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Abstract: In this work, we survey the existing research in the area of algebraic cryptanalysis based on
Multiple Right-Hand Sides (MRHS) equations (MRHS cryptanalysis). MRHS equation is a formal
inclusion that contains linear combinations of variables on the left-hand side, and a potential set of
values for these combinations on the right-hand side. We describe MRHS equation systems in detail,
including the evolution of this representation. Then we provide an overview of the methods that can
be used to solve MRHS equation systems. Finally, we explore the use of MRHS equation systems in
algebraic cryptanalysis and survey existing experimental results.
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1. Introduction

The basic concept of algebraic cryptanalysis was already introduced in the seminal
work of Shannon [1]. Shannon introduces a method of confusion as a way to prevent
statistical cryptanalysis of ciphers. He notes that a set of statistics observed from a secret
communication is connected to some coordinates of the key space through some algebraic
equations. The ultimate goal of algebraic cryptanalysis is to solve this set of equations.
On the other hand, good ciphers are designed in such a way, that this task should be very
difficult. A summary of algebraic cryptanalysis can be found in [2]. Methods to solve
algebraic equations in cryptanalysis are also summarized in [3].

The basic principle of algebraic cryptanalysis is to represent a cryptanalytic problem in
an abstract setting, and then to solve this representation with generic tools. In general, each
problem can be represented as a set of non-linear equations over finite fields. Theoretically,
non-linear equation systems over finite fields can be solved by using general Gröbner bases
techniques and related solvers, such as [4]. However, no algorithm is known that can solve
most non-linear systems in practice. Specific techniques, such as XL [5], and XSL [6] were
developed for solving problems related to algebraic cryptanalysis [7–10].

Another approach to algebraic cryptanalysis is to encode a cryptographic problem as
a hard instance of the satisfiability problem [11], and then to use existing SAT solvers to
solve this problem instance [9,12–15]. In our experience, SAT solvers can be employed in
large-scale distributed algebraic attacks [16] targeting specific weak keys in large sets of
data encoded as an SAT problem.

Algebraic cryptanalysis can support and complement other types of cryptanalytic
techniques, such as using algebraic techniques in differential cryptanalysis [17–20]. Al-
gebraic side-channel attacks [21,22] use algebraic techniques to complement information
leaked from the cipher through side-channels, or through errors [23].

In this paper, we focus on a different representation of algebraic problems that is
suitable for algebraic cryptanalysis. This representation is based on the so-called Multiple
Right-Hand Sides (MRHS) equation systems [24]. The MRHS representation can separate
the representation of non-linear (confusion-based) and linear (diffusion-based) components
of the cipher, and thus represent problems of algebraic cryptanalysis in a way similar
to how the ciphers are designed. MRHS representation focuses on the main potential
weakness of the symmetric cipher design: unlike random functions (that we try to emulate),
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practical ciphers must be efficiently implemented in hardware (and software) with a limited
number of components. Thus the MRHS representation of a practical cipher is relatively
small and compact in comparison to a representation of a random function. In general, the
problem of whether a random (polynomially sized) MRHS equation system has a solution
is NP-complete [25]. In practice, experiments [26] show that equations derived from (round
reduced) ciphers can be in some instances solved faster than with an exhaustive search
through the key space.

We describe the MRHS equation system and survey their evolution in Section 2. Section 3
is then devoted to surveying methods that can be used to solve MRHS equation systems. The
aim of Section 4 is to introduce the techniques used in MRHS cryptanalysis, connecting the
cryptanalytic problems and MRHS representation. In Section 5, we specifically survey the
existing results of MRHS cryptanalysis.

2. What is a MRHS Equation System?

MRHS equation systems are related to the ideas of Zakrevskij [27]. Systems of Boolean
equations can be sparse in the following sense: each Boolean equation in the system de-
pends on only a small subset of the variables. Such systems can be solved by assigning
values for particular variables and removing some potential solutions by observing lo-
cal dependencies (individual possible values of the active variables in individual sparse
Boolean equations).

A new representation of sparse Boolean equations related to the algebraic cryptanal-
ysis was presented by Raddum and Semaev in [28]. The equations were represented by
”symbols” containing lists of active variables and their possible values. The solution of the
system was done by manipulating such symbols (Agreeing and Gluing). The representation
of sparse equation systems can be generalized from Boolean equations to equations over
any finite field [29].

Further generalization comes from replacing individual active variables with linear
combinations of variables, coining the term Multiple Right-Hand Sides (linear) equation
systems [24,30]. The original definition preserves the symbol notation, with a list of possible
assignments of values for (active) linear combinations of variables.

In this article, we use a newer definition of MRHS equation systems introduced in [31]
(equivalent to the original one). We will use the following symbolic notation:

• Symbol F denotes a finite field, Z denotes a ring of integers, N denotes natural numbers.
• We are using row vectors, denoted by bold lowercase letters: v ∈ Fn.
• Matrices are denoted by bold uppercase letters: M ∈ Fn×k.
• Standard sets are denoted by uppercase slanted letters: S ⊂ Fn. The size of the set S is

denoted by |S|. When S is a set of vectors, S denotes a matrix with |S| rows, where
each row is in S. By S ·A we denote a set of vectors S′ = {v ·A; v ∈ S}.

• Special sets are denoted by calligraphic font:M.

Definition 1. Let F be a finite field, n, l ∈ N. Let M ∈ Fn×l be an n× l matrix. Let S be a set
of vectors of dimension l, S ⊂ Fl . A Multiple Right-Hand Sides (MRHS) equation is a formal
inclusionM in the form

x ·M ∈ S.

Vector x ∈ Fn is a solution of the MRHS equationM, if the formal inclusion holds for this x.

The set of solutions ofM is a union of solutions of x ·M = v, for each v ∈ S. We can
see that if |S| = 1, an MRHS equation corresponds to a standard system of linear equations.

Definition 2. Let F be a finite field, n, m ∈ N. For each i ∈ {1, 2, . . . , m} let li ∈ N, Mi ∈ Fn×li ,
and Si ⊂ Fli . MRHS (equation) system is a set of MRHS equationsMi:

{x ·Mi ∈ Si}.
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Vector x ∈ Fn is a solution of the MRHS equation system, if and only if it is a solution of each
Mi, in the MRHS equation system.

We can write an MRHS system in a joint form

x · (M1|M2| · · · |Mm) ∈ S1 × S2 × · · · × Sm.

We can see that the joint form of an MRHS system is an MRHS equation, given by left-
hand side matrix M = (M1|M2| · · · |Mm), and the right-hand side set S = S1 × S2 × · · · × Sm.
The dimension of M is n×∑m

i=1 li. The size of set S grows quickly with m, |S| = ∏m
i=1 |Si|.

To store the joint form efficiently, we typically do not evaluate the Cartesian product and store
only the individual sets Si.

Definition 3. Let poly(n) denote any polynomial function in n. We say that a family of MRHS
systems parametrized by n has a polynomial representation if for each n: m < poly(n) and for each
i ∈ {1, 2, . . . , m} we have li < poly(n), and |Si| < poly(n).

Example 1. Let us construct a family of MRHS systems with n ≥ 1 variables, and m = 1
MRHS equation (m < n + 1 for any n). Let S1 = {0, c}, with c some randomly selected constant
(|S1| < n + 2). This family has a polynomial representation if we restrict the dimension l1 by some
polynomial function of n. A counterexample is selecting all linear combinations of n input variables
as columns of M1, which requires l1 = 2n > poly(n) for any polynomial function poly(n) (and
sufficiently large n).

We can verify whether x is a solution of an MRHS system from a family with poly-
nomial representation in polynomial time. Firstly, we compute u = x ·M. Then we verify
the right-hand sides with m tests ui ∈ Si, where ui represents a projection of u to coordi-
nates corresponding to Si. The MRHS problem is a decision problem: Given the MRHS
system, is there any solution x of this MRHS system? In [25] we prove that this problem is
NP-complete for a family of MRHS systems with polynomial representation.

Further evolution of MRHS equation systems are Compressed Right-Hand Sides
(CRHS) Equations [32]. In this form, the right-hand side set S is represented by a binary
decision diagram (BDD). This form can represent large sets of right-hand side vectors
efficiently but requires new methods to solve such systems such as [33]. Each MRHS
equation system can be rewritten as a CRHS equation. The opposite direction is also
possible, but given a general CRHS equation, the number of right-hand sides in the MRHS
representation can grow too quickly to be efficiently represented. In the rest of the article,
we focus mostly on MRHS equations, but we will try to survey also cryptanalytic results
obtained with CRHS representation.

3. Algorithms for Solving MRHS Equations

MRHS problem in a decision setting is a question, of whether there exists some x ∈ Fn

that is a solution of the MRHS equation system xM ∈ S1 × S2 × · · · × Sm. In practical
algebraic cryptanalysis, we typically know that some solution of the MRHS system exists.
Instead, we focus on computing any solution of the system (or all of the existing solutions).

Multiple algorithms can solve MRHS systems. The basic algorithm is the exhaustive
search: iterate through each element of Fn, and verify, whether it is a solution of the system.
This gives us the upper bound on the complexity of the MRHS problem: |Fn| iterations,
and in each iteration we do one vector-matrix multiplication (on the left-hand-side) plus
verification of the set membership (on the right-hand side). The iteration can be improved
by classic techniques such as using Grey code for element enumeration.

A specific issue arises in algebraic cryptanalysis. Suppose that some MRHS system
with n unknowns over F2 is derived from a cryptanalytic problem with k < n unknown
key bits. Then in the cryptanalytic setting, the complexity of the search should be bounded
by 2k key verification operations, instead of 2n, the complexity of the exhaustive MRHS
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solver. Thus, a generic MRHS solver based on an exhaustive search seems unsuitable for
algebraic cryptanalysis.

3.1. Solving MRHS Systems with Linear Algebra

Similarly to standard systems of linear equations, we can perform some operations on
the MRHS system that do not change the (size of the) set of solutions of the MRHS system:

• Column operations. Let B be an invertible diagonal matrix

B =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm


with Bi ∈ Fli×li . Vector x is a solution of M if and only if it is a solution of the
equivalent MRHS system

x ·M · B ∈ S1 · B1 × · · · × Sm · Bm

Note that it would be possible to define a similar operation with a general invertible
matrix B. However, in such a case we would have to evaluate Cartesian products of Si’s,
and thus in general the equivalent system would lose the polynomial representation.

• Row operations. Let A be an invertible n× n matrix. Vector x is a solution ofM if
and only if vector y is a solution of

y · (A ·M) ∈ S1 × · · · × Sm

and x = y ·A.
• RHS joining. Vector x is a solution ofM if and only if it is a solution of the equivalent

MRHS system
x ·M ∈ S1 × · · · × Sm−2 × S′m−1

where S′m−1 = Sm−1 × Sm. The main difference between the MRHS systems is that
S′m−1 requires more space to explicitly list all its vectors, in comparison to the original
MRHS system. In general, we can join any pair of RHS sets (computing Si × Sj).

• RHS compression. Let rank(Mi) < li for some i. We can use column operations with
matrix Bi to change the first column of Mi to all zeroes. The vector x is a solution of
M if and only if it is a solution of

x ·M ∈ S1 · × · · · S′i · × · · · Sm

where S′i = {v ∈ Si; proj1(v · Bi) = 0}. This means we can remove all vectors from Si
that have non-zero first coordinates after the column operation.

We can transform the joint form of the MRHS equation to a single compact MRHS
equation by a series of RHS joining and compression operations. This is the basis of the
original Gluing algorithm [28,30] proposed to solve MRHS equation systems. Note that
during the sequence of operations during the Gluing algorithm we can lose the polynomial
representation property.

Another solving algorithm that uses linear algebra was proposed in [34]. This algo-
rithm uses the reduced row echelon form of the joint matrix to efficiently expand and test
partial solutions of the system.

3.2. Solving MRHS Systems with Local Reduction

It was already observed in the seminal works [28,30] that (sparse) MRHS equation
systems can be solved more efficiently than with exhaustive search. They proposed a
method of Agreeing and Gluing to solve the MRHS system. The main idea of the Agreeing
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is to use ”local information” obtained from individual MRHS equations in the system
to reduce the size of individual right-hand side sets. Let us suppose that we have two
MRHS equations x ·Mi ∈ Si, and x ·Mj ∈ Sj within the target MRHS system, with linearly
dependent columns in (Mi|Mj). There exists matrix U, such that (Mi|Mj) ·U = 0. Thus on
the right-hand side, we can remove each v ∈ Si × Sj for which v ·U 6= 0. Agreeing method
verifies parts of v = (vi, vj) separately. Vector vi is removed from Si, if there is no vj such
that (vi, vj) ·U = 0 (and similarly for vj and Sj).

In [35], it was observed that Agreeing algorithm can be translated into the language of
electric wires and switches, and can be efficiently implemented in specialized hardware.
In [36], a special-purpose architecture to implement an algebraic attack in hardware (called
PET SNAKE) was proposed. The proposed use of ASICs seems to enable significant
performance gains over a software implementation of MRHS solver based on Agreeing.

The Agreeing method can be generalized to different polynomial time ”local reduction”
methods [26], such as the Method of Syllogisms, or the Relinearisation method. However,
MRHS systems in general cannot be solved by just these local reduction methods. When
considering random sparse Boolean equations there is an observable phase transition
between systems that can be solved by local reduction (easy problems) and systems that
cannot be solved directly (hard problems) [37]. The main strategy in utilizing the local
reduction is to combine it with Guessing. This means that we explicitly try to substitute
some value (either of some variable or some combination of variables), and try to verify
(with Agreeing) whether the reduced system still has a solution. This leads to a class of
algorithms based on recursive search similar to DPLL algorithm [38] used in SAT solvers.
Similarly to DPLL, additional information from guess and verify can be learned and used
to improve further guessing [39].

Alternatively, local reduction methods can be combined with the Gluing method,
which means explicitly joining individual MRHS equations to find all solutions of the
MRHS system. Local reduction is used to keep the size of the intermediate systems as
low as possible. An analysis of the improved Agreeing-Gluing algorithm can be found
in [40]. The Gluing algorithm complexity depends on the order of MRHS equations used
by individual Gluing operations. This gives rise to a new combinatorial MaxMinMax
problem [41–43]. The solution to this problem can provide an optimal Gluing strategy. It is
an open problem whether the MaxMinMax also applies to MRHS solver based on linear
algebra [34], which has a complexity that also depends on the order of the MRHS equations
within the joint form of the MRHS system.

3.3. Solving MRHS Systems in Dual Code

A new method to solve MRHS equation systems and their connection to group fac-
torization was studied in [44]. The method is essentially a generalization of Agreeing to
the whole joint matrix of the MRHS system for MRHS systems over a binary field F2. We
can observe that on the left-hand side, possible vectors xM form a binary linear code C
with parity check matrix H. Thus, valid solutions x correspond exactly to those right-hand
side vectors v ∈ S, which are also codewords of C, and v ·HT = 0. The problem of solving
an MRHS system can be reduced to solving a group factorization problem in the form⊕

Si ·HT = 0, where Si ·HT = {v ·HT ; v ∈ Si}.
In [31], we have followed this reduction to change the MRHS problem into a specific

instance of a decoding problem. We also explore how the complexity of solving Multivariate
Quadratic (MQ) and MRHS systems is connected to the complexity of the decoding problem.
In [45] we show how the transformation to the decoding problem can be used to estimate
the upper bounds on the complexity of algebraic attacks on ciphers with low multiplicative
complexity (low number of AND gates).

3.4. Solving MRHS Systems with Heuristic Search

In [46] we have introduced a new method for solving sparse random MRHS systems
based on bit-flipping. This method starts with random x. In sufficiently sparse systems,
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each bit of unknown x only influences a limited number of individual MRHS equations.
The bit-flipping method is based on marking those bits of x that can change unsatisfied
MRHS equations (x ·Mi 6∈ Si) to a satisfied state. We then change (some of) the marked bits,
gradually improving the number of satisfied MRHS equations (until the system is solved,
or we end in a cycle and need to restart the method). Experiments show that this method
can solve MRHS systems more efficiently than exhaustive search, but its complexity is
significantly influenced by the density of the left-hand side joint matrix M.

An alternative formulation of the bit-flipping approach is based on the hill-climbing
algorithm [46,47]. In this case we again start from random x, and choose some neighboring
x⊕ ei, where wH(ei) = 1. With the greedy approach, we try to maximize the new number
of satisfied MRHS equations (or restart, if this is not possible). Experiments show that the
hill-climbing-based method has a better success chance than bit-flipping, but the individual
steps of the algorithm are slower (as we need to explore all neighbors of x).

A natural extension of the hill-climbing method is the application of evolutionary
computing and stochastic optimization algorithms. Successful solving of (specific random)
MRHS equations with genetic algorithms was reported in [48]. This research area is
however still very fresh, with many open questions and potential for research: Which
methods are suitable for generic systems/specific systems related to algebraic cryptanalysis?
How to select the parameters of the heuristic methods? Which scoring functions should be
used? Can the methods be combined with other MRHS-solving methods?

4. Using MRHS Systems in Algebraic Cryptanalysis

Algebraic cryptanalysis typically involves three basic steps. Firstly, we transform
the cryptanalytic problem into an algebraic representation. Then we solve the algebraic
problem with a solver. Finally, we use the algebraic solution to determine the result of
the cryptanalysis (e.g., extracting the key bits). We will call algebraic cryptanalysis that
involves MRHS representation an MRHS cryptanalysis.

MRHS representation is especially suited for the cryptanalysis of block ciphers com-
posed of small non-linear elements (S-boxes) and linear diffusion layers. Let us consider an
example based on the Substitution-Permutation Network (SPN). SPN has r rounds com-
posed of key addition, bricklayer substitution with s parallel S-boxes given by non-linear
Boolean function F : Zm

2 → Zm
2 , and a diffusion layer that can be described as a linear

transformation by an invertible diffusion matrix L ∈ Zsm
2 ×Zsm

2 .
Let us denote the input plaintext by x, the output ciphertext by y, and the unknown

key bits by k. For the sake of simplicity, let us suppose that round keys are computed
from key bits k by linear transformation given by matrices Ki (for round i, the round key
is ki = k ·Ki). Note that a non-linear key schedule can be included in the MRHS system
similar to individual rounds.

Let us denote S-box inputs in round i by ui, and S-box outputs by vi. The first S-box
layer input is computed as u1 = x+k1 (here x is just the plaintext). The diffusion layer gives
us linear equations ui+1 = vi · L⊕ ki+1, and in the final round we get y = vr · L⊕ kr+1.

The initial MRHS system has a set of ”unknowns” given by concatenation of
z = (k, x, y, u1, . . . , ur, v1, . . . , vr). Individual MRHS equations in the system are based on
S-boxes. Each S-box corresponds to a single MRHS equation in the form of

z ·



0 0
...

...
I 0
0 J
...

...
0 0


∈ S,
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where I and J are identity matrices selecting corresponding input and output bits of the
S-box. Set S consists of all possible pairs of S-box inputs and outputs: S = {(a, b) ∈
Zm

2 ×Zm
2 ; b = F(a)}.

The final MRHS system is obtained by substituting known values of plaintext and
ciphertext, and partially solving the system of linear equations given by diffusion layers
and key schedule. The resulting linear expressions are substituted into the MRHS system.
The detailed algorithm is presented in [49].

Example 2. Let us have a toy SPN-like cipher with 4-bit input and 4-bit key repeated in each round.
The cipher uses 2-bit S-box given by permutation (3, 2, 0, 1), and linear layer that swaps “middle”
bits of the state. The encryption can be described by MRHS system:



x,
k,
y,
u1,
u2,
v1,
v2



T

·



1000 0000 0000 0000 0000 0000 0000
0100 0000 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000
0001 0000 0000 0000 0000 0000 0000
1000 0000 0000 1000 0000 0000 1000
0100 0000 0000 0010 0000 0000 0100
0010 0000 0000 0100 0000 0000 0010
0001 0000 0000 0001 0000 0000 0001
0000 0000 0000 0000 0000 0000 1000
0000 0000 0000 0000 0000 0000 0100
0000 0000 0000 0000 0000 0000 0010
0000 0000 0000 0000 0000 0000 0001
1000 1000 0000 0000 0000 0000 0000
0100 0100 0000 0000 0000 0000 0000
0010 0000 1000 0000 0000 0000 0000
0001 0000 0100 0000 0000 0000 0000
0000 0000 0000 1000 1000 0000 0000
0000 0000 0000 0100 0100 0000 0000
0000 0000 0000 0010 0000 1000 0000
0000 0000 0000 0001 0000 0100 0000
0000 0010 0000 1000 0000 0000 0000
0000 0001 0000 0010 0000 0000 0000
0000 0000 0010 0100 0000 0000 0000
0000 0000 0001 0001 0000 0000 0000
0000 0000 0000 0000 0010 0000 1000
0000 0000 0000 0000 0001 0000 0100
0000 0000 0000 0000 0000 0010 0010
0000 0000 0000 0000 0000 0001 0001


∈{0000} × S× S× {0000} × S× S× {0000},

where S = {0011, 0110, 1000, 1101}.
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Let us suppose that x = 0000, and y = 1111. We can compress the MRHS system by partially
solving the linear parts (u1 = k, v2 = k⊕ 1111, u2 = P · (k⊕ v1)), and get the new system:

(
k,
v1

)T

·



1000 0000 1010 0000
0100 0000 0001 1000
0000 1000 0100 0010
0000 0100 0000 0101
0010 0000 1000 0000
0001 0000 0000 1000
0000 0010 0100 0000
0000 0001 0000 0100


⊕
(

0000 0000 0011 0011
)

∈S× S× S× S.

We can move constant (0000, 0000, 0011, 0011) to the right hand side, by replacing the last
two sets S by S⊕ (0011) = {0000, 0101, 1011, 1110}.

It is possible to represent the same system on different levels, e.g., by replacing S-boxes
with their AND-XOR decomposition [47]. In general, any family of Boolean functions that
can be implemented with a polynomial number of AND gates in an AND-XOR logic leads
to a family of MRHS systems with polynomial representation.

Note that every MRHS system can be rewritten as an XOR-SAT problem [25], and
then converted to a CNF-SAT instance used by SAT solvers. The main advantage of MRHS
representation in comparison with CNF-SAT representation is that the MRHS system
can handle XOR clauses from complex diffusion layers more naturally. There is also a
simple correspondence between MRHS representation and MQ (multivariate quadratic)
representation of the system [31].

Various representations of the same cryptanalytic problem can exploit different types
of ”sparsity”. As there is a polynomial-time algorithm to transform between the representa-
tions, the expected theoretical complexity of the problem should remain the same (decision
versions of these problems are NP-complete). It is an open research question, which of
these representations is more suitable for particular cryptanalytic tasks?

5. Experimental MRHS Cryptanalysis

From the research perspective, the aim of cryptanalysis is not to ”break ciphers”,
but to give insights into cipher security. Experimental algebraic cryptanalysis focuses on
performing practical attacks on a smaller version of the cipher (with a reduced number of
rounds, state size, key bits, ...). It might be problematic to compare results across different
types of algebraic cryptanalysis, as different types of attacks use different methodologies
and metrics. Some optimizations in algebraic solvers can be advantageous for small systems
but do not scale well with the increasing system size (parameters).

In [26] we have proposed a methodology of experimental MRHS cryptanalysis that
splits the algebraic attack into a polynomial part (local reduction), and an exponential part
(guessing), respectively. The evaluator uses instances with known solutions to estimate the
complexity of the attacks, and the response to changing parameters of the problem. The
methodology can be used to reject weak ciphers, or as a tool for qualitative comparison of
cipher designs. The methodology is exemplified by the example of algebraic cryptanalysis
of former encryption standard DES [50].

Experimental algebraic cryptanalysis was applied to multiple well-known ciphers.
In [51], local reduction techniques were used to evaluate the security of the block cipher
GOST [52]. A comparison of local reduction techniques and SAT-solver-based algebraic
attacks used in cryptanalysis of SHA-3 candidates JH [53] and Keccak [54] were presented
in [55]. In [56], a particular local reduction method (the method of syllogisms) was used to
solve reduced versions of stream cipher Trivium [57]. In [58], the local reduction method
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was independently applied to algebraic cryptanalysis of lightweight cipher Present [59].
Block Cipher DESL [60] was analyzed in [61].

The stream cipher Trivium was also analyzed in [32]. However, in this case, a represen-
tation based on compressed right-hand side (CRHS) equations were used. This approach
was later explored in more detail in [62], in the context of the DES and the MiniAES ci-
phers. Algebraic attacks based on CRHS equations on small-scale variants of AES [63] was
explored in more detail in [64]. In [65], the CRHS representation was adapted for the factor-
ization problem. In [66], a new tool called CryptaPath for assisted algebraic cryptanalysis
of symmetric primitives that can be described with SPN structure was proposed. This tool
also uses CRHS representation.

In [34], a new solver that can solve MRHS equations was proposed alongside a
methodology for using the solver in algebraic cryptanalysis. The methodology was tested
on instances of scaled-down DES, AES, Present, and LowMC [67] ciphers. The experimental
MRHS cryptanalytis of LowMC based on the custom implementation of the algorithm
proposed in [45] was conducted in [68]. However, the results of the attack were worse than
the brute-force approach. The use of the hill-climbing method for MRHS cryptanalysis was
explored in [47] in the context of cryptanalysis of the block cipher Ascon [69].

The use of MRHS representation is not limited to algebraic cryptanalysis. In [70],
a new approach to linear cryptanalysis of the block cipher DES was proposed. MRHS
equation system is collected from linear approximations obtained by linear cryptanalysis.
This approach was later extended to multidimensional linear cryptanalysis in [71].

6. Conclusions

Multiple Right-Hand Sides equation systems can be used in algebraic cryptanalysis
instead of standard representations such as CNF for SAT solvers and ANF for Gröbner
bases and related solvers. The main advantage of MRHS equations is the separation of
linear and non-linear components of analyzed ciphers and cryptographic primitives. As
the main disadvantage, we perceive a lack of freely available universal and specialized
MRHS solvers, as well as a relative lack of research on using MRHS equation systems other
than cryptographic applications.

While MRHS equation systems were primarily used for experimental algebraic crypt-
analysis, they have also been used in theoretical studies. In [45] we use MRHS systems and
their transformation to a decoding problem to provide upper bounds on the complexity of
algebraic cryptanalysis of ciphers with low multiplicative complexity. In [31], we use the
MRHS equation system as a middle step in connecting the complexity of MQ-and code-
based cryptosystems used in post-quantum cryptography. We have even proposed a new
type of post-quantum signature scheme that can be derived from an MRHS representation
of a symmetric cipher such as AES or LowMC [49].

We conclude that the use of MRHS equation systems in not only algebraic cryptanalysis
has still significant research potential, both theoretical and experimental. We believe that
there is also a potential for applications of MRHS systems and solvers in other problem
areas dominated by SAT solvers, such as circuit optimization.
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Abbreviations
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