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Abstract: The chances of detecting a malicious reliability attack induced by an offshore foundry are
grim. The hardware Trojans affecting a circuit’s reliability do not tend to alter the circuit layout. These
Trojans often manifest as an increased delay in certain parts of the circuit. These delay faults easily
escape during the integrated circuits (IC) testing phase, hence are difficult to detect. If additional
patterns to detect delay faults are generated during the test pattern generation stage, then reliability
attacks can be detected early without any hardware overhead. This paper proposes a novel method
to generate patterns that trigger Trojans without altering the circuit model. The generated patterns’
ability to diagnose clustered Trojans are also analyzed. The proposed method uses only single fault
simulation to detect clustered Trojans, thereby reducing the computational complexity. Experimental
results show that the proposed algorithm has a detection ratio of 99.99% when applied on ISCAS’89,
ITC’99 and IWLS’05 benchmark circuits. Experiments on clustered Trojans indicate a 46% and 34%
improvement in accuracy and resolution compared to a standard Automatic Test Pattern Generator
(ATPG)Tool.

Keywords: hardware Trojan detection; reliability attack; Transition Delay Faults; clustered Trojans;
K-Means clustering; SAT solvers

1. Introduction

Faults occurring in a computer system have historically been related to integrated
circuit (IC) fabrication defects. However, with the advent of hardware Trojan-based attacks,
there is a high probability of defects being intentionally induced in the circuit. The trend
of outsourcing fabrication has increased the vulnerability of ICs to Trojan attacks. These
hardware Trojans alter not only the functionality of the circuit but also degrade their
reliability. Hence, they are difficult to identify during the IC testing phase. Special attention
must be given to preventing and identifying such attacks. Split fabrication has proven
effective in reducing the Trojan attacks on the critical parts of the IC. However, if such an
attack has occurred, it must be identified as early as possible in the manufacturing cycle.

Methods mentioned in the literature for Trojan detection can be classified broadly as
destructive and non-destructive [1]. Destructive methods include physical inspection and
advanced image processing techniques. The major disadvantages of this method are low
detection speed, high cost and poor coverage of Trojan types. The non-destructive methods
include logic testing-based approaches and side channel analysis. In the logic testing-based
approach, the activation probability of a hardware Trojan is usually low. Hence, standard
test patterns have low chances of detecting a Trojan. For this reason, researchers focused on
improving the existing testing techniques to increase Trojan detection. The advantage of the
testing-based approach is that it is non-invasive and can identify Trojans inserted at different
design flow levels. The side channel analysis method is also powerful to detect malicious
modifications in an IC. This technique uses an IC’s physical characteristics (power and EM
radiations) to detect a Trojan’s presence. However, this method requires a golden IC for
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comparison. Factors other than hardware Trojans can also alter the physical characteristics.
Hence, it is difficult to determine the cause behind the abnormal behavior [2–4]. Hardware
Trojan or malicious modifications in a circuit include:

(a) Modification of the functional behavior: Inserting logic gates at an intermediate node
of the IC.

(b) Electrical modifications: Adding extra load capacitance at the output of logic gates,
thereby increasing the delay of the path.

(c) Transistor ageing: Increasing the threshold voltage by inducing Negative-Bias Tem-
perature Instability (NBTI).

Figure 1 shows examples of the three types of hardware Trojans that affect the func-
tionality and reliability of a circuit. The functional modifications in a circuit can be easily
detected using test patterns generated by any standard Automatic Test Pattern Generator
(ATPG) tool. However, detecting electrical modifications and transistor ageing requires
specific patterns that can trigger such attacks. This paper refers to such patterns as Trojan
Triggering Patterns (TTP). These attacks have an adverse effect on the reliability of the IC.
Hence, they are commonly termed as reliability attacks. It is nearly impossible to identify
them during destructive physical analysis. This paper proposes a novel Trojan detection
technique using Transition Delay Fault (TDF) identification. The proposed method can
identify reliability attacks without using any hardware overhead.
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Figure 1. Types of Trojans. (a) Modification of the functional behavior; (b) Electrical changes;
(c) transistor ageing [4].

It is mentioned in [5,6] that the Trojan-infected nodes tend to cluster. Detection of
clustered Trojans becomes a laborious task as the output responses interact and obscure
some faulty responses. Hence, the proposed method enhances the Trojan detection accuracy
by using K-means clustering algorithm.

Every hardware Trojan has malicious intent. If the Trojan attack aims at leaking safety
critical information from the IC, then the Trojans will be targeted on specific modules in the
IC. Hence, clustering of Trojans is possible. Since the clustered Trojans interact and lead to
masking and reinforcement effects, it is difficult to detect them. Moreover, the clustered
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Trojan signatures are entirely different, making their identification more time-consuming.
The probability of clustered hardware Trojans may be less, but once clustered it requires a
special procedure for proper identification [5,6].

The remainder of the paper is arranged as follows: Section 2 gives a brief overview of
the related work in the detection of reliability attacks, and Section 3 provides a detailed
understanding of the proposed TTP generation algorithm. Section 4 gives the necessary
details on the proposed clustered Trojan detection procedure. Section 5 discusses the results
and comparisons with existing methodologies, and finally, Section 6 concludes the paper.

2. Related Works
2.1. Hardware Trojan (HT)

The proposed method targets extremely stealthy Trojan attacks at the transistor level.
Instead of adding additional circuitry, the Trojans are inserted by altering the doping
concentration of the transistor. Since the modified circuit appears legitimate on all wiring
layers, this family of Trojans is resistant to most detection techniques, like optical inspection
and checking against “golden chips”. The process variations such as altering the nitrate
concentration or increasing the temperature during the gate oxide formation create infected
ICs. Such attacks tend to cluster in one functional block or even a section of the circuit
block, thereby evading standard post-fabrication testing procedures [2,3]. Due to the fault
masking problem observed in clustered Trojans, standard ATPG patterns cannot detect
them efficiently. Moreover, the ATPG patterns are optimized for identifying faults in the
critical path. Hence, the challenge here is to generate patterns that can activate a Trojan in
the non-critical paths and with the possibility of fault interactions.

In this paper, a TDF is used to model the Trojan. TDF represents a fault in a circuit
due to increased delay. However, patterns that can detect a TDF may not be sufficient to
identify a Trojan, as it requires specific trigger conditions. Hence, the paper focuses on
generating patterns to detect TDF based on various activation conditions. The paper also
explores a procedure to generate test patterns that trigger clustered Trojans.

2.2. TDF Model

Certain Trojans do not alter the chip’s logic but can cause timing delays. These Trojans
can be modelled using TDFs [7]. In the TDF model, it is assumed that the delay defect
is concentrated at one logical node. Therefore, any signal passing through this node will
be delayed beyond the clock period. Analysis of TDF and its fault simulation was first
reported in [8]. A scan-based Design for Testability (DFT) procedure is used for testing
TDFs. During testing, the Scan Enable (SE) signal is set to logic high, and all sequential
elements are connected in the form of a chain. Multiplexed D flip-flops are used for this
purpose. Two types of transition faults are reported in the literature [8–10] Slow-to-rise
and Slow-to-fall. Figure 2 shows examples of slow-to-rise and slow-to-fall faults. Here,
‘A’, ‘B’, ‘C’ and ‘D’ are inputs to the gates and ‘X’ and ‘Y’ are the outputs. To test TDF, a
two-pattern sequence is needed. The first pattern is used for initializing a node, and the
second for setting up the required transition. Two methods are reported in the literature for
generating TDF patterns: Launch on Shift (LOS) and Launch on Capture (LOC).

2.2.1. Launch on Shift

Figure 3a illustrates the timing diagram for the LOS procedure. In the test vector pair
(V1, V2), the second vector, V2, is a 1-bit shifted version of V1. During the initialization
stage, SE is high, and the first vector, V1, is loaded into the scan chain using multiple clock
cycles. During the next stage, called the launch, the first bit of the second vector V2 is
loaded, and the transition is launched. After this stage, SE is lowered, followed by a capture
in the next clock cycle. SE signal is again turned high to unload the scan outputs. It can
be noted that the SE signal switches between the launch and the capture cycles. Hence
to achieve an at-speed capture, SE should switch at functional clock speed. Due to the
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routing of the high-speed SE signal, additional buffers are needed, thereby increasing the
gate count. Nevertheless, the LOS scheme provides higher fault coverage.
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2.2.2. Launch on Capture

To test a transition fault in LOC methodology, a test vector pair (V1, V2) is employed.
However, here the second vector, V2, is the functional response of V1. Figure 3b shows the
timing diagram for LOC. Initially, Vector V1 is loaded by holding SE to ‘1’. The SE signal
is then lowered to obtain the second vector, V2. A clock signal is then pulsed to load the
second vector. One more clock pulse is required to capture the transition induced by vector
V2. SE is switched to logic ‘1’ to unload the scan outputs. The main advantage of LOC is
that the SE can be routed as a standard signal. However, since the capture cycle happens
immediately after loading vector V2, the ATPG is complex compared to the LOS scheme.
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2.3. Trojan Cluster

When multiple defects occur in a circuit, it is assumed that they are randomly dis-
tributed throughout the circuit. However, multiple defects arising due to malicious process
variations are more likely to cluster. When defects cluster in an area, their effect interaction
is much more potent than when they are farther apart. These interactions will obscure
some fault effects. This phenomenon is called fault-masking [11], which may lead to false
negative detection.

On the other hand, these interactions may result in an additional number of faulty
outputs that would not appear if a single defect is considered at a time. This effect is
called fault reinforcement [11] which may lead to false positive detection. In the traditional
testing procedure, fault diagnosis using single fault simulation is based on one-to-one
mapping of a defect with faulty responses. In the presence of clustered Trojans, the
observed responses and the responses in the presence of single Trojans are different. Hence,
single-fault simulation-based procedures are less effective for identifying clustered multiple
Trojans [10].

In this paper, three types of clusters are considered.

(a) α-clusters: When two or more Trojans are present physically close to each other but
have separate observation cones.

(b) β-clusters: When two or more Trojans are present in the same sub-path and have
overlapping observation cones.

(c) Υ-clusters: Two or more Trojans belong to separate sub-paths and have overlapping
observation cones.

Consider an example circuit shown in Figure 4. There are 25 nodes in the circuit, for
ease of representation, each node is identified using a number ‘1’, ‘2’, ‘3’, etc. A slow-to-rise
TDF used to model a Trojan at node ‘1’ is represented as 1/01. Correspondingly, a slow-to-
fall fault at node ‘2’ is denoted as 2/10. The TDFs, A1 = {23/10, 22/10} form an α-cluster,
as they propagate to separate outputs and do not have any common nodes. Even though
the faults in α-clusters are physically close to each other, they can be easily distinguished
as they do not interact with each other. Hence, α-clusters can be diagnosed using the
patterns generated by any standard ATPG tool. The TDFs B1 = {18/01, 22/01,25/10} form
a β-cluster. It can be observed from Figure 4 that faults that lie closer to the output node
are dominant over the other faults in the cluster. For example, in the B1 cluster, the TDF
25/10 is dominant over the fault 22/01. Hence, they are moderately difficult to diagnose
clusters. The TDFs C1 = {12/10,13/01} form a possible Υ-cluster. The diagnosis of Υ-cluster
is also considered difficult as the faults interact. However, using the proposed transition
deactivation method described in Section 3.1, the TDFs can be selectively deactivated,
thereby generating effective diagnosis patterns for β and Υ-clusters.

The proposed work aims to generate patterns that can detect reliability attacks. The
ability of these patterns to detect clustered Trojans is improved by applying path tracing
and clustering algorithms. The proposed method uses only single fault simulations. Thus,
any existing ATPG tool can be used for the proposed Trojan detection procedure. The
proposed procedure consists of two parts: In the first part, Trojan grouping and Trojan
triggering conditions are used to generate patterns that can identify and trigger multiple
Trojans even if they have overlapping observation cones. Thus, the procedure aims at
generating a highly compact test pattern set. In the second part, clustered Trojans are
injected into the circuit. Faulty responses of the Circuit Under Test (CUT) are analyzed
for the patterns generated in the first step. False positive and false negative cases in the
presence of clustered Trojans are reduced by selecting the most probable clustered Trojan
Candidates (TC).
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3. Proposed TDF-Based TTP Generation Algorithm

An algorithm to generate TTPs for detecting Trojans without adding additional gates
into the circuit model is explained here. The algorithm consists of two main parts: Trojan
triggering condition and TDF-pair grouping. A detailed description of the proposed
algorithm is given below.

3.1. Trojan Triggering Condition

Generally, a two-pattern set is used to test TDFs. Here, the first pattern initializes the
faulty node, and the second pattern sets the transition at the node. Consider the circuit
shown in Figure 4. To detect a slow-to-rise fault at node 5, represented as 5/01, a test vector
pair that ensures a logic ‘0’ to logic ‘1’ transition at node 5 must be applied. To increase
the probability of detecting a Trojan, patterns that can activate a Trojan at a node while
deactivating the transition in the nearby nodes are considered. Since such conditions occur
rarely, they are suitable for triggering a Trojan. This can be treated as a rare event capable
of triggering a Trojan. Hence, for generating the triggering condition for a Trojan, a pattern
that can activate a TDF at the Trojan node while deactivating TDFs in the nearby nodes can
be used. For example, to deactivate the 5/01 TDF, any test vector pair that activates a ‘10’,
‘11’, ‘10’ transition at node 5 can be used.

On further investigation, it can be observed that if the value of node 5 in the first
time-frame is logic ‘1’, then irrespective of the second time-frame value, the TDF 5/01 gets
deactivated. Similarly, if the value of node 5 at time-frame 2 is logic ‘0’, then irrespective of
the first time-frame values, the TDF 5/01 gets deactivated. The proposed method selects
the Trojan triggering patterns based on the second time-frame information only. Thus,
generating TTPs using only one time-frame value makes the proposed method faster than
the existing methods [8,12], which use two time-frame values.

The patterns that satisfy the constraints for transition deactivation are obtained us-
ing Zero Suppressed Binary Decision Diagram (ZBDD) based SAT-solvers [13]. In this
approach, the ZBDDs are used as the fundamental data structure. ZBDDs are proven to be
efficient compared to lists and tries [12,13]. ZBDD can represent Boolean expressions in a
compressed form, resulting in much faster search times. The results in [12–14] show that
ZBDDs work well for digital benchmark circuits such as ISCAS’89, ITC’99 and IWLS’05.
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3.2. TDF-Pair Grouping

In the proposed method, multiple TDF pairs are considered simultaneously for gen-
erating compact test patterns that trigger multiple Trojans. The TDF pairs that can be
considered in one cycle are grouped together. TDF pairs can be grouped together if at least
one fault in a pair has a disjoint observation cone with other pairs of the group. Fault pairs
that satisfy the above constraint can be of the following two types:

Type 1: Two fault pairs that have non-overlapping observation cones. For example,
Figure 5a shows two fault pairs P1 = (t1, t2) and P2 = (t3, t4). The faults pairs P1 and P2
have disjoint observation cones. Hence, the pairs do not interact. Hence, P1 and P2 can
be grouped.
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Type 2: Two fault pairs have overlapping observation cones. Consider the fault pairs
P3 = (ta, tb) and P4 = (tc, td), shown in Figure 5b. Here, ta has no common nodes with pair
P4. Similarly, td does not have any common nodes with pair P3. Thus, the pairs P3 and P4
satisfy the criterion for grouping.

When type 2 faults are grouped, an additional grouping constraint must be satis-
fied. For example, tb and tc cannot be activated simultaneously, as they have common
propagation nodes.

The pseudocode for the proposed Algorithm 1 for TTP generation is shown below.
The following terms are used: TDF List is the list of Transition Delay Faults, FP is the list of
fault pairs. TTP is the set of Trojan Triggering Patterns, and TP is the set of Test Patterns.
EQFP indicates the fault pairs which cannot be distinguished as they produce a similar
response at the output. Hence, they are termed Equivalent Fault Pairs. OP is the set of
primary outputs to which a fault or a group of faults are propagating. ‘G’ indicates the
group of fault pairs that are considered simultaneously.

To avoid detection, the Trojans are inserted in the non-critical path. General ATPG
methods are constrained to generate patterns for critical path. Cha and Gupta [15] have
addressed this issue and have proved that shorter paths can increase detection sensitivity.
The delay added by the HT has a larger fractional impact on the path delay as compared
to the longer paths. For example, if ∆t is the delay added due to a HT in a path with total
delay T, then ∆t/T is the fractional delay induced by the HT. If T is smaller, then ∆t/T will
be a higher value thereby increasing its detection probability. Hence, HT at shorter paths
can be detected by using an appropriate test vector generation strategy. In [15], the existing
ATPG tool is modified by leveraging the TDF model since it is assumed as a delay on an
individual node.

A similar approach is used in the proposed method. Here, in addition to the test
patterns generated using a standard ATPG tool, Trojan triggering patterns are generated
after obtaining the delay of each sensitized path. The path delays are computed using
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the Prime-Time tool in Synopsys. The ATPG tool is then adjusted for the required delay.

Algorithm 1. Pseudocode for proposed TTP Generation

INPUT: Netlist, TDF List, FP
OUTPUT: TTP, TP, EQFP
for i in TDF

Generate test pattern tpi using an ATPG tool
Add the pattern to TP
Remove fault pairs from FP which can be distinguished using tpi
Remove the faults from TDF which can be detected using tpi

for i in FP //Remaining fault pair grouping
OPi <= φ

OPi <= set of Primary Outputs in the observation cone of fpi
Compute the delay for each path;

FP= FP-fpi
Gi = fpi
for j in FP

OPj <= set of Primary Outputs in the observation cone of fpj
If (fpi and fpj satisfy the grouping criterion)

Gi = Gi + fpj
FP = FP- fpj
OPi = OPi + OPj

for i in G // Transition Deactivation Condition
Generate ZBDD for the set of outputs in OPi
Select the patterns which satisfy the Transition Deactivation and delay Condition
Add the patterns to TTP

Add the remaining Fault pairs to EQFP

4. Proposed Detection of Clustered Trojans

The overall flow of the proposed clustered Trojan detection is shown in Figure 6. A
set of clustered Trojans are injected into the CUT. The TTPs obtained using the method
explained in Section 3 are used to perform the circuit simulation. The obtained response
is then compared with the golden response of the fault-free circuit to obtain the list of
Trojan Candidates (TCs) using the proposed TC selection algorithm explained in Section 4.1.
Single fault simulations of the selected TCs are performed to assign a score to the TCs.
The TCs with the highest scores are named crucial TCs. This procedure is called Crucial
TC selection, details of which are given in Section 4.2. Finally, the K-means clustering
algorithm, with the optimal number of clusters discussed in Section 4.3, is used to prune
the list of TCs.

4.1. TC Selection Algorithm

In the proposed Algorithm 2, a list of TCs is obtained with the help of generated TTPs
as explained in Section 3. TTPs are highly efficient in triggering Trojans. However, the
fault-masking and fault reinforcement due to the presence of multiple Trojans would affect
the efficiency of TTPs. Hence the TC selection algorithm is followed by crucial TC selection
and the K-means clustering algorithm.

During the TC selection algorithm, a list of nodes connected to each failing output is
obtained. The second time-frame values of these nodes are compared with the second time-
frame values of the fault-free circuit. Each node with a mismatch in the second time-frame
value is listed as a TC.

The advantage of the proposed TC selection algorithm is that it needs only one time-
frame value to obtain the list of TCs. Thus, the algorithm is comparatively faster and
requires less memory. The pseudocode for the algorithm is shown below. The following
terms are used in the algorithm: FO is the list of failing outputs for the Failing Test
Patterns (FTPs).
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Algorithm 2. Algorithm: TC Selection

Input: FO, FTP
Output: List of TC
for i in FO

Obtain the list of nodes connected directly or indirectly to foi
Update N

for i in FTP
for j in N

If (faultfree response of njε N 6=Actual response of nj)
Add nj to TC

Consider an example circuit shown in Figure 7 where the primary inputs are denoted
as I1, I2, . . . I10, primary outputs as O1, O2, O3 and intermediate nodes are represented
as n1, n2, . . . n10, etc. Assume that, after circuit simulation, output O1 shows a faulty
response in the second time-frame. The true response and the actual response are shown
in the circuit as 0/1, where ‘0’ is the true response or expected value and ‘1’ is the faulty
response. In the first step, the list of nodes to which the output propagates are obtained.
In this example, the list is N = {n3, n4, I5, n1, n2, I1, I2, I3, I4}. In the second iterative loop
of the proposed algorithm, the nodes which have a conflicting true response and actual
response for the second time-frame are selected. These nodes indicate possible Trojan
locations. Hence, they are added to the list of TCs.
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4.2. Crucial TC Selection

Algorithm 3 explains the crucial TC selection process. A single fault simulation is
performed on each fault in the list of TCs. The fault simulation responses are obtained
only for the failing test patterns reported during the simulation of the faulty circuit. The
obtained single-fault simulation responses are then compared with the actual faulty circuit
responses. The TC, which can explain the maximum number of failed outputs, will have
the highest score. The score for each TC is computed using the Equation (1):

Score =
|FTP|

∑
i=1

(|FO in SFSi| ∩ |FO in AFSi|) (1)

Here, FTP is the set of Failing Test Patterns, and FO is the set of failing outputs. SFS
indicates the single fault simulation procedure. AFS indicates the actual fault simulation
after injecting a clustered fault into the circuit. The score is the sum of the intersection of
the failing outputs for SFS and AFS for each failing pattern. The TCs with maximum scores
are named crucial TCs. Among the remaining TCs, those that cross a threshold of 0.9 ×
max_score are considered as viable TCs. Here, 0.9 is a user-defined value for the threshold.
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Considering faults with less than the maximum score attempts to include the fault-masking
and fault reinforcement effects. The pseudocode for crucial TC selection is shown below.
Inputs to the algorithm 3 are the list of TCs and the list of Failing Test Patterns (FTPs)

Algorithm 3. Crucial TC Selection

Inputs: TC, FTP
Outputs: Crucial_TC, Final_TC
Max_score = 0;
for i in TC

Scorei = 0
for j in FTP

SFSj <= Failing outputs for single fault Simulation
AFSj <= Failing outputs of Actual fault simulation
Current_scorej = |SFSj ∩ AFSj|
Scorei = scorei + current_scorej

if (scorei > Max_score)
Max_score = scorei

for i in TC
if (scorei = = Max_score)

Crucial_TC = crucial_TC ∪ TCi
if (scorei > 0.9 ×Max_score)

Final_TC=Final_TC ∪ DCi

4.3. K-Means Clustering Algorithm

K-Means clustering is used when a set of n-samples are grouped into K clusters. The
CUT must be converted into a 2-Dimensional plane for applying the K-means clustering
algorithm. Hence, the ‘x’ and ‘y’ coordinate values are extracted for each TC node using
the layout information. Various methods can be used for searching a TC node in a layout.
A Horizontal Vertical Tree (HVT)-based data structure mentioned in [14] is used in the
proposed method. A binary search algorithm is used to search for the given TC. These
coordinates represent the physical position of the possible Trojan nodes.

An important parameter that affects the algorithm’s efficacy is the optimum Number
of Clusters (NC). This paper uses the Elbow-Curve method to obtain the Optimum Number
of Clusters (ONC). In this method, the K-means clustering is run on the combined list of
Crucial TCs and viable TCs, for a range of K (from K = 1 to K = N), where 1 is the minimum
and N is the maximum number of clusters. For each value of K, the average distance to
the centroid of all DCs in a cluster is computed. These values are plotted in a graph. The
point where the average distance to the centroid drops suddenly (elbow) is selected as the
optimum NC.

Figure 8 shows the result of applying the K-means clustering algorithm on the
ISCAS’89-s27 benchmark circuit. Figure 8a indicates the 2-Dimensional plot of the list
of TCs when four TDFs belonging to the α-cluster were injected into the circuit. Figure 8b
shows the plot for obtaining the ONC. The x-axis shows the number of clusters ranging
from one to eight (number of TCs). Y-axis shows the mean square distance of the centroid
of each cluster to the TCs in the respective clusters. It is observed that at NC = 3, the mean
square distance drops drastically. Hence, K-means clustering is applied for K = 3, and the
obtained clusters are shown in Figure 8c. Cluster C1 with 4 TCs are represented using ‘Blue’
color dots. Clusters C2 and C3, with two members each, are represented using ‘Red’ and
‘Green’ color dots, respectively.
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After clustering, TC pruning is performed to remove the scattered TCs. A user-defined
parameter ‘s = 0.6’ is used for pruning. All the clusters with a size less than 0.6 times the
biggest cluster are removed. However, the crucial suspects are retained, even if they belong
to a cluster to be removed. In Figure 8c, the crucial suspects are indicated using black
circles enclosing the dot. The maximum size of the cluster is 4. Hence any cluster with
a size less than 0.6 × 4 = 2.4 is to be removed. Since both the elements of cluster C2 are
crucial suspects, they are retained, and cluster C3 is removed. Hence, the final list of TCs
will have six entries where four are the actual injected Trojans, and only two are incorrectly
identified TCs. Hence, in this case, the accuracy is 1, and the resolution is 0.67. Accuracy
and resolution are computed using Equations (2) and (3), respectively.

Accuracy =
|correctly diagnosed TDFs|

| Injected TDFs| (2)

Resolution =
|Correctly Diagnosed TDFs|

|list o f DC| (3)

Accuracy indicates the number of Trojans identified out of the total number of injected
Trojans. Resolution indicates the number of correctly identified Trojans among the list of
TCs reported at the end of the diagnostic procedure. 100% accuracy indicates there are
no false negative cases. As resolution increases, the false negative cases decrease. The
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accuracy and resolution when a single TDF is injected are observed to be maximum. This
also indicates the efficiency of the TTPs in identifying the Trojans.

5. Results and Discussion

To validate the proposed Trojan detection procedure for single and clustered Trojans,
experiments were conducted on various ISCAS’89, ITC’99 and IWLS’05 benchmark circuits.
SYNOPSYS TMAX was used to generate the LOC and LOS test patterns for the TDFs. The
circuit netlist was derived from SYNOPSYS Design Compiler, with 90 nm standard cell
library. The Colorado University Decision Diagram (CUDD) tool [16] was used to manip-
ulate the ZBDDs. The script for the proposed TDF-based TTP generation algorithm and
detection of clustered Trojans was written in Python 3.0. All experiments were conducted
on Intel® Core i5, 1.8 GHz processor and Linux operating system. The proposed method
works best when high resolution delay measurement technique is used.

Table 1 shows the consolidated results for the proposed TDF-based TTP generation
algorithm. The first column lists the benchmark circuits on which the proposed algorithm
was applied. #TDF is the number of Transition Delay faults reported by the Synopsys
TMAX tool. #FP is the total number of fault pairs. If ‘n’ is the number of TDFs in a circuit,
then nC2 is the number of possible fault pairs. #TP indicates the number of test patterns.
INDIS indicates the number of fault pairs that could not be distinguished using only the
TPs. To generate TTPs the Trojan triggering condition and TDF-pair grouping methods are
applied on these fault pairs that cannot be distinguished (referred to as indistinguished in
this paper). These patterns are listed in the column labelled #TTP. The fault pairs which
cannot be distinguished, as they have a similar response at the output, are grouped as
Equivalent faults (EQU). The fault pairs for which the fault effects do not reach the output
are listed under the column labelled ‘#Aborted’. The Next column shows the Detection
Ratio (DR). Equation (4) is used to compute DR. No false positives were reported; however,
some of the fault pairs were aborted in s15850 and s38584 circuits; hence false negatives are
reported in these two cases.

DR =
#FP− #Aborted

#FP
(4)

Table 1. Results of TTP generation algorithm on ISCAS’89, ITC’99 and IWLS’05 circuits.

Circuit #TDF #FP #TP #TTP INDIS EQU #Aborted DR False
Negative

s5378 5342 14,265,811 287 63 651 181 0 1 No
s9234 4324 9,346,326 371 73 532 120 0 1 No

s13207 10,725 57,507,450 320 123 1826 678 0 1 No
s15850 11,011 60,615,555 212 101 3656 1561 21 0.99 Yes
s35932 30,811 474,643,455 111 15 4087 3670 0 1 No
s38417 32,861 539,906,230 325 282 3564 732 0 1 No
s38584 39,021 761,299,710 580 351 6785 4051 5 0.99 Yes

b17 56374 1,588,985,751 2369 1496 27,356 11,047 0 1 No
b18 136,482 93,13,599,921 1993 486 13,947 7349 0 1 No
b14 24,948 3,111,888,78 666 231 4307 632 0 1 No
b10 862 371,091 55 27 279 0 0 1 No

simple_spi 4052 8,207,326 40 22 1846 371 0 1 No
USB_phy 2732 3,730,546 76 58 29 1 0 1 No

Table 2 compares the results of the proposed TTP generation algorithm [17]. The
columns labelled #EQU in Table 2 show the number of equivalent fault pairs in [17] and
the proposed TTP generation algorithm. The results indicate a 32.1% decrease in the
number of equivalent fault-pairs. In the proposed algorithm, a novel Trojan triggering
condition is used. Moreover, multiple fault pairs with overlapping observation cones are
considered simultaneously, thus reducing the number of equivalent faults as compared
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to [17]. Reduced equivalent faults indicate that the TTPs generated using the proposed
method can trigger Trojans more effectively.

Table 2. Comparison of the proposed TTP generation algorithm with [17].

[17] Proposed TTP Generation
Algorithm Comparison

Circuit #TF #FP EQU Ab #TP #DP EQU Ab #TP #TTP % Reduction
in EQU

% Reduction in
#TP + #TTP

s5378 1862 1,732,591 141 0 104 56 98 0 117 32 30.5 6.9
s9234 2373 2,814,378 83 0 169 45 56 0 175 34 32.5 2.3

s13207 5548 15,387,378 528 0 144 102 321 0 156 86 39.2 1.6
s15850 6352 20,170,776 1138 11 120 68 732 7 171 51 35.7 −18.1
s35932 14,680 107,743,860 2430 0 41 4 1670 0 50 5 31.3 −22.2
s38417 26,202 343,259,301 439 0 189 182 321 0 201 168 26.9 0.5
s38584 22,669 256,930,446 2857 1 290 177 2041 0 310 159 28.6 −0.4

In the proposed TTP generation algorithm, high detection capability is achieved
at the expense of a slight increase (4.2%) in the total number of patterns. The number
of patterns (#TP + #TTP) is high for two ISCAS’89 circuits, namely s15850 and s35932.
However, it can be observed that the number of aborted faults reported in the proposed
TTP generation algorithm is only ‘7’ as compared to ‘11’ in [17] for s15850. The number of
aborted faults are reported in the columns labelled ‘Ab’ in Table 2 for [17] and the proposed
TTP generation algorithm, respectively. Overall, the proposed TTP generation algorithm
efficiently generates patterns with high Trojan Triggering capability.

The proposed Clustered Trojan procedure was applied on ISCAS’89 circuit s38584 and
ITC’99 circuits b17 and b18. One to ten Trojans were injected into each circuit. Clustered
Trojans belonging to α, β and Υ clusters were injected. Hence, in total 3× 10× 3 = 90 faulty
circuits were analyzed. The HTs were inserted based on their physical closeness. These
clusters can be on the critical as well as non-critical paths. The HTs on the critical paths
can be detected using the standard ATPG patterns, and for those on the non-critical paths,
the patterns generated using the TTP generation algorithm are used. A Gaussian delay
distribution is generally assumed when path delay fault models are considered. However,
in the proposed method a transition fault model is considered. It assumes that the delay is
on a single node in the excited path.

The accuracy and resolution of the proposed method for clustered multiple TDF
diagnosis are reported in Tables 3 and 4, respectively. It is observed that the accuracy
and resolution decrease as the number of faults increases due to fault-masking and fault-
reinforcement effects. However, the proposed method maintains a minimum accuracy of
0.79 even when ten clustered Trojans are injected into the CUDs. Similarly, the resolution
also decreases as the number of clustered Trojans increases.

Table 3. Accuracy of proposed Clustered Trojan detection procedure.

Circuit

No.
Trojans
Injected

1 2 3 4 5 6 7 8 9 10

s38584 1 0.92 0.93 0.88 0.85 0.92 0.89 0.82 0.73 0.79
b17 1 0.97 0.89 0.94 0.88 0.87 0.91 0.79 0.84 0.8
b18 1 0.95 0.92 0.91 0.87 0.8 0.88 0.85 0.88 0.79

Average 1 0.95 0.91 0.91 0.87 0.86 0.89 0.82 0.82 0.79
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Table 4. Resolution of proposed Clustered Trojan detection procedure.

Circuit

No.
Trojans
Injected

1 2 3 4 5 6 7 8 9 10

s38584 1 0.52 0.45 0.59 0.55 0.49 0.57 0.54 0.51 0.49
b17 1 0.49 0.51 0.58 0.58 0.48 0.53 0.59 0.58 0.51
b18 1 0.58 0.56 0.48 0.53 0.47 0.56 0.48 0.52 0.48

Average 1 0.53 0.51 0.55 0.55 0.48 0.55 0.54 0.54 0.49

Figures 9 and 10 compare the average accuracy and resolution of the proposed clus-
tered Trojan procedure with [7] and Synopsys ATPG tool TMAX. There is a 46% increase
in accuracy and a 34% increase in resolution compared to the ATPG tool. There is a 7%
increase in accuracy and a 22% increase in resolution compared to [7]. The use of TTPs with
high distinguishing capability followed by the crucial TC selection and K-means clustering
algorithm has improved the accuracy and resolution of the proposed clustered multiple
TDF diagnosis.
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Table 5 compares the Trojan coverage (TrC) of the proposed method with [18]. The
proposed method reports zero false positive cases. False negatives are reported only
in s15850 and s38584 benchmark circuits. The false positives reported for s35932 are
comparatively higher in [18]. This has reduced the TrC to 27%. The proposed method
provides an average of 83% improvement in TrC. Table 6 compares the Trojan coverage,
number of test patterns and test pattern generation time of the proposed method with [15]
for ISCAS’89 benchmark circuit s5378. The proposed method tries to generate patterns that
can activate multiple Trojans simultaneously. Hence there is a 2.4 times reduction in the
number of patterns and over 25 times reduction in pattern generation time. Test cost is
directly proportional to the number of test patterns and test generation time. Thus, the
proposed method is cost efficient as compared to [15].
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Table 5. Comparison of the proposed method with [18].

Circuit TrC (%) in [18] TrC (%) in Proposed
Method % Improvement

S15850 61 99 62
S35932 27 100 270
S38417 100 100 0
S38584 99 99 0

Table 6. Comparison of the proposed method with [15].

[15] Proposed Method

Circuit % TrC
Pattern

Generation
Time (s)

No.
Patterns % TrC

Pattern
Generation

Time
(s)

No.
Patterns

S5378 67.5 9300 844 100 360 350

6. Conclusions

This paper proposes a Trojan Triggering pattern generation approach to detect Trojans
that manifest as delays in the circuit. These Trojans cannot be necessary triggered by the
test patterns as they can be injected in the non-critical path. The proposed method uses
a novel approach to generate patterns by sensitizing the non-critical paths. This paper
also considers the effect of clustered Trojan detection. Since the clustered Trojans cannot
be activated using standard test patterns, the proposed method detects clustered Trojans
using additional patterns generated for distinguishing TDFs. The proposed method uses
only single fault simulation responses for predicting the clustered Trojans. Hence, any
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commercial ATPG tool with single fault simulation capability for TDFs can be used to
implement the proposed procedure. A TTP generation algorithm generates the patterns
required for testing and activating a Trojan circuit. These patterns are then used for clustered
Trojan detection.

The accuracy and resolution of the proposed clustered Trojan detection procedure
are improved further by applying crucial TC selection and K-means clustering algorithms.
Some of the less significant TCs are neglected, thereby improving the resolution. It is also
observed that keeping the crucial TCs improves the accuracy, thereby reducing the false
positives and false negatives.
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