
this application scenario, we need an IBE scheme that is anonymous and homomorphic
for addition, where the homomorphic operation can be computed without knowing the
recipient’s identity.

Consider two senders that produce ciphertexts for the recipient id. Both of them
send their respective authorization keys to an aggregator whose identity is ¯id, they perform
aggregation on the two ciphertexts and send the result on to a second aggregator. The second
aggregator should not be able to perform aggregation with the result unless they are given
an authorization key from ¯id. However, the recipient should be able to decrypt all such
ciphertexts intended for them, including the result of the aggregation. Now the issue is
that the recipient’s identity is hidden from the aggregators. However, the result of their
aggregation needs to be decryptable by the recipient id and also “fresh”, such that the
second aggregator, who may be authorized by the original senders, but not authorized by
the first aggregator, should not be able to perform aggregation on the result. We describe
our approach to solving this problem below.

1.2. Our Results

We present a feasibility result in this work of an additively homomorphic IBGHE that
is both anonymous and supports the evaluation of the homomorphic operation without
knowing a user’s identity. Our construction is based on iO and the hardness of DDH in
elliptic curves over ZN2 where N is an RSA modulus. These are strong assumptions but
we make headway on this open problem. Elliptic curves over rings have been less widely
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studied; Pailler [4] introduced the types of curves we use in this paper, which are over the
ring ZN2 , while Peter et al. [5] describe a specific class of curves that are suitable to instantiate
our construction. Furthermore, iO has not been realized from standard assumptions, although
there have been several recent advances in constructing iO from quite different approaches
under different assumptions, which gives us more confidence that iO exists. To obtain our
feasibility result, we first borrow an idea from [6] to leverage obfuscation to map an identity
string to a freshly generated public key of some encryption scheme. In fact, abstracting for
a moment from the specific construction, we will describe the high-level paradigm. As part
of the public parameters, we have an obfuscated program that maps an identity to a public
key in some multi-user system with public parameters. The public keys in a multi-user system
share the same set of common public parameters—think of the generator g and modulus p in
ElGamal [7] as the common public parameters, except ElGamal is of no use here since it is only
multiplicatively homomorphic. Nevertheless, ElGamal serves to illustrate another property
that this paradigm requires, namely that the multi-user system supports key privacy where
key privacy can be viewed as the analog to anonymity in the identity-based setting; that is,
the ciphertexts in the multi-user system do not reveal the public key they are associated with,
which is the case in ElGamal. We are using the term multi-user system in a broad sense here,
permitting both the case where we have a trusted authority and the case where we do not.
In the former, the public parameters are generated by a trusted authority with a backdoor
(master secret key) such that the trusted authority can decrypt any ciphertext. In our paradigm,
the public parameters of the multi-user system will be generated by the trusted authority of
the IBE scheme and published as part of the IBE scheme’s public parameters. Therefore, we
need the multi-user system to be both key-private and additively homomorphic, where the
homomorphic operation can be computed without knowing the public key associated with a
ciphertext. The fundamental question is: can we concretely realize a multi-user system that
has both key privacy and an additive homomorphism. We can answer this question in the
affirmative by using a variant of the Paillier scheme based on elliptic curves over rings that is
presented in [5], which is a multi-user system supporting homomorphic addition modulo a
large semiprime N and for which we can easily show that key privacy holds assuming the
hardness of DDH in elliptic curves over ZN2 .

1.2.1. Anonymous IBE with Rerandomizable Anonymous Keys

Next, we present an anonymous IBE scheme based on the Boneh–Franklin scheme,
which we prove IND-ID-RCCA secure. Our scheme requires an additively homomorphic
anonymous IBE scheme as a building block (as described above and which we realize in
Section 3). Our anonymous IBE scheme has two interesting properties. First, it allows one
to generate anonymous keys associated with a particular identity. Therefore, an encryptor
can encrypt a message using an anonymous key for some unknown recipient. Secondly,
such keys can be rerandomized such that the resulting anonymous key is computationally
unlinkable to the original anonymous key. One of the applications for this scheme is in
realizing identity-based anonymous aggregation in Section 5. This is the first IBE scheme
that is both anonymous and IND-ID-RCCA secure.

1.2.2. Identity-Based Anonymous Aggregation

In an identity-based anonymous aggregation (IBAA) protocol, every identity has an
associated secret key derivable by the Trusted Authority with their master secret key. Every
identity can issue an authorization key to an aggregator that allows the aggregator to
perform aggregation on ciphertexts created by that identity, but for any recipient identity. We
envisage that, in practice, more complex policies may be used to control authorization, which
is beyond the scope of this work. Here we simply model authorization with symmetric
keys. Therefore, a symmetric key functions as an authorization key that can be issued
to aggregators. For every ciphertext, the encryptor generates a fresh symmetric key κ
(effectively a session or transport key) and uses it to encrypt the IBE ciphertext that encrypts
the message. This symmetric key κ is encrypted with the authorization key for the sender
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so that any party who is given this key can recover the IBE ciphertext that encrypts the
message. However, the recipient must always be able to decrypt a ciphertext intended for
them, irrespective of whether it has been given an authorization key (for aggregation) by
the encryptor. To solve this problem, the ciphertext also incorporates an IBE encryption
of κ so that the recipient can recover the IBE ciphertext that encrypts the message. One of
the main challenges is in relation to aggregation. It is straightforward for the aggregator
to evaluate the homomorphic operation on both IBE ciphertexts without knowing the
recipient’s identity (anonymous group-homomorphic IBE enables this). However, we must
use a fresh symmetric key to encrypt this evaluated IBE ciphertext in order to ensure
unlinkability. However, how do we encrypt this fresh key with the recipient’s identity
without knowledge of the identity so that they can decrypt the result of the aggregation?
One solution to this is to use FHE and then rely on bootstrapping for unlinkability, but
this requires us to make a circular security assumption, and, furthermore, bootstrapping
in the identity-based settings requires strong assumptions, such as iO. Our solution is
to use our anonymous IBE scheme with its rerandomizable anonymous keys (described
above), and this solves all our problems (including strong unlinkability) while being more
efficient than FHE and without the need for a circular security assumption. Furthermore,
we rely on the IND-ID-RCCA security to prove a desirable property of aggregation validity
whereby no party who has not been granted authorization as an aggregator can perform a
pre-determined transformation of the plaintext.

2. Preliminaries
2.1. Notation

A quantity is said to be negligible with respect to some parameter λ, written negl(λ),
if it is asymptotically bounded from above by the reciprocal of all polynomials in λ.

For a probability distribution D, we denote by x←$ D that x is sampled according to D.
If S is a set, y←$ S denotes that y is sampled from x according to the uniform distribution
on S.

The support of a predicate f : A→ {0, 1} for some domain A is denoted by supp( f ),
and is defined by the set {a ∈ A : f (a) = 1}.

The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k].

2.2. Identity-Based Encryption

Definition 1. An Identity-Based Encryption (IBE) scheme is a tuple of PPT algorithms (G, K, E, D)
defined with respect to a message spaceM, an identity space I and a ciphertext space Ĉ as follows:

• G(1λ):
On input (in unary) of a security parameter λ, generates public parameters PP and a master
secret key MSK. Output (PP,MSK).

• K(MSK, id):
On input of the master secret key MSK and an identity id ∈ I : a secret key skid for identity id
is derived and output.

• E(PP, id, m):
On input of public parameters PP, an identity id ∈ I , and a message m ∈ M, a ciphertext
c ∈ C ⊆ Ĉ that encrypts m under identity id is output.

• D(skid, c):
On input of a secret key skid for identity id ∈ I and a ciphertext c ∈ Ĉ, a m′ is output if c is a
valid encryption under identity id; otherwise, a failure symbol ⊥ is output.

2.3. Public-Key GHE

An important subclass of partial homomorphic encryption is the class of public-key
encryption schemes that admit a group homomorphism between their ciphertext space and
plaintext space. This class corresponds to what is considered “classical” HE [8], where a
single group operation is supported, most usually, addition. Gjøsteen [9] examined the
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abstract structure of these cryptosystems in terms of groups and characterized their security
as relying on the hardness of a subgroup membership problem. Armknecht, Katzenbeisser
and Peter [8] rigorously formalized the notion and called it group homomorphic encryption
(GHE). We recap with the formal definition of GHE by Armknecht, Katzenbeisser and
Peter [8].

Definition 2 (GHE, Definition 1 in [8]). A public-key encryption scheme E = (G, E, D) is
called group homomorphic, if for every (pk, sk) ← G(1λ), the plaintext space M and the
ciphertext space Ĉ (written in multiplicative notation) are non-trivial groups such that

• the set of all encryptions C := {c ∈ Ĉ | c← Epk(m), m ∈ M} is a non-trivial subgroup of Ĉ
• the restricted decryption D∗sk := Dsk|C is a group epimorphism (surjective homomorphism)

i.e.,
D∗sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) · Dsk(c

′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C

• the decryption on Ĉ \ C returns the symbol ⊥.

2.4. Identity-Based Group Homomorphic Encryption (IBGHE)

Definition 3 (Identity-Based Group Homomorphic Encryption (IBGHE), Based on [1]).
Let E = (G, K, E, D) be an IBE scheme with message spaceM, identity space I and ciphertext
space Ĉ. The scheme E is group homomorphic if, for every (PP,MSK) ← G(1λ), every id ∈ I ,
and every skid ← K(MSK, id), the message space (M, ·) is a non-trivial group, and there is a
binary operation ∗ : Ĉ2 → Ĉ such that the following properties are satisfied for the restricted
ciphertext space Ĉid = {c ∈ Ĉ : Dskid(c) 6= ⊥}:

GH.1: The set of all encryptions Cid = {c | c← E(PP, id, m), m ∈ M} ⊆ Ĉid is a non-trivial
group with respect to the operation ∗.

GH.2: The restricted decryption D∗skid := Dskid|Cid is surjective
and ∀c, c′ ∈ Cid Dskid(c ∗ c′) = Dskid(c) · Dskid(c

′).

We are interested in schemes whose plaintext space forms a group and which allow
the operation to be homomorphically applied an unbounded number of times. There exist
schemes, however, that do not satisfy all the requirements of GHE, namely their ciphertext
space does not form a group but instead forms a quasigroup (a group without associativity),
such as the Cocks’ IBE [10], which was shown to be inherently XOR-homomorphic by
Joye [3].

2.5. Multi-User Encryption

A multi-user encryption (MUE) scheme is an abstraction from a class of public-key
encryption schemes where the public keys of users share common public parameters, whose
generation may or may not include a trusted setup, in which case a Trusted Authority
(TA) may hold a master decryption key that enables them to decrypt the ciphertexts of any
user. An instance of MUE is ElGamal, which does not require a trusted setup or involve a
Trusted Authority with a “backdoor", whereas another instance of an MUE is a public-key
encryption scheme with a double decryption mechanism (DD-PKE), as defined by Galindo
and Herranz [11] where the public parameters are generated along with a master secret
key by a TA.

An MUE is a tuple of PPT algorithms (Setup,KeyGen,Enc,Dec,mDec) with plaintext
spaceM and ciphertext space Ĉ, defined as follows:

• Setup(1λ): takes as input a security parameter λ and outputs a pair (PP,MSK) con-
sisting of public parameters PP and an optional master secret key MSK, which may be
set to ⊥,



Cryptography 2023, 7, 22 6 of 19

• KeyGen(PP): takes as input the public parameters PP and outputs a pair of pub-
lic/private keys (pk, sk).

• Enc(PP, pk, m): takes as input the public parameters PP, a user’s public key pk and a
message m ∈ M, and outputs a ciphertext c ∈ C ⊆ Ĉ.

• Dec(PP, sk, c): takes as input the public parameters PP, a secret key sk and a ciphertext
c ∈ Ĉ, and outputs either a plaintext m ∈ M or ⊥ if decryption fails.

• mDec(PP,MSK, pk, c): takes as input the public parameters PP, the master secret key
MSK, a user’s public key pk and a ciphertext c ∈ Ĉ and outputs either a plaintext
m ∈ M or ⊥ if decryption fails or MSK = ⊥.

2.6. Elliptic Curves over Rings

Proposition 1 ([5]). If N = pq is some RSA modulus, i.e., p and q are primes of about the same
bit length λ, then there is an efficient construction of elliptic curves E : y2z = x3 + axz2 + bz3

over ZN2 such that M := lcm(#E(Zp), #E(Zq)) has at least two large (of about the same size as p
and q) prime factors.

Lemma 1 ([5]). As in Proposition 1, let M ∈ N have at least two large prime factors (of about λ
bits). If π(M) denotes the product of all small prime factors of M, then

Prs←$ Π(M)

[
gcd(s, M) 6= 1

]
is negligible in λ

where Π(M) := {s ∈ ZN2 \ {0} | gcd(s, π(M)) = 1}.

2.7. Indistinguishability Obfuscation

Definition 4 (Indistinguishability Obfuscation). (Based on Definition 7 from ([12]) A uni-
form PPT machine iO is called an indistinguishability obfuscator for every circuit class {Cκ} if the
following two conditions are met:

• Correctness: For every κ ∈ N, for every C ∈ Cκ , for every x in the domain of C, we have that

Pr C′(x) = C(x) : C′ ← iO(C) = 1.

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ , if C0(x) =
C1(x) for all inputs x, then for all PPT adversaries A, we have:

|PrA(iO(C0)) = 1| − |PrA(iO(C1)) = 1| ≤ negl(κ).

2.8. Puncturable Pseudorandom Function

A puncturable pseudorandom function (PRF) is a constrained PRF (Key,Eval) with an
additional PPT algorithm Puncture. Let n(·) and m(·) be polynomials. Our definition here
is based on Section 2.5 of [6]. A PRF key K is generated with the PPT algorithm Key, which
takes as input the security parameter κ. The Eval algorithm is deterministic, and on input
of a key K and an input string x ∈ {0, 1}n(κ), outputs a string y ∈ {0, 1}m(κ).

A puncturable PRF allows one to obtain a “punctured” key K′ ← Puncture(K, S)
with respect to a subset of input strings S ⊂ {0, 1}n(κ) with |S| = poly(κ). It is required
that Eval(K, x) = Eval(K′, x) ∀x ∈ {0, 1}n(κ) \ S, and for any poly-bounded adversary
(A1,A2) with S ← A1(1κ) ⊂ {0, 1}n(κ) and |S| = poly(κ), any key K ← Key(1κ), any
K′ ← Puncture(K, S) and any x ∈ S, it holds that

PrA2(K′, x,Eval(K, x)) = 1− PrA2(K′, x, u) = 1 ≤ negl(κ)

where u←$ {0, 1}m(κ).
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3. Construction of Anonymous Additively Homomorphic IBE
3.1. PKTK MUE Scheme

We now describe the cryptosystem from [5] that is an instance of an MUE and satisfies
some interesting properties, including the fact that even the Trusted Authority cannot
determine which user a ciphertext is created for (Property 3 [5]), so the scheme is anony-
mous even to the TA under the hardness of DDH in E(ZN2). The scheme is very similar to
Galbraith’s elliptic-curve-based Paillier scheme [13].

• Setup(1λ) : On input of a security parameter λ, this algorithm generates an RSA
modulus N = pq where p and q are primes of about the same bit length λ. Then
it constructs an elliptic curve E : y2z = x3 + axz2 + bz3 over ZN2 such that E has
the properties described in Proposition 1. Furthermore, it chooses a point Q =
(x, y, z) ∈ E(ZN2) whose order divides M = lcm(#E(Zp), #E(Zq)). It outputs the
public parameters PP := (N, π((M), a, b, Q) and the master secret key MSK := M.
The plaintext space isM = ZN , and the ciphertext space is Ĉ = 〈Q〉 × 〈Q,M1〉.

• KeyGen(PP): chooses s←$ Z∗M at random (This can be performed by sampling s←$ Π(M)
(which is possible as π(M) is included in PP)) and computes R ← sQ. It outputs
public key pk := R and secret key sk := s.

• Enc(PP, pk, m): chooses a random value r←$ ZN2 and computes the ciphertext (A, B)
as

A← rQ and B← rR +Mm.

• Dec(pp, sk, (A, B)): outputs

m← x(B− sA)

N
.

• mDec(PP,MSK, (A, B)) : outputs

m← x(MB)
N

M−1 mod N.

3.2. Our Scheme

Our scheme is essentially the transformation in [6] applied to the MUE scheme above.
We need to define a program FMapPK that is obfuscated as part of the public parameters.
Let E be an MUE scheme such as the PKTK scheme above, which has message space ZN .
The program FMapPK takes an identity id and maps it to the public key pkid.

Program FMapPK(id) :

1. Compute rid ← PRF.Eval(K, id).
2. Compute (pkid, skid)← E .KeyGen(PPE ; rid).
3. Output pkid

Let E be the PKTK MUE scheme. Let iO be an indistinguishability obfuscator and let
PRF be a puncturable PRF. We now define the construction.

• AH.Setup(1λ) : On input of security parameter λ, compute (PPE ,MSKE )← E .Setup(1λ).
Next, generate K ← PRF.Gen(1λ) and compute O ← iO(FMapPKPPE ,K

). Output
(PP := (O,PPE ),MSK := (K,MSKE ).

• AH.KeyGen(MSK, id) : On input of master secret key MSK := (K,MSKE ) and an iden-
tity id, compute rid ← PRF.Eval(K, id). Next, generate (pkid, skid)← E .KeyGen(PPE ; rid).
Output skid.

• AH.Enc(PP, id, m) : On input of public parameters PP, an identity id and a message
m ∈ ZN , obtain pkid ← O(id) and compute c← E .Enc(PPE , pkid, m). Output c.

• AH.Dec(skid, c): On input of a secret key skid for identity id, compute m← E .Dec(PPE , skid, c)
and output m.
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Theorem 1. Assuming indistinguishability obfuscation and the hardness of DDH in E(ZN2), AH
is an anonymous and IND-ID-CPA secure IBE scheme.

Proof. The theorem follows as a consequence of Theorem 1 in [6], where the underlying
public-key encryption scheme is replaced with the PKTK MUE scheme whose key privacy
and semantic security rely on the hardness of DDH in E(ZN2).

This simple construction serves mainly as a possible result for an anonymous homo-
morphic IBE where the homomorphic operation can be computed without knowing the
identity associated with one or more ciphertexts. We leave the construction of more efficient
and perhaps even practical schemes of this nature as an open problem.

4. Anonymous IBE with Rerandomizable Anonymous Encryption Keys

In this section, we present an anonymous IBE scheme that is a variant of Boneh–
Franklin and show that it is both anonymous and IND-ID-RCCA secure. The scheme has
two interesting properties: the generation of anonymous keys associated with a particular
recipient identity and the rerandomization of such keys. In regard to the former, anonymous
keys allow a party to encrypt a message for an unknown recipient; that is, the key hides the
identity of the recipient. In regard to the rerandomization of these keys, a rerandomized
key is computationally unlinkable to another anonymous key with the same associated
identity. Therefore, two anonymous keys for the same identity, where one is obtained
by rerandomizing the other, cannot be linked in any way. These properties are essential
in our application of anonymous aggregation in the next section. Here, we observe that
an essential building block of our construction is an anonymous homomorphic IBE for
addition modulo N as realized in the previous section. In fact, an anonymous homomorphic
IBE from LWE does not suffice here; a group homomorphic scheme appears to be necessary.

4.1. Our Construction

Let g ∈ G be a generator of a cyclic group G, and let gT ∈ GT be a generator of another
cyclic group GT . Both groups are of order N, a large semiprime. Now let e : G×G→ GT be
a non-degenerate bilinear map between G and GT (the target group) such that gT = e(g, g).
The notational convention we follow in this section is to write group elements using
uppercase letters whose integer exponent with respect to the generator is the corresponding
lowercase letter. Our construction is based around the Boneh–Franklin scheme. We now
describe our construction, which serves to illustrate various concepts we would like to
establish. Let H be a hash function modeled as a random oracle that maps identity strings
to elements of G. The master secret key contains an integer s←$ ZN chosen at setup while
the public parameters contain S← gs. The other building blocks are an anonymous group
homomorphic IBE scheme Em that is homomorphic for addition modulo N, a NIZK and an
IND-CCA2 secure symmetric encryption scheme. Consider a recipient identity id. Then
we derive the public key for id as A ← H(id) ∈ G. The encryptor chooses a random
integer r←$ ZN and computes Â ← Ar. Then they compute ψ1 ← Em.Enc(PPIBE, id, r)
and z1 ← Em.Enc(PPIBE, id, 1M). Subsequently, the encryptor chooses a random integer
b←$ ZN and computes B ← gb and ψ2 ← PKE.Enc(pkT , b; ρ) for some randomness ρ.
Finally, the encryptor generates a NIZK proof π that ψ2 encrypts the discrete logarithm of
B with respect to base g. We derive the symmetric key k← e(Âb, S) ∈ GT and encrypt the
message with the symmetric encryption scheme using the key k.

In the real mode, a decryptor with a secret key skid := (Sid := As, skIBE,id ←
Em.KeyGen(MSKIBE, id)) for identity id, computes r ← Em.Dec(skid, ψ1) and k← e(B, Sid)r ∈
GT . In the security proof, when we do not have access to Sid, we alternatively derive k as
follows. First, we decrypt ψ2 with the trapdoor secret key to obtain b then we compute
k← e(Âb, S) ∈ GT .

To generate an anonymous key for an identity, consider the following algorithm:

• GenAnonKey(PP, id):
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– r←$ ZN
– ψ← Em.Enc(PPIBE, id, r)
– z← Em.Enc(PPIBE, id, 1M)
– A← H(id)

– Â← Ar

– Return AnK := (Â, ψ, z)

An anonymous key AnK lets a party encrypt messages for an unknown intended
recipient, which is computationally hidden from the party.

To rerandomize an AnK generated as above, the following algorithm is used:

• RerandomizeKey(PP,AnK):

– Parse AnK as (Â, ψ, z)
– r′←$ ZN

– Â′ ← Âr′

– u1, u2←$ ZN

– ψ′ ← ψr′ ∗ zu1

– z′ ← zu2

– Return AnK′ := (Â′, ψ′, z′)

The advantage of RerandomizeKey is that given an anonymous key derived with this
algorithm from an original anonymous key; no party can link the keys and determine that
they are related (i.e., have the same intended recipient). The anonymous key is preprended
to every ciphertext generated with it, so, therefore, it is advantageous to rerandomize it so
ciphertexts are not linked to each other.

We present the scheme formally now. Note that the encryption algorithm may alterna-
tively accept an anonymous key AnK as input instead of a recipient identity.

Algorithm 1 formally describes the scheme.

4.2. Security

The scheme cannot be proved IND-ID-CCA2 secure in the conventional sense because
the AnK portion of the ciphertext is malleable, and so too is the NIZK proof potentially
(unless a non-malleable NIZK is used). We can, however, prove the scheme secure against
an adaptive chosen ciphertext attack in a relaxed model, namely the notion IND-ID-RCCA .

Theorem 2. Assuming Em is IND-ID-CPA secure, PKE is IND-CPA secure and NIZK is a sound
and zero-knowledge NIZK, then our scheme is IND-ID-RCCA secure under the hardness of DBDH
in the random oracle model.



Cryptography 2023, 7, 22 10 of 19

Algorithm 1 Our IBE scheme with rerandomizable anonymous keys.

Setup (1λ)
(PPIBE,MSKIBE)← Em.Setup(1λ)
(pkT , skT)← PKE.Gen(1λ)
H←$H
s←$ ZN
S← gs

CRS← NIZK.CRSGen(1λ)
Return (PP := (H, S,PPIBE, pkT ,CRS),MSK := (K, s,MSKIBE, skT))

KeyGen(MSK, id)
A← H(id)
Sid ← As

skIBE,id ← Em.KeyGen(MSKIBE, id)
Return skid := (Sid, skIBE,id)

Enc(PP, id, m)
r←$ ZN
ψ1 ← Em.Enc(PPIBE, id, r)
z← Em.Enc(PPIBE, id, 1M)
A← H(id)
Â← Ar

b←$ ZN
B← gb

ρ←$ {0, 1}`ρ // where `ρ is the
length of randomness required for PKE.Enc

ψ2 ← PKE.Enc(pkT , b; ρ)
π ← NIZK.Prove(CRS, (g, B, pkT , ψ2), (b, ρ))

// the NIZK uses relation R (below)
k← e(Âb, S)
ψ3 ← SKE.Enc(k, ψ1 ‖ m)
Return c := (Â, ψ1, z, B, ψ2, π, ψ3)

Dec(skid, c)
(Sid, skIBE,id)← skid
(Â, ψ1, z, B, ψ2, π, ψ3)← c
If NIZK.Verify(CRS, (g, B, pkT , ψ2), π) 6= 1

Return ⊥
r ← Em.Dec(skIBE,id, ψ1)

I f Â 6= Ar

Return ⊥
k← e(Sid, B)r

Return SKE.Dec(k, ψ3)

Relation R(stmt := (g, B, pkT , ψ2), w := (b, ρ))
Return B = gb ∧ ψ2 = PKE.Enc(pkT , b; ρ)

Proof. We prove the theorem by means of a hybrid argument. We start with a real system
that encrypts the first challenge message m0, and move to a hybrid that encrypts the second
challenge message m1.

Hybrid 0: This is the real system that encrypts the challenge message m0. Let k be the
symmetric key used to produce the symmetric ciphertext ψ3.
Hybrid 1: The change we make in this hybrid is to how ψ1 is generated. Instead of
encrypting randomness r, we choose another uniform random element s and produce ψ1
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as an IBE encryption of s. We still use the previous symmetric key k to produce ψ3, which
is a symmetric encryption of ψ1 ‖ m0.

The indistinguishability between Hybrids 0 and 1 follows from the semantic security
of the Em. In the reduction, we use the “trapdoor” mode discussed earlier to derive the
symmetric key; that is, for a typical ciphertext, we decrypt ψ! to obtain b and compute
e(Â, S)b. When we decrypt ψ3, we check if the first component of the plaintext matches
ψ1; otherwise, we output ⊥. Secondly, if the second component is m0 or m1, we output
“test” as is required in IND-ID-RCCA. If the ciphertext we gave the adversary is queried
for decryption, then we also output “test”.

Hybrid 2: The change we make in this hybrid is to how ψ1 is generated. We compute it
instead as an encryption of some uniformly random element z 6= b but still use k (as in the
previous hybrid) to produce ψ3.

Hybrids 1 and 2 are indistinguishable from the IND-CCA2 security of PKE. In the
reduction, we return the original approach (i.e., the "real" mode) to compute the symmet-
ric key.

Hybrid 3: The change we make in this hybrid is to generate the symmetric key uniformly
at random.

The indistinguishability of Hybrids 2 and 3 follows from the hardness of DBDH.

Hybrid 4: In this hybrid, we change how ψ3 is produced. Instead of encrypting ψ1 ‖ m0,
we encrypt ψ1 ‖ m1.

The indistinguishability of Hybrids 3 and 4 follows from the iND-CCA2 security of
the symmetric encryption scheme. We are now in a hybrid where the second challenge
message m1 is encrypted. The remaining hybrids reverse the changes in Hybrids 1–3 until
we arrive at a hybrid that is the real system that encrypts the challenge message m1. This
completes our proof.

Corollary 1. Assuming Em is an IND-ID-CPA secure anonymous IBE, then our scheme is anonymous.

This is an immediate consequence of the semantic security and anonymity of Em.

5. Identity-Based Anonymous Aggregation

In an identity-based anonymous aggregation protocol, a collection of nodes encrypt
data for different recipients and forward them to their neighbors. The intended recipient,
along with an aggregator, is able to extract the following grouping, functional unit or “pack-
age", comprising the tuple (h, v, z), which we define momentarily. Let E be an anonymous
IBGHE scheme (such as AH in Section 3), and let H be a collision-resistant function. Fur-
thermore, let id be the recipient’s identity. Then we have h = H(id), v← E .Enc(PPE , id, m)
and z← E .Enc(PPE , id, 0). For two such tuples, c := (h, v, z) and c′ := (h′, v′, z′), the aggre-
gation algorithm is defined in Algorithm 2.

Algorithm 2 Aggregation algorithm in P-type setting.
Agg.Aggregate(c, c′).
(h, v, z)← c
(h′, v′, z′)← c′

If h 6= h′:
Output ⊥

s1, s2←$ ZN
v′′ ← v ∗ v′ ∗ zs1

z′′ ← zs2

Return c′′ := (h′′ := h, v′′, z′′)

The hash of the recipient’s identity h allows an aggregator to determine whether two
ciphertexts have the same intended recipient, in which case, the hash components are equal,
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and aggregation can be performed; otherwise, aggregating both ciphertexts would produce
an invalid result. With this approach, we obtain one-way anonymity. The v component
is an E encryption under the recipient’s identity of the plaintext value. For the sake of
simplicity, we are assuming the plaintext space isM := ZN . For referential convenience,
we designate this type of scheme P-type.

Now, an alternative approach is to exclude the hash component from this tuple such
that an aggregator cannot learn anything about the recipient’s identity, nor can it determine
whether two ciphertexts have the same recipient. As such, aggregation is always performed,
but we need some way for the decryptor to establish whether a ciphertext is valid or has
been likely contaminated through aggregation with a different identity. A solution to this
emerges when the plaintext space is exponentially large, as is the case here. The idea is to
include additional encryption v̄ of −m where the underlying plaintext of v is m such that
v ∗ v̄ decrypts to zero (or 1M, the identity element). The decryptor discards a ciphertext
as invalid if v ∗ v̄ does not decrypt to zero. Homomorphically adding (pairwise) a pair
of ciphertexts (v′, v̄′) associated with another identity results in a pair of encryptions of
random values in ZN . Therefore, the resulting ciphertext will be rejected as invalid by the
decryptor with overwhelming probability. For referential convenience, we designate this
type of scheme F-type. The aggregation algorithm for this type is shown in Algorithm 3.

Algorithm 3 Aggregation algorithm in F-type setting.
Agg.Aggregate(c, c′).
(v, v̄, z)← c
(v′, v̄′, z′)← c′

s1, s2, s3←$ ZN
v′′ ← v ∗ v′ ∗ zs1

v̄′′ ← v̄ ∗ v̄′ ∗ zs2

z′′ ← zs3

Return c′′ := (v′′, v̄′′, z′′)

Since any party who obtains the ciphertext tuple as above can modify the underlying
plaintext (malleability), we may wish to restrict this ability to a subset of authorized parties,
which we refer to as aggregators. While a suitable means of access control for granting
such authorization to aggregators is beyond the scope of this work (e.g., ABE and related
primitives may be of import), we describe a simplified paradigm that can be adapted and
extended as required. Typically, we would expect the ciphertext tuple above to be encrypted
with a non-malleable encryption scheme, such as an IND-CCA2 secure symmetric-key
encryption scheme denoted by SKE. Moreover, a random symmetric key κ is first generated,
and the tuple c is then encrypted, i.e., we have ψ ← SKE.Enc(κ, c). The natural question
is, then, how does one obtain κ? Note that both authorized aggregators and the recipient
must be able to access κ. First, an appropriate means of access control can be employed
to allow authorized aggregators to access κ, a subject that, as aforementioned, is outside
the scope of this work. Secondly, and most importantly, the intended recipient must be
able to access κ. The challenge arises for intermediate aggregators who need to encrypt
a fresh κ under the recipient’s identity, which is hidden from them due to the desired
property of anonymity. It is apparent from the proof of aggregation validity that the IBE
scheme in which κ is encrypted must be secure against adaptive chosen ciphertext attacks.
Aggregation validity is a property that is defined in the next section and informally means
that no efficient adversary who is given an encryption of a message m and who is neither
an authorized aggregator nor the intended recipient can produce a valid ciphertext that
encrypts a targeted modification of m, that is, t ·m for some a priori decided t 6= 1M.

We now formalize the identity-based anonymous aggregation (IBAA) in a simplified
form where the authorization of aggregators is based on symmetric encryption, which is
sufficient for our purposes, but we note this may be replaced with a more complex form of
access control accommodated by a more generalized definition.
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Definition 5. An identity-based anonymous aggregation (IBAA) protocol P consists of the follow-
ing PPT algorithms:

• Setup(1λ): On input of a security parameter λ, generate public parameters PP and master
secret key MSK. Output (PP,MSK).

• KeyGen(MSK, id): On input of a master secret key MSK and an identity id, output a secret
key skid for identity id.

• Authorize(skĩd): On input of a secret key skĩd for identity ĩd, output an authorization key that
permits aggregation on ciphertexts generated by a source (sender) with identity ĩd.

• Enc(PP, skĩd, id, m): On input of public parameters PP, a secret key for the source (sender)
skĩd whose identity is ĩd, a recipient identity id and message m ∈ M, produce a ciphertext c
that encrypts m under identity id and output c.

• Dec(skid, c): On input of a secret key skid for identity id and a ciphertext c, output a message
m ∈ M if c is a valid ciphertext for identity id; otherwise, output ⊥.

• Aggregate(PP, skĩd, (ak1, c1), (ak2, c2)): On input of public parameters PP, the aggregator’s
secret key skĩd for their identity ĩd and two ciphertexts c1 and c2 with corresponding au-
thorization keys ak1 and ak2 (it may be the case that ak1 = ak2) that permit aggregation,
if ak1 permits aggregation on c1 and ak2 permits aggregation on c2, then output c′ such that
Dec(skid, c′) = Dec(skid, c1) ∗ Dec(skid, c2) for some operation ∗ (typically for an abelian
group). Otherwise, output ⊥. Additionally, in order to perform aggregation on c′, a party
needs an authorization key from ĩd.

This primitive is very similar to homomorphic IBE, except there are a few notable
differences. First, only senders who are authorized by the TA can encrypt messages, which
can be decrypted by the recipient if they have received a secret key from the TA for their
identity. Secondly, aggregation is possible on a sender’s ciphertext only if the aggregator
has received an authorization key from the sender.

Correctness: For i ∈ {1, 2}, all (PP,MSK)← Setup(1λ), all identities id∗i ∈ I (senders), ¯id ∈ I
(aggregator) and id ∈ I (recipient), all skid∗i ← KeyGen(MSK, id∗i ), all sk ¯id ← KeyGen(MSK, ¯id),
all skid ← KeyGen(MSK, id), all mi ∈ M, all ci ← Enc(PP, id∗i , id, mi) and any aki, then

Dec(skid,Aggregate(PP, sk ¯id, (ak1, c1), (ak2, c2))) = m1 ∗m2

iff aki ∈ Authorize(skid∗i ) (except with negligible probability) where I is the identity space. More
precisely, the second part of the iff in the above condition is actually a security condition, which we
now treat on its own.

Definition 6. An IBAA scheme is said to satisfy (selective) aggregation validity if for all t 6= 0 ∈
M, the advantage of any PPT adversary A = (A1,A2) is negligible in the security parameter
where the advantage is defined as follows:

AdvA,AV = PrDec(skid, c′)→ t ∗m : (PP,MSK)← Setup(1λ),
(ĩd, id)← A1(1λ),
m←$M,
skĩd ← KeyGen(MSK, ĩd),
skid ← KeyGen(MSK, id),
c← Enc(PP, skĩd, id, m),
c′ ← AO2 (PP, c))

where O = KeyGen(MSK, ·) except queries cannot be made for identities ĩd and id. It is assumed
that |M| is exponentially large and the min-entropy ofM is sufficiently higher than the security
parameter.
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Definition 7. An IBAA scheme is said to satisfy (selective) strong unlinkability if the advantage of
any PPT adversary A = (A1,A2) is negligible in the security parameter where the advantage is
defined as follows:

AdvA,UL = PrAO2 (PP, c′, c′′, c′′)→ 1 : (PP,MSK)← Setup(1λ),
(ĩd, ĩd′, ĩd′′, m, m′, id)← A1(1λ),
skĩd ← KeyGen(MSK, ĩd),
sk

ĩd′
← KeyGen(MSK, ĩd′),

sk
ĩd′′
← KeyGen(MSK, ĩd′′),

ak← Authorize(skĩd),
ak′ ← Authorize(sk

ĩd′
),

c← Enc(PP, skĩd, id, m),
c′ ← Enc(PP, sk

ĩd′
, id, m′),

c′′ ← Aggregate(PP, sk
ĩd′′

, (ak, c), (ak′, c′))

−PrAO2 (PP, c′, c′′, c′′)→ 1 : (PP,MSK)← Setup(1λ),
(ĩd, ĩd′, ĩd′′, m, m′, id)← A1(1λ),
skĩd ← KeyGen(MSK, ĩd),
sk

ĩd′
← KeyGen(MSK, ĩd′),

sk
ĩd′′
← KeyGen(MSK, ĩd′′),

ak← Authorize(skĩd),
ak′ ← Authorize(sk

ĩd′
),

c← Enc(PP, skĩd, id, m),
c′ ← Enc(PP, sk

ĩd′
, id, m′),

c′′ ← Enc(PP, sk
ĩd′′

, id, m ∗m′)

where O = KeyGen(MSK, ·); note that queries can be made for identity id.

Definition 8. An IBAA scheme is said to be one-way anonymous if the advantage of any PPT
adversary A = (A1,A2) is negligible in the security parameter where the advantage is defined as
follows:

AdvA,OW-ANON = PrAO2 (PP, c)→ id : (PP,MSK)← Setup(1λ),
(ĩd, m)← A1(1λ),
id←$ I ,
skĩd ← KeyGen(MSK, ĩd),
c← Enc(PP, skĩd, id, m)

where O = KeyGen(MSK, ·). It is assumed that I is exponentially large and the min-entropy of I
is sufficiently higher than the security parameter.

6. Construction of IBAA

We now present a construction of the primitive defined in Section 5. Our construction
requires an anonymous homomorphic IBE scheme Em for the plaintext values, a collision-
resistant hash function family, a symmetric encryption scheme ESKE, a PRF and an anony-
mous IBE Ek for encrypting the keys. LetH be a family of collision-resistant hash functions.
Our IBAA scheme is shown in Algorithm 4.
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Algorithm 4 Our IBAA scheme—first five algorithms.

Agg.Setup(1λ).
K ← PRF.Gen(1λ)
(PPIBE,MSKIBE)← Em.Setup(1λ)
(PP′IBE,MSK′IBE)← Ek.Setup(1λ)
H←$H
Return (PP := (H,PPIBE,PP′IBE),MSK := (K,MSKIBE,MSK′IBE))

Agg.KeyGen(MSK, id).
rα ← PRF.Eval(K, id ‖ ‘A’)
αid ← ESKE.Gen(1λ; rα)
skIBE ← Em.KeyGen(MSKIBE, id)
sk′IBE ← Ek.KeyGen(MSK′IBE, id)
Return skid := (αid, skIBE, sk′IBE)

Agg.Authorize(skĩd).
(αĩd, skIBE, sk′IBE)← skĩd
Return akĩd := αĩd

Agg.Enc(PP, skĩd, id, m).
(αĩd, skIBE, sk′IBE)← skĩd
κ ← ESKE.Gen(1λ)
h← H(id)
c1 ← ESKE.Enc(αĩd, κ)

c2 ← Ek.Enc(PP′IBE, id, κ)
v← Em.Enc(PPIBE, id, m)
z← Em.Enc(PPIBE, id, 1M)
c3 ← ESKE.Enc(κ, (h, v, z))
Return c := (c1, c2, c3)

Agg.Dec(skid, c).
(αid, skIBE, sk′IBE)← skid
κ ← Ek.Dec(sk′IBE, c2)
t← ESKE.Dec(κ, c3)
If t = ⊥:

Return ⊥
(h, v, z)← t
m← Em.Dec(skIBE, v)
Return m

We now prove an important result.

Theorem 3. Assuming Ek is IND-ID-RCCA secure and SKE is IND-CCA2 secure, then the IBAA
scheme in Algorithm 4 satisfies aggregation validity.

Proof. We prove the theorem via a hybrid argument. To avoid repetition and to make the
analysis more concise, we describe some notations for things that are common to all steps
in the argument. For each step, we need to construct a simulator that uses an adversary
A against selective aggregation validity in either the hybrid from the step in question or
the previous hybrid to attack the security of one of the underlying primitives. However,
the security games for each of these primitives involve an adversary outputting a guess bit,
whereas adversary A outputs a ciphertext c′. Therefore, an essential part of the reduction
is to show how we convert this ciphertext c′ into a bit b′ ∈ {0, 1} such that either b′ or its
complement can be sent to the challenger to break the security of the underlying primitive.
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For the sake of brevity in the reductions below, we simply describe how b′ is computed
from c′.

Hybrid 0: This is the real system.
Hybrid 1: In this hybrid, we change c1 to the encryption of a uniformly random and
independent element.

Indistinguishability follows from the IND-CCA2 security of the symmetric encryption
scheme. The reduction, in this case, is straightforward.

Hybrid 2: In this hybrid, we change the c2 component of the ciphertext to an encryption of
a random element drawn from the message space of the Ek scheme. Therefore, instead of
encrypting κ, we encrypt a random element ρ.

We can use an adversary that has a non-negligible advantage distinguishing between
Hybrids 0 and 1 to construct an adversary that has a non-negligible advantage against the
IND-ID-RCCA security of Ek. The reduction is as follows. First, we run A1 to obtain (ĩd,
id). We sample m←$M. We run Setup and all steps of the encryption algorithm except the
step that generates c2. Therefore, we, for example, generate κ, c1 and c3. We set µ0 ← κ and
µ1 ← ρ where ρ is a uniform random element in the message space of Ek and send the pair
of messages (µ0, µ1) to the IND-ID-RCCA challenger. We receive a challenge ciphertext
e, and we set c1 ← e and set c ← (c1, c2, c3). Then we run A2 with the public parameters
and ciphertext c and obtain c′. We parse c′ as (c′1, c′2, c′3). Then the reduction sends c′1 to the
IND-ID-RCCA decryption oracle, and if the oracle responds with test, then check if c′3 is
decryptable with κ or ρ and let µ be the tuple obtained, or else if the oracle responds with a
plaintext k, check if c′3 is decryptable with k and set µ to be the tuple returned. Otherwise, set
µ← ⊥. Finally, the guess bit b′ is computed as b′ ← µ 6= ⊥∧ .Em.Dec(skIBE, µ.v) = m ∗ t,
where skIBE is the key we have derived in the simulation. Indistinguishability follows from
the IND-ID-RCCA security of Ek.

Hybrid 3: In this hybrid, we change the c3 component of the ciphertext to an encryption of
a random element drawn from the message space of the SKE scheme.

In the reduction, we parse c′ as (c′1, c′2, c′3) and decrypt c′2 with the secret key derived
in the simulation to obtain κ. If κ decrypts c′3, set µ to the resulting tuple. Otherwise, send
c′3 to the IND-CCA2 decryption oracle and set µ to the response. Finally, the guess bit b′

is computed as b′ ← µ 6= ⊥∧ .Em.Dec(skIBE, µ.v) = m ∗ t where skIBE is the key we have
derived in the simulation. Indistinguishability follows from the IND-CCA2 security of the
SKE scheme.

The adversary has a negligible advantage in this game since the ciphertext c does not
contain any information about m. The result follows.

We have omitted the aggregation algorithm from Algorithm 4 since this varies de-
pending on whether we target the P-type or F-type setting. Our goal is to achieve strong
unlinkability, aggregation validity and (one-way/full) anonymity in the (P-type/F-type) set-
tings.

6.1. P-Type Setting

We can, however, readily obtain strong unlinkability together with aggregation validity
in the P-type setting of one-way anonymity, which we will now describe. Unfortunately,
our approach is inherently restricted to one-way anonymity, leaving open the problem
of achieving strong unlinkability and aggregation validity in the F-type setting of full
anonymity; we will tackle this problem later. Our approach for the P-type setting involves
instantiating Ek with an IND-ID-CCA2 secure IBE scheme. The hash of the target identity
h in the tuple encrypted by c3 is used as an identity string; that is, c2 is an encryption
with Ek under identity string h of the symmetric key κ. The ciphertext component c3 is an
encryption of the tuple (h, v, z). The aggregation algorithm for our IBAA scheme in this
setting is given in Algorithm 5.
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Algorithm 5 Our IBAA scheme aggregation algorithm for P-type setting.

Agg.Aggregate(PP, skĩd, (ak, (c1, c2, c3)), (ak′, (c′1, c′2, c′3))).
(αĩd, skIBE, sk′IBE)← skĩd
α← ak
α′ ← ak′

κ ← ESKE.Dec(α, c1)
κ′ ← ESKE.Dec(α′, c′1)
If κ = ⊥ or κ′ = ⊥:

Output ⊥
(h, v, z)← ESKE.Dec(κ, c3)
(h′, v′, z′)← ESKE.Dec(κ′, c′3)
If h 6= h′:

Output ⊥
s1, s2←$ ZN
v′′ ← v ∗ v′ ∗ zs1

z′′ ← zs2

κ′′ ← ESKE.Gen(1λ)
c′′1 ← ESKE.Enc(αĩd, κ′′)
c′′2 ← Ek.Enc(PP′IBE, h, κ′′)
c′′3 ← ESKE.Enc(κ′′, (h′′ := h, v′′, z′′)
Return (c′′1 , c′′2 , c′′3 )

6.2. F-Type Setting

Now, we turn our attention to the more challenging problem of obtaining aggregation
validity together with strong unlinkability in the F-type setting of full anonymity. We
observe that we can solve this problem with (identity-based) fully homomorphic encryption
(FHE). The idea is to encrypt the hash h with an identity-based FHE scheme to obtain
ciphertext ψh and place ψh in the tuple (h, v, z) instead of h. The aggregator can then
homomorphically produce encryption of a fresh key under identity h by performing
homomorphic evaluation on ψh. The additional expense of homomorphic evaluation aside,
the major prohibitive factor of this approach is the fact that bootstrapping is necessary to
achieve unlinkability, and this requires us to make a circular security assumption. Hence
we seek to solve the problem in an alternative way, avoiding FHE and bootstrapping.

Instead, we rely on an IND-ID-RCCA secure IBE scheme that is both anonymous
and satisfies strong unlinkability with the ability to generate rerandomizable anonymous
encryption keys for a particular identity. We make use of our anonymous IBE scheme from
the previous section to fulfill our requirements. Recall that this scheme comes with two
useful algorithms:

• GenAnonKey(PP, id).
• RerandomizeKey(PP,AnK).

Given the public parameters and an identity string, Algorithm GenAnonKey generates
an anonymous key AnK, which hides the identity and can be used to encrypt a message for
that identity. The second algorithm, RerandomizeKey, given the public parameters and an
anonymous key, derives an unrelated anonymous key for the same identity such that no
party can link the keys and determine that they are related (i.e., have the same intended
recipient). The anonymous key is preprended to every ciphertext generated with it, so,
therefore, it is advantageous to rerandomize it, so the ciphertexts are not linked to each other.
Algorithm 6 shows how this algorithm is used in our IBAA scheme’s aggregation algorithm
for the F-type setting. Note that although we do not show it, it is also necessary to slightly
modify the encryption and decryption algorithms of our IBAA scheme to accommodate
the F-type setting.
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Algorithm 6 Our IBAA scheme aggregation algorithm for F-type setting.

Agg.Aggregate(PP, skĩd, (ak, ct), (ak′, ct′)).
(αĩd, skIBE, sk′IBE)← skĩd
(c1, c2 := (AnK, ψ), c3)← ct
(c′1, c′2 := (AnK′, ψ′), c′3)← ct′

α← ak
α′ ← ak′

κ ← ESKE.Dec(α, c1)
κ′ ← ESKE.Dec(α′, c′1)
If κ = ⊥ or κ′ = ⊥:

Output ⊥
(v, v̄, z)← ESKE.Dec(κ, c3)
(v′, v̄′, z′)← ESKE.Dec(κ′, c′3)
s1, s2, s3←$ ZN
v′′ ← v ∗ v′ ∗ zs1

v̄′′ ← v̄ ∗ v̄′ ∗ zs2

z′′ ← zs3

κ′′ ← ESKE.Gen(1λ)
c′′1 ← ESKE.Enc(αĩd, κ′′)
AnK′′ ← RerandomizeKey(PP′IBE,AnK)
c′′2 ← (AnK′′, Ek.Enc(PP′IBE,AnK′′, κ′′))
c′′3 ← ESKE.Enc(κ′′, (v′′, v̄′′, z′′)
Return (c′′1 , c′′2 , c′′3 )

Author Contributions: Cryptography M.C.; Project supervision H.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research recevied funding ADAPT grant number 13/RC/2106_P2 and CONNECT
grant number 13/RC/2077_P2.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IBE Identity-Based Encryption
TA Trusted Authority

References
1. Clear, M.; Hughes, A.; Tewari, H. Homomorphic Encryption with Access Policies: Characterization and New Constructions.

In Proceedings of the AFRICACRYPT 13, Cairo, Egypt, 22–24 June 2013; Youssef, A., Nitaj, A., Hassanien, A.E., Eds.; LNCS;
Springer: Berlin/Heidelberg, Germany, 2013; Volume 7918, pp. 61–87. [CrossRef]

2. Clear, M.; McGoldrick, C. Additively Homomorphic IBE from Higher Residuosity. In Proceedings of the Public Key Cryptography
(1), Beijing, China, 14–17 April 2019; Lin, D., Sako, K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11442, pp. 496–515.

3. Joye, M. Identity-Based Cryptosystems and Quadratic Residuosity. In Proceedings of the Public Key Cryptography (1), Taipei,
Taiwan, 6–9 March 2016; Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9614, pp. 225–254.

4. Paillier, P. Trapdooring Discrete Logarithms on Elliptic Curves over Rings. In Proceedings of the ASIACRYPT, Kyoto, Japan, 3–7
December 2000; Okamoto, T., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1976,
pp. 573–584.

5. Peter, A.; Kronberg, M.; Trei, W.; Katzenbeisser, S. Additively Homomorphic Encryption with a Double Decryption Mechanism,
Revisited. In Proceedings of the ISC, Passau, Germany, 19–21 September 2012; Gollmann, D., Freiling, F.C., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7483, pp. 242–257.

http://doi.org/10.1007/978-3-642-38553-7_4


Cryptography 2023, 7, 22 19 of 19

6. Clear, M.; McGoldrick, C. Bootstrappable Identity-Based Fully Homomorphic Encryption. In Proceedings of the CANS,
Heraklion, Crete, Greece, 22–24 October 2014; Gritzalis, D., Kiayias, A., Askoxylakis, I.G., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8813, pp. 1–19.

7. ElGamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Proceedings of the CRYPTO’84,
Santa Barbara, CA, USA, 19–22 August 1984; Blakley, G.R., Chaum, D., Eds.; LNCS; Springer: Berlin/Heidelberg, Germany, 1984;
Volume 196, pp. 10–18.

8. Armknecht, F.; Katzenbeisser, S.; Peter, A. Group homomorphic encryption: Characterizations, impossibility results, and
applications. Des. Codes Cryptogr. 2012, 67, 209–232. [CrossRef]

9. Gjøsteen, K. Symmetric Subgroup Membership Problems. In Proceedings of the PKC 2005, Les Diablerets, Switzerland, 23–26
January 2005; Vaudenay, S., Ed.; LNCS; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3386, pp. 104–119.

10. Cocks, C. An Identity Based Encryption Scheme Based on Quadratic Residues. In Proceedings of the Cryptography and Coding,
8th IMA International Conference, Cirencester, UK, 17–19 December 2001; Honary, B., Ed.; LNCS; Springer: Berlin/Heidelberg,
Germany, 2001; Volume 2260, pp. 360–363.

11. Galindo, D.; Herranz, J. On the security of public key cryptosystems with a double decryption mechanism. Inf. Process. Lett. 2008,
108, 279–283. [CrossRef]

12. Garg, S.; Gentry, C.; Halevi, S.; Raykova, M.; Sahai, A.; Waters, B. Candidate Indistinguishability Obfuscation and Functional
Encryption for all Circuits. In Proceedings of the 54th FOCS, Berkeley, CA, USA, 26–29 October 2013; IEEE Computer Society
Press: Washington, DC, USA, 2013; pp. 40–49.

13. Galbraith, S.D. Elliptic Curve Paillier Schemes. J. Cryptol. 2002, 15, 129–138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10623-011-9601-2
http://dx.doi.org/10.1016/j.ipl.2008.05.017
http://dx.doi.org/10.1007/s00145-001-0015-6

	Introduction
	Motivation and Applications
	Our Results
	Anonymous IBE with Rerandomizable Anonymous Keys
	Identity-Based Anonymous Aggregation


	Preliminaries
	Notation
	Identity-Based Encryption
	Public-Key GHE
	Identity-Based Group Homomorphic Encryption (IBGHE)
	Multi-User Encryption
	Elliptic Curves over Rings
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Function

	Construction of Anonymous Additively Homomorphic IBE
	PKTK MUE Scheme
	Our Scheme

	Anonymous IBE with Rerandomizable Anonymous Encryption Keys
	Our Construction
	Security

	Identity-Based Anonymous Aggregation
	Construction of IBAA
	P-Type Setting
	F-Type Setting

	References

