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Abstract: In modern society, the Internet is one of the most used means of communication. Thus,
secure information transfer is inevitably of major importance. Computers nowadays use encryption
methods based on arithmetic operations to turn messages into ciphertexts that are practically impos-
sible for an attacker to reverse-engineer using a classical computer. Lately, it has been proven that this
is possible in a post-quantum setting where quantum computers of considerable size are available to
attackers. With the advance of technology of quantum computers, it is now more necessary than ever
before to construct encryption schemes that cannot be broken either using a classical or a quantum
computer. The National Institute of Technology and Standards (NIST) has orchestrated a competition,
and numerous encryption schemes have been proposed. The NIST has identified one algorithm to be
standardized for the post-quantum era. This algorithm is called CRYSTALS-Kyber and is based on
module learning with errors (MLWE). This paper investigates how to apply error correcting codes
in order to create some excess decryption failure rate (DFR) and to take advantage of that in order
to re-tune Kyber’s parameters in the pursuit of higher security. By applying Polar Codes, Kyber’s
security was managed to be increased by 54.4% under a new set of parameters, while keeping the
decryption failure rate well below the upper acceptable bound set by the NIST.

Keywords: Kyber; Polar Codes; public key encryption; module LWE; decryption failure rate;
post-quantum security

1. Introduction

Cryptography refers to a communication technique of altering a message using mathe-
matical concepts in a way that only allows the receiver to have access to its original content.
Modern day cryptography aims to encrypt digital information. The idea behind encrypting
schemes is related to a field of mathematics called “number theory” and more specifically
“large number factoring” [1]. This is because it has been proven that computers cannot find
the prime factors of a number efficiently, making these schemes secure and thus suitable
for commercial use nowadays.

Over the last few decades, researchers have been trying to build quantum computers
with limited success. Their work has motivated other scientists to investigate the capabilities
of such computers. This has led Peter Shor, an American mathematician, to prove that
number factorization becomes trivial for quantum computers using an algorithm that takes
advantage of certain quantum phenomena, inevitably breaking current encryption mecha-
nisms [2]. It is therefore necessary to develop an encryption technique that is unbreakable
both for classical and quantum computers, and to migrate to it before the completion of
the development of the first quantum computer. Otherwise, having access to a quantum
computer would immediately imply having access to any encrypted information that exists
online such as bank transfers, emails, passwords, and messages. The National Institute
of Standards and Technology (NIST) has held a competition which aimed to identify and
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standardize the best quantum-safe encryption scheme [3]. Many ideas were put on the table,
but the winner of the competition was Kyber [4], which will be shortly standardized. This
means that every online data transmission will be encrypted using Kyber. The following
paper will be focused on how to increase Kyber’s security using error correction.

Error correction refers to the ability to detect and correct errors that emerge when a
message is transmitted through a noisy channel. There has been extensive research on this
field, and researchers have developed many error correcting codes (ECC). The efficiency
of such codes is measured with the Shannon capacity [5]. Polar Codes are a type of ECC,
were introduced by Arıkan in [6], and have been proven to be as efficient as possible by
reaching the theoretical maximum that was set by Shannon. This makes it very attractive
for commercial use, and that is why these codes are used in new technologies such as the
5G. Moreover, Polar Codes can be implemented in quasilinear time complexity O(Nlog2N),
giving them a comparative advantage over other ECCs such as low-density parity check
(LDPC) or Bose–Chaudhuri–Hocquenghem (BCH) codes. Having such an outstanding
performance, Polar Codes made the best candidate for this paper.

The idea is to alter the parameters of Kyber in order to achieve a more secure scheme.
This increase in security comes at the cost of an increase in the decryption failure rate (DFR).
Although this is straightforward, one must also take into consideration that the DFR has to
be below the bound set by the NIST (2−128) in order to be safe against decryption failure
attacks [7]. That is why Polar Codes are introduced, in order to decrease the DFR and to
take advantage of this excess DFR in order to be used to increase the security.

A similar approach has been taken for Ring LWE schemes in [8] where Polar Codes
where used to increase the security of NewHope [9]. In that paper, the security of the
specified scheme was increased by 9.4%. Moreover, in [10], BCH and LDPC codes as well
as a combination of the two have been applied to NewHope, enhancing the security by
31.76%. It is mentioned that these types of ECC can be applied to Kyber as well. Although,
at first glance, the latter method achieves better performance, it should be mentioned that
the results are based on an “independence assumption”, which is not proven in the paper.
Finally, it should be mentioned that no previous research has focused on applying ECC to
Kyber, and given that it is a matter of time until this scheme becomes the global standard
for Public Key Encryption, it is sensible to explore how to make it more secure.

2. Preliminary
2.1. Kyber

As mentioned before, modern cryptography is based on arithmetic operations, which
cannot guarantee security in the post quantum era. Scientists have turned their attention
to Lattices and more specifically Lattice cryptography. Lattice cryptography is a field in
mathematics that uses sets of points in the n-dimensional space in order to create difficult
problems that can be used to encrypt information. One such problem that is widely used in
post quantum cryptography is the learning with errors (LWE) problem introduced in [11].
It has been proven that the average case of an LWE problem is as difficult as its worst case,
and its difficulty is based on several lattice problems such as the shortest vector problem
(SVP) which has been proven to be hard. Moreover, the advantage that sets LWE apart
from the rest when it comes to cryptosystems is that there are some variations such as the
Ring-LWE (RLWE) and the Module-LWE (MLWE) that make LWE time- and space-efficient
for real life applications while keeping the problems of the variations relatively difficult.
Kyber is based on MLWE. Before explaining how Kyber works, it is useful to introduce the
following notions:

Rq is the polynomial ring Zq[X]/(Xn + 1);
Bη is the binomial distribution: Bi(2η, 0.5)− η, centered around 0;

Decompressq(x, d) =
⌈(

q/2d
)
· x
⌋

;

Compressq(x, d) =
⌈(

2d/q
)
· x
⌋

mod +2d;

“←” will be interpreted as “sampled from” .



Cryptography 2023, 7, 2 3 of 11

Kyber’s three steps (key generation, encryption, and decryption) for secure data
transmission are as follows:

1. A ∈ Rk×k
q ← Bη1, s,e ∈ Rk

q ← Bη1,
Public Key: t = As + e, Secret Key: s;

2. r ∈ Rk
q ← Bη1, e1 ∈ Rk

q ← Bη2, e2 ∈ Rq ← Bη2,
u = ATr + e1, v = tTr+e2 + Decompressq(m, 1)
Transmit Compressq(u, du), Compressq(v,dv);

3. m = Compressq(Decompressq(v, dv) − sTDecompressq(u, 1),du).

All of these parameters determine Kyber’s security. The parameters suggested by the
development team are shown in Table 1:

Table 1. Kyber parameters.

n k q η1 η2 du dv

KYBER768 256 3 3329 2 2 10 4

2.2. Polar Codes

Now, let us introduce error correcting codes. In communications, channels are used
to send data which might be corrupted during transmission due to the noisy nature of
the channel. In order to prevent this from happening, one could encode the data that
are sent in a clever way, such that in the case where a bit is inverted while transmitting,
it would be obvious to the receiver and could thus be corrected. This error controlling
mechanism is called error correction. To perform error correction, we use error correcting
codes (ECC). There are several types of ECC, but the main idea behind all of them is that
before transmitting the data, one encodes it using redundant information, which will then
help the receiver detect and correct inverted (flawed) bits without needing to retransmit
the whole message. Error correction is, thus, essential for efficient communication. The
maximum performance limit of such codes was set by Shannon and can be achieved by a
few ECCs. In this paper, we focus on one of them, namely Polar Codes, but similarly to our
research, other ECCs are expected to achieve analogous results. The extent to which other
ECCs can perform alongside Kyber is a field that could be further explored in the future.

A Polar Code is an error correction code that uses a linear block of length N = 2n. It
was introduced by Arikan and has been proven to achieve Shannon capacity for binary
discrete memoryless symmetric (BDMS) channels. To measure the performance of Polar
Codes, one can use mutual information and the Bhattacharyya parameter of BDMS channels.
These two are defined as follows:

Definition 1. Mutual information (I(W)) is a measure of the rate at which information can be
transmitted. I(W) ∈ [0, 1] and is given by the following equation:

I(W) , ∑
y∈Y

∑
x∈X

1
2

W(y | x) log
W(y | x)

1
2 W(y | 0) + 1

2 W(y | 1)

A larger I(W) indicates a better transmission rate.

Definition 2. The Bhattacharyya parameter (Z(W)) is a measure of reliability of the channel.
Z(W) ∈ [0, 1] and is given by the following equation:

Z(W) , ∑
y∈Y

√
W(y | 0)W(y | 1).

A smaller Z(W) indicates a more reliable channel and is preferred.
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The idea behind Polar Codes is to split a noisy channel into N = 2n sub-channels and
to polarize them, resulting in some channels having I(W) ≈ 0 and some others having
I(W) ≈ 1. Then, use the more reliable channels (I(W) ≈ 1) in order to transmit a message
without much interference. Then, decide how to decode the received bit (after the effect
of noise), based on some likelihoods that will indicate the bit that was sent. The better
the channel, the more obvious it would be to decode the received bits by observing the
likelihoods.

For the base case, where n = 1, there are N = 2 channels, as shown below.
Suppose that there are two independent inputs Z1 and Z2, which are random variables

of a discrete distribution:
The output yi shown in Figure 1 of the channel W2 is given by the following:

y1 = u1, y2 = u1 + u2 (1)

which, using matrices, can be written as follows:

y =
[

1 0
1 1

]
u

Figure 1. The channel W2.

For a larger n = 2 (N = 4), one should expect the following matrix:

y =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 u

To achieve larger N, smaller channels are used recursively, resulting in the follow-
ing formula.

y = G⊗n
2 u

where ⊗ represents the Kronecker product defined as follows:

A⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


where n = log2N, N = number of channels.

As shown by Arıkan in [6], as N→ ∞, the N channels are split into two categories:

1. Channels where I(W(i)
N ) ∈ (1− δ, 1];

2. Channels where I(W(i)
N ) ∈ [0, δ)
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for δ ∈ (0, 1) and
lim

N→∞
δ = 0

This proves that, for a larger N, a fraction of the channels are reliable (I(W(i)
N ) ≈ 1) and

the rest are unreliable (I(W(i)
N ) ≈ 0). In the two cases introduced, for W2, u1 would be the

reliable one and u2 is the unreliable one. For W4, u1 and u2 are the most reliable, whereas u3
and u4 are the least reliable. The list of channels sorted from most reliable to least reliable
is called reliability sequence and has been found for every N experimentally through
simulations [12], and it is thus beyond the scope of the paper to investigate any further.

2.3. Security against Side Channel Attacks

In this section, we prove why wrapping Kyber with Polar Codes is safe against side
channel attacks (SCAs). As explained in [13,14], Polar Coding does not leak any sensitive
information to the attacker. To prove this, we must look at encoding and decoding separately.

For encoding, it is sufficient to say that the number of logic XOR gates used to perform
encoding is constant, independent of input, and is equal to nlogn

2 , where n = block length.
Decoding needs a three part proof. Firstly, calculating the transition probabilities W

does not leak sensitive information as exactly nlogn floating point operations take place.
Secondly, the time needed for the comparison between the likelihoods is only dependent
on how close the two floating numbers that we are comparing are, but that does not give
information about the output of the comparison. Finally, the amount of XOR operations
used to decode is identical to this to perform encoding, and as explained before, it is
independent of the plaintext input.

3. Materials and Methods
3.1. Kyber Analysis

As mentioned, the goal is to increase Kyber’s security by adding Polar Codes. The
idea is to encode the message before encrypting it and to decode it after decryption. This
would look like the following flowchart:

With Figure 2 in mind, one can interpret the encryption–transmission–decryption
(Kyber) as the channel over which the encoded message will be transmitted and can thus
calculate its signal-to-noise ratio (SNR). To achieve this, Kyber must be treated as a fading
channel in order to separate the information from the noise. The following derivation is
used to perform this separation [4,15] and uses the equations explained in Section 2.1:

output = y = v− sTu (2)

where s,u ∈ Rk
q and v ∈ Rq.

tT = As + e (3)

where A ∈ Rkxk
q and s, e ∈ Rk

q.

u = Decompressq

(
Compressq

(
ATr + e1, du

)
, du

)
= ATr + e1 + cu (4)

where r, e1, cu ∈ Rk
q.

v = Decompressq

(
Compressq

(
tTr + e2 + dq/2c ·m, dv

)
, dv

)
= tTr + e2 + dq/2c ·m + cv (5)

where t,r, cu ∈ Rk
q and e2, cv ∈ Rq.

Using these new equations, one can obtain the following:

y = v− sTu = dq/2c ·m + eTr− sTe1 + e2 + cv − sTcu (6)
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so the information term is dq/2c ·m and the noise term is

N = eTr + e2 − sTe1 + cv − sTcu (7)

Now, we need to analyse the noise term to find its distribution. To achieve this, the
script distributions.ipynb has been developed (This script can be accessed at https:
//github.com/Jason-Papa/KyberPC/blob/main/distributions.ipynb (accessed on 22 June
2022)) which samples each term of N 100,000 times using in this case the parameters set for
Kyber768 and produces the following plot. lad

Clearly, from Figure 3, one can conclude that, as the number of samples increase, the
distribution of N can be approximated by a normal distribution. The mean and variance
can be found in Table 2:

Figure 2. Kyber with Polar Codes (Kyber as a channel).

(a) 10 samples (b) 1000 samples (c) 100,000 samples

Figure 3. Experimental distribution of NKyber with Kyber768 parameters.

Table 2. Mean and variance of the NKyber.

# of Trials Mean Variance

10 0.1953 6068.48
100 0.3911 5859.28

1000 −0.06599 5838.79
10,000 0.01449 5856.93
50,000 0.0578 5854.60

100,000 0.01642 5855.87

From the results in Table 2 above, one observe that

lim
#o f trials→∞

µ = 0, σ2 = 5856

Moreover, using the Kyber equation derived before, one can define the signal-to-noise
ratio as follows:

SNRKyber =
q2

4σ2 =
33292

4× 5856
≈ 473 = 26.75 dB (8)

https://github.com/Jason-Papa/KyberPC/blob/main/distributions.ipynb
https://github.com/Jason-Papa/KyberPC/blob/main/distributions.ipynb
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3.2. Polar Code Selection

Now that the SNR of the channel has been calculated, we need to select the code rate
(r = N

K , where N = block length and K = codeword length) of the Polar Code that will used.
Since the input to Kyber encryption is fixed (n = 256), the only decision that has to be made
is that of K. We now come against a trade-off between channel usage and performance of
Polar Codes. A small value of K will lead to better performance as only the very reliable
subchannels will be used for transmission, but on the other hand, this is not efficient. As K
increases, less reliable subchannels will be used but the amount of unused channels will
decrease. Another important consideration that has to be taken into account is that the
scheme must be able to send 256 bits of useful information in every transmission. Since
n = 256 and, by definition, adding any Error Correcting Code creates some redundant bits,
we can see that this is not possible. To accommodate for this issue, the value of K selected
was 128, and thus all 256 bits of useful information will be split into 2128-bit chunks and
sent separately using the same key. That way, n remains the same, which results in the
complexity of polynomial multiplications being the same as before while maximizing the
error-correcting effect of Polar Codes.

3.3. Kyber–Polar Codes Compatibility

Now that we are ready to put everything together, we must make sure that Polar
encoding is compatible with Kyber encryption and Kyber decryption is compatible with
Polar decoding. For the former, the larger encoded message is broken down into 256-bit
chunks and each one is encrypted individually. All chunks of the same encoded message
can use the same samples, thus saving some computations (polynomial multiplications).
For the latter, a more complex process must be followed. More specifically, the decrypted
output of Kyber must update the Log-likelihoods. To achieve this, a mapping function was
developed to map Kyber 0 s (which were mapped around 0 mod q) to 0 and Kyber 1 s
(which were mapped around q/2 mod q) to 1. This is shown visually in Figure 4:

(a) Kyber Output (b) Mapped Output

Figure 4. Mapping algorithm.

This allows for the Log-likelihoods to be updated by multiplying the mapped output
by a constant, which is based on the SNR and the code rate, allowing for Polar Codes to
decode the bits. Now, we are ready to put everything together and to start experimenting
with the security parameters while calculating the DFRs that emerge due to the new
parameters used.

4. Results

In order to analyse the results, we must first understand how the changes in Kyber
parameters affect them. First, security comes solely from the Kyber parameters as Polar
Codes do not affect it at all but are used to ensure that the DFR is below the boundary.
Moreover, increasing the security by changing some Kyber parameters comes at the cost
of an increased DFR, thus reaching values that surpass the upper bound set by the NIST
(2−128). By applying Polar Codes to Kyber, we can calculate the block error rate (BLER),
which in this case, is the same as the DFR of the scheme. To achieve this, we treat Kyber
as the channel, and thus, Kyber’s parameters correspond to a certain SNR value, which
is used to calculate the upper bound of the DFR by finding the sum of the Bhattacharya
parameters, as suggested in [6]. To alter the security, we first use the security parameter
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k, as suggested by the CRYSTALS development team in [15]. The security estimates for
different values of k when η1, η2 = 2 are presented in Table 3.

Table 3. Kyber with Polar Codes security estimates for different k.

k SNR (dB) DFR
(Kyber
Only)

BLER Primal Attacks
Classic/Quantum

(bits)

Dual Attacks
Classic/Quantum

(bits)

Time per
Transmission

(s)

3 26.75 2−164 2−1638 182/165 181/164 0.419615
4 26.2 2−126 2−1442 256/232 253/230 0.4833
5 25.75 2−102 2−1299 332/301 327/297 0.6016
6 25.35 2−85 2−1184 409/371 403/365 0.6807
7 24.95 2−73 2−1080 487/442 479/434 0.8353
8 24.6 2−64 2−995 567/514 556/504 0.9253

10 23.95 2−51 2−856 727/660 715/650 1.1895

In Table 3, DFR refers to the decryption failure rate that the Kyber has without in-
cluding Polar Codes, whereas BLER refers to the probability that a message is incor-
rectly received after decoding. This is the same as the DFR of the new scheme (Ky-
ber with Polar Codes). The BLER estimates were obtained by the FERestimate vari-
able in https://github.com/mcba1n/polar-codes/tree/master/polarcodes (accessed on
30 June 2022), which is the sum of the Bhattacharya parameters . The security esti-
mates were obtained by the script provided by the CRYSTALS team, which is available
at https://github.com/pq-crystals/security-estimates/blob/master/Kyber.py (accessed
on 5 November 2022). In this script, there are some functions that find the best possible
quantum attack for the given MLWE parameter set, both for primal and dual attacks, and
return the security in bits. The same script was used by the CRYSTALS team to calculate
Kyber’s security in [4].

The values obtained for BLER are extremely small, but we need to keep in mind that,
by viewing Kyber as the channel, we end up with a very large SNR, and given that the code
rate is 0.5, meaning that we only use the best 50% of the subchannels created, we can expect
that the probability of too many bits being inverted through the addition of Kyber’s error
terms (e1, e2, etc.), making Polar decoding unable to detect them, is extremely small. Note
also that these are estimates, not exact values, and testing is only indicative of the scheme
working, as finding a case where a message would fail to decode is practically impossible.

As we can see, increasing k leads to better security but, at the same time, the time per
transmission is also increased. Although the software is not optimized and the time to
complete every transmission is largely depending on the hardware used, the percentage
increase in time is indicative of the number of polynomial multiplications increasing linearly
as k increases. Moreover, a security above 300 quantum bits is considered overkill, thus
suggesting that a value of k above 6 is not sensible, but is just given as an indication for
possible future needs and will not be explored any further.

Even though the results obtained are satisfactory, we can achieve better by introducing
a new method of increasing the security, that is, to change the binomial parameter η. This
method’s most important benefit is that security can be strengthen without the need for
more calculations. In the specification, it is not recommended that η be used to enhance the
security because there is a strong relationship between that and the DFR. This is because
the variance of the noise term increases and, thus, decryption becomes more likely to fail.
In our case, where Kyber is the channel, this increase in η is reflected by a decrease in
SNR, but the increase in BLER does not exceed the bounds. It is thus possible to use it in
combination with a higher k to achieve better results.

From Table 4, one can observe that, by increasing η, the classical bit security for
primal attacks for the case where k = 4 can be increased from 256 to 281 bits (10% increase)
while keeping the transmission time constant. Although theoretically, this idea can be
extrapolated until the DFR hits the boundaries set by the NIST, it is safer to leave a generous

https://github.com/mcba1n/polar-codes/tree/master/polarcodes
https://github.com/pq-crystals/security-estimates/blob/master/Kyber.py
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gap between the predicted value and that boundary. It is also not sensible to try to further
increase the security as even the base case, which is 164 qubits secure, is considered safe for
the time being.

Table 4. Kyber security parameters for different values of η and k.

k η SNR (dB) DFR
(Kyber
Only)

BLER Primal Attacks
Classic/Quantum

(bits)

Dual Attacks
Classic/Quantum

(bits)

Time per
Transmission

(s)

3 2 26.75 2−164 2−1638 182/165 181/164 0.4196
3 3 25.6 2−83 2−1255 193/175 191/174 0.4196
3 4 23.9 2−50 2−847 201/182 199/181 0.4196
4 2 26.2 2−126 2−1442 256/232 253/230 0.4833
4 3 24.8 2−63 2−1043 270/245 267/242 0.4833
4 4 23.0 2−37 2−687 281/254 278/252 0.4834
5 3 24.0 2−50 2−866 349/316 345/313 0.6016
5 4 22.3 2−29 2−584 362/328 359/325 0.6016
5 5 20.9 2−18 2−421 373/338 369/335 0.6016

In summary, in this section, we have shown that the introduction of Polar Codes
around Kyber gives us the flexibility to use higher security parameters (k). The problem
with that is that increasing k comes at the expense of more mathematical operations. To
avoid this extra complexity, changing another parameter which was not mentioned by
Kyber’s development team, namely η, can lead to a security increase without an increase in
time. We suggest a combination of these two methods and, thus, propose the following
new parameters:

The parameters presented in Table 5 can obtain a classical bit security of 281, which
compared to the initial security, which was 182, is a 54.4% increase in security.

Table 5. Suggested Kyber parameters with Polar Codes.

n k q η1 η2 du dv

KYBER-PC 256 4 3329 4 4 10 4

5. Discussion

Now that the results have been presented, it is time to talk about their influence to
the future of post-quantum cryptography. Although quantum computers that are reliable
and capable of breaking modern day encryption schemes are still under development, it
is never too early to develop tools that give us flexibility in terms of increasing security.
This paper has thoroughly presented one such tool and opens the way for further inves-
tigation on the effect of other error correcting codes such as low-density parity checks
(LDPC) and BCH codes. It is also straightforward to apply this technique to other MLWE
cryptosystems by leaving out the error terms in the noise that arise from compressing and
decompressing values.

Moreover, this research motivates researchers to develop hardware-efficient imple-
mentation of Kyber with Polar Codes that could be beneficial for real-time communication.
Similar to [16,17], where FPGAs were used to improve Kyber key generation, encryption
and decryption time, one can implement an FPGA solution that performs Polar encoding
and decoding steps as well, in order to get the best of both worlds.

It should also be noted that, if one wants to decrease the key size of Kyber, our findings
can be used to keep the security at a safe level by altering the parameters appropriately.

Since this field is relatively new, there has not been any previous research that focuses
on Kyber. A similar approach to post-quantum encryption was taken in [8] where Polar
Codes were applied to RLWE schemes with NewHope [9] in mind. The results on that
research are compliant with those found here.
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Before concluding this paper, it is essential to discuss the limitations of the proposed
solution. As shown by the results, increasing the value of the security parameter k as a
negative effect in time per transmission, which is not desirable for real life communications.
Moreover, this increase in transmission time will be further increased by the Polar encoding
and decoding steps that have been added. In order though to draw more accurate solutions,
software/hardware-optimised versions of the suggested solution must be implemented to
be compared with plain Kyber.

6. Conclusions

To conclude, it has been shown that error correction can be proven to be beneficial
when wrapping a Kyber-encrypted transmission as it can lower the decryption failure rate.
One can thus take advantage of the new, smaller DFR to increase security parameters and
to achieve higher security. Under our suggested values for the Kyber’s parameters, the
security can be increased by 54.4% when compared to Kyber768, while keeping DFR below
the acceptable boundary. We also gave motivation to interested researchers for relevant
topics to be explored.
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