
Citation: Khashan, O.A.; Khafajah,

N.M.; Alomoush, W.; Alshinwan, M.;

Alamri, S.; Atawneh, S.; Alsmadi,

M.K. Dynamic Multimedia

Encryption Using a Parallel File

System Based on Multi-Core

Processors. Cryptography 2023, 7, 12.

https://doi.org/10.3390/

cryptography7010012

Academic Editor: Josef Pieprzyk

Received: 21 January 2023

Revised: 1 March 2023

Accepted: 2 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Dynamic Multimedia Encryption Using a Parallel File System
Based on Multi-Core Processors
Osama A. Khashan 1,* , Nour M. Khafajah 2, Waleed Alomoush 3, Mohammad Alshinwan 4 , Sultan Alamri 5 ,
Samer Atawneh 5 and Mutasem K. Alsmadi 6

1 Research and Innovation Centers, Rabdan Academy, Abu Dhabi P.O. Box 114646, United Arab Emirates
2 Department of Cyber Security, Faculty of Science and Information Technology, Irbid National University,

Irbid 21110, Jordan
3 School of Information Technology, Skyline University College, Sharjah P.O. Box 1797, United Arab Emirates
4 Faculty of Information Technology, Applied Science Private University, Amman 11931, Jordan
5 College of Computing and Informatics, Saudi Electronic University, Riyadh 13316, Saudi Arabia
6 Department of MIS, College of Applied Studies and Community Services,

Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
* Correspondence: okhashan@ra.ac.ae

Abstract: Securing multimedia data on disk drives is a major concern because of their rapidly in-
creasing volumes over time, as well as the prevalence of security and privacy problems. Existing
cryptographic schemes have high computational costs and slow response speeds. They also suffer
from limited flexibility and usability from the user side, owing to continuous routine interactions.
Dynamic encryption file systems can mitigate the negative effects of conventional encryption appli-
cations by automatically handling all encryption operations with minimal user input and a higher
security level. However, most state-of-the-art cryptographic file systems do not provide the desired
performance because their architectural design does not consider the unique features of multimedia
data or the vulnerabilities related to key management and multi-user file sharing. The recent move
towards multi-core processor architecture has created an effective solution for reducing the compu-
tational cost and maximizing the performance. In this paper, we developed a parallel FUSE-based
encryption file system called ParallelFS for storing multimedia files on a disk. The developed file
system exploits the parallelism of multi-core processors and implements a hybrid encryption method
for symmetric and asymmetric ciphers. Usability is significantly enhanced by performing encryp-
tion, decryption, and key management in a manner that is fully dynamic and transparent to users.
Experiments show that the developed ParallelFS improves the reading and writing performances
of multimedia files by approximately 35% and 22%, respectively, over the schemes using normal
sequential encryption processing.

Keywords: parallel encryption; multimedia encryption; file system; multi-core processors; cryptography

1. Introduction

Multimedia data such as images and videos are currently playing a significant role
in society, and huge volumes of multimedia files are stored on disk drives and removable
storage media. Unfortunately, many potential threats and security attacks are directed
towards violating the privacy of personal information on these storage devices, particularly
multimedia, which prompts a significant amount of interest from the research community.

Storage encryption is the most effective solution for providing advanced protection
against threats and preserving the confidentiality and privacy of storage [1]. However,
designing cryptographic techniques for multimedia data at rest is complex. This is because
cryptography is known to be a mathematically heavy operation, particularly for multimedia
data, which have unique properties such as bulk data capacity, a high redundancy, a strong
correlation between data elements, and the use of various formats for file storage, as well

Cryptography 2023, 7, 12. https://doi.org/10.3390/cryptography7010012 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7010012
https://doi.org/10.3390/cryptography7010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-1965-1869
https://orcid.org/0000-0002-3864-7323
https://orcid.org/0000-0001-8429-6598
https://orcid.org/0000-0001-7590-7887
https://orcid.org/0000-0001-6892-8399
https://doi.org/10.3390/cryptography7010012
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7010012?type=check_update&version=1

Cryptography 2023, 7, 12 2 of 17

as long computing times and vast amounts of processing power during encryption and
decryption. This poses a great challenge for multimedia cryptosystems by preventing
them from being used heavily in real time [2,3]. Other problems related to the security
level provided by multimedia applications may be reasonable from the designer’s point
of view but do not consider sudden unexpected attacks [4]. Although existing end-user
encryption applications are ubiquitous, they still suffer from several inherent weaknesses in
terms of security, flexibility, transparency, and performance efficiency. The manual nature
of encryption applications and the additional overhead incurred by users in performing
cryptographic operations are cumbersome and time-consuming. This routine usage leads
users to be careless regarding potential threats and leave files in plain text format [5].

Current research trends in cryptographic file systems address the limitations of en-
cryption applications by implementing a dynamic mechanism for managing, controlling,
and monitoring encryption, decryption, and key management operations with the help
of operating system file systems. Moreover, they can perform cryptographic operations
in a highly secure, transparent, and efficient manner. Cryptographic file systems exist in
two forms, either implemented inside the kernel space or as a file system residing in the
user space. At the kernel space level, the cryptographic file system can be implemented
as a middleware layer to encrypt individual files or directories using file system filter
driver technology in the Windows kernel [1,4,6,7] and Unix-like stackable file system [8,9].
Furthermore, a cryptographic file system can be implemented as a low-level file system
layer, operating under the real file system, either as a block device layer attached to the
storage disk itself [10] or a virtual disk driver [11] providing encryption for all single- or
multiple-disk partitions.

The file system in user space (FUSE) is a Unix-like framework that allows a non-
privileged user to implement a file system to perform a particular functionality in the
user space [12]. Such an approach can provide a robust solution for storage security at a
high transparency level without the requirement for editing the underlying kernel level
or significantly changing the design and implementation of the basic file system [13]. A
considerable number of studies and projects have employed FUSE technology to provide
transparent encryption for various types of data at rest. In this study, we present a parallel
user-level encrypted file system called ParallelFS based on FUSE technology for multimedia
data. The motivations behind this study are to mitigate or completely eliminate issues
related to the security, efficiency, transparency, and user convenience of existing kernel-level
and FUSE-based encryption file systems. ParallelFS is designed with the main goal of
providing higher cryptographic performance and achieving the lowest possible response
time when reading or writing stored multimedia files. The contributions of this study
include the following:

1. A parallel and fully dynamic cryptographic file system that utilizes the parallelism of
multi-core processors was developed to accelerate cryptographic operations and key
management and improve the system response time for stored multimedia files.

2. Hybrid methods constructed from symmetric and asymmetric ciphers and hash
algorithms are used to improve the security of multimedia files and allow for efficient
file sharing among multiple users.

3. The performance is analyzed, and the results are compared with those of related
work. The results demonstrate the efficiency of the developed parallel file system in
improving the encryption speed and shortening the system response time, as well as
its ability to ensure protective security.

The remainder of this paper is organized as follows. Section 2 overviews the FUSE
and discusses the design goals. Section 3 presents the related work. Section 4 details the
proposed parallel-encryption file system. Section 5 discusses the performance evaluation
of the implemented file system. Finally, Section 6 concludes the paper.

Cryptography 2023, 7, 12 3 of 17

2. Background and Design Goals

In this section, we first provide an overview of the FUSE structure. Then, we discuss
the basic design goals of the proposed scheme.

2.1. Overview of FUSE

FUSE is a user space file system development framework that utilizes the Linux high-
level application interface (API) to extend the kernel-level functionality in user space. The
design structure of FUSE includes the FUSE kernel driver which interacts with the kernel on
behalf of the non-privileged user/application and deals with API to present a virtual device
that is able to communicate with a user file system code running in the user space [14].

Generally, a file system is a type of kernel module that has two functions. The first
is to provide the user with a method for accessing their data, and the second is to build
a logical structure for managing the data, where both functions are realized in the kernel
space. In the case of FUSE, it simply provides hooks for user space applications to provide
the functionality that a kernel module would have provided to instantiate a file system,
whereas the developer is responsible for realizing the logical relationship structure of the
file system that is used to manage the data [15]. Logically, the FUSE is divided into a set of
file system callback interfaces that are used to process incoming requests from the kernel
and into a set of forward processes used to control the operations of the FUSE itself. The
user is initially required to mount the FUSE over a special directory called a mount point.
This mounting operation basically creates a map between the source directory and the
mount point to provide a dynamically transparent service that is realized at the mount
point. When FUSE is mounted, the file system type is directly registered to the Linux
kernel in order to let it know that the file system on that specific directory is FUSE [16].
The mount utility is included in the FUSE library, and during the mount time, the user
space file system daemon can realize the logical relationship to manage the files of the
source directory and read their metadata [13]. When a system call is issued to read a file
from a mount point, the virtual file system kernel (VFS) will first check whether the file is
available in the kernel-space page cache to return immediately; otherwise, the system call
will be forwarded to the FUSE library to invoke the callback in the user space file system
daemon [17]. While the file system is running at the mount time, the FUSE daemon cannot
be called by VFS without the use of FUSE. In some cases, FUSE may take another action,
such as returning the requested data into the buffer, or it may perform some pre-processing
by requesting data from the underlying file systems [18]. Eventually, when the mounting
connection is no longer needed, the mount point directory contents automatically disappear
as soon as the file system is unmounted.

2.2. Design Goals

In this work, we aim to design a cryptographic file system that dynamically encrypts
and decrypts multimedia files stored on disk drives and to achieve the following goals:

1. The designed ParallelFS cryptographic file system must encrypt multimedia files at
the user space before being stored on a disk so that the files remain encrypted during
storage using robust encryption algorithms and strong encryption keys. Meanwhile,
the designed ParallelFS should automatically decrypt the files when they are accessed
by the data owner.

2. The designed ParallelFS should achieve high efficiency when performing the encryp-
tion and decryption operations, without affecting the system performance and data
access response time. Moreover, the cryptographic and key management operations
are realized at the fine-grained level of individual multimedia files; there is thus no
need to incur additional computational costs and time delays caused by encrypting
and decrypting the entire multimedia files each time the file system is mounted.

3. The designed ParallelFS must dynamically perform the encryption, decryption, and
key management operations in a fully transparent manner so that the user will not

Cryptography 2023, 7, 12 4 of 17

notice any difference when files are stored or accessed. In the meantime, the efforts of
a user in managing the encryption keys should be reduced.

3. Related Work

Several state-of-the-art file system architectures have been proposed to perform mul-
tiple functionalities, such as encryption [1], detection [19], compression [20], and access
control [6]. Kernel-level encryption file systems are designed to provide transparent en-
cryption at the granularity of a single file [2], single partition [21], or on-the-fly full disk
encrypt [22]. However, developing a file system and inserting it into the operating system
kernel as a middleware or block device layer to fully function, such as for transparent
encryption, is difficult and complicated, depending on many operating system specifics
and interacting components of the kernel data structure [15].

Therefore, user space cryptographic file systems have been developed to provide
similar features offered by kernel-level cryptographic file systems, but with less imple-
mentation effort. The authors in [23] proposed CFS as a network file system that allows
an authenticated user to create a source directory in a local or remote file system to store
encrypted files. The CFS daemon allows the source directory at the mount time to open a
directory called the mount point, which displays the user files in an unencrypted format.
In [24], the authors presented EncFS as a cryptographic file system layer in the user space,
developed using the FUSE library. EncFS can be mounted over a secure directory used to
store the user’s sensitive files and then performs transparent encryption for all stored files
using standard ciphers, such as AES and Blowfish. In EncFS, a global password is used to
authenticate user access, and a single encryption key is used to encrypt all files. In [25] a
working extension was provided to EncFS to enable it to support multi-user file sharing
and file-based access control. Here, a trusted shared server was used to store shared files,
and a key management model was designed to authenticate users for securely accessing
shared files. The authors in [17] introduced ImgFS as a user-level file system built on top
of FUSE to provide transparent encryption for digital images stored on a disk. In ImgFS,
user authentication and access control for a secure mount session are performed through a
Linux-based pluggable authentication module (PAM), which dynamically authenticates a
legitimate user at the mount time for entering a secure ImgFS session, with the ability to
support image file sharing between users. Furthermore, the system automatically mounts
the ImgFS during the Linux login session time to transparently encrypt or decrypt the
image file in its corresponding place in the original source home directory located under the
root file system. The authors in [26] presented SafeFS, an FUSE-based modular architecture
that provides encryption, replication, and coding features for user files in stackable building
blocks and can access remote data stores. SafeFS is also designed by allowing users to
customize their data store according to their specific needs by defining a set of blocks for
protection and sped-up performance. In [13], the OutFS is presented, which is a crypto-
graphic file system that provides transparent encryption for outsourced files stored on a
cloud server. The file system was designed to be mounted on top of the synchronized cloud
directory that stores encrypted user files and provides a virtual mount point to display the
user files in an unencrypted format on the user’s machine. Moreover, the developed OutFS
file system handles the identity of file owners, the integrity of outsourced files, and the
shareability of files among users.

However, all these schemes were designed based on the normal execution of the
FUSE library, which suffers from high performance overhead owing to the effect of context
switches caused by file system calls [27]. The performance and resource utilization of FUSE
over different workloads have been extensively studied [28]. In [29], the efficiency of the
encryption process in FUSE was improved by reducing the file decryption operations. A
cache module was attached to the FUSE library to store the plaintext of the encrypted files
to be accessed upon user request. Otherwise, FUSE reads the file’s data from its original
location on the disk and then decrypts and caches it to be reached on future system requests.
Numerous parallel file systems designed to provide different functionalities are classified

Cryptography 2023, 7, 12 5 of 17

into commercial parallel file systems that provide high-performance processing for I/O-
intensive applications, such as GPFS for IBM [30]. They can also be used to research parallel
file systems, such as PVFS [31]. Nonetheless, most parallel file systems have been developed
for distributed computing to provide user machines with concurrent distributed access
and processing regarding files [32]. Moreover, existing FUSE-based cryptographic schemes
use sequential processing construction and do not keep pace with multi-core computing
capabilities. Therefore, the multimedia encryption performance must be accelerated, and
the system response time must be improved.

4. Proposed Parallel Multimedia Encryption File System

This section provides an overview of the proposed ParallelFS encryption file system.
Subsequently, we present the structural details of parallel encryption using multi-core
processors. Finally, the implemented hybrid encryption scheme for multimedia data
is described.

4.1. Design Overview

The proposed ParallelFS was designed as a backend file system layer located in the
user space to provide a transparent cryptographic service for multimedia files on the fly.
This allows users to use it in a similar manner to traditional file systems with the ability to
work with single- and multi-user systems. General FUSE framework is structured from
the FUSE kernel driver and user space file system daemon. Through the FUSE library, the
FUSE kernel driver provides the developer with a set of standard system calls that enable
the development of a custom FUSE file system for adding a new feature or improving
existing functionalities. Figure 1 shows the general architecture of the FUSE framework
and the interactions between its components. ParallelFS was designed to interact with
standard file system calls such as open, read, write, and save for multimedia files stored on
a disk.

Cryptography 2023, 7, x FOR PEER REVIEW 6 of 17

The proposed ParallelFS file system was designed to provide a mandatory

mechanism using a hybrid encryption scheme for encrypting and decrypting a

multimedia file each time a user sends a request and before a write or read operation is

conducted. When a multimedia file is stored for the first time in a directory under the

ParallelFS mount, encryption keys are randomly generated, and the multimedia file

blocks are encrypted to generate an encrypted file version in this secure source directory,

without user intervention. The designed file system can support a wide range of

multimedia file formats compatible with various multimedia applications, including

images, audio, and video file formats. We used the magic signature stored on the metadata

of the multimedia file header to recognize the file type. Moreover, the file system was

designed to avoid unnecessary decryptions and re-encryptions of unused files each time

a user mounts the file system by restricting the decryption process to the fine-grain level

of an individual multimedia file. When a user mounts ParallelFS over a root directory,

e.g., /Multidir, the hierarchy tree of this root directory becomes a mount point that

automatically displays the user’s selected file in an unencrypted format. This provides the

user with the flexibility to store secure multimedia files without being restricted to a single

directory location. Simultaneously, all stored files are transparently encrypted on the

corresponding source directory, which is provided a suffix extension /Multidir.sec to

distinguish it.

ParallelFS was also designed to handle a dynamic key management process and

enforce user authentication during the mount time. The system administrator is

responsible for installing the ParallelFS file system and configuring the authentication

policy to allow a non-privileged user to mount the file system and enter a secure mounting

session. Each user has a login authentication key that is used to mount the file system,

which is generated from a hash of the Linux login passphrase using SHAKE-128 [33]. In

addition, each user has a public and private key pair (Pk, Prk) that is used to

encrypt/decrypt symmetric file encryption keys. When file data are encrypted with a

symmetric key (K), the Pk of the user is used to encrypt K and append it to the header of

the multimedia file. Figure 2 summarizes the interaction between the proposed

multimedia file system components in performing the encryption/decryption processes

for a stored/opened multimedia file.

Figure 1. FUSE framework architecture. Figure 1. FUSE framework architecture.

When a user or application initiates a system call for a multimedia file, the system
call is dynamically intercepted by the VFS layer of the Linux kernel. The VFS is a kernel
software layer that provides an interface for all file systems and storage devices. It handles
all system calls, abstracts the functionality of the file system, consults the mounted file
system table, and parses the file path. When the VFS realizes that the system call concerns a
multimedia file stored in a directory within the ParallelFS mount, it forwards the system call
to dev/FUSE. At the user level, the FUSE library handles the main functions responsible
for mounting the ParallelFS, initializes the data structure, and manages the communication
between the FUSE kernel driver and ParallelFS daemon. Once the FUSE library realizes
that a system call is currently in the kernel queue, it invokes the request from dev/FUSE,
processes it, and involves the callback functions required to execute ParallelFS. After the

Cryptography 2023, 7, 12 6 of 17

cryptographic function is executed, the FUSE library writes the results back to dev/FUSE
and then to the FUSE kernel driver. Finally, the FUSE driver returns the response to either
the disk for storage or the user application that sent the request.

The proposed ParallelFS file system was designed to provide a mandatory mechanism
using a hybrid encryption scheme for encrypting and decrypting a multimedia file each
time a user sends a request and before a write or read operation is conducted. When
a multimedia file is stored for the first time in a directory under the ParallelFS mount,
encryption keys are randomly generated, and the multimedia file blocks are encrypted to
generate an encrypted file version in this secure source directory, without user intervention.
The designed file system can support a wide range of multimedia file formats compatible
with various multimedia applications, including images, audio, and video file formats. We
used the magic signature stored on the metadata of the multimedia file header to recognize
the file type. Moreover, the file system was designed to avoid unnecessary decryptions
and re-encryptions of unused files each time a user mounts the file system by restricting
the decryption process to the fine-grain level of an individual multimedia file. When a
user mounts ParallelFS over a root directory, e.g., /Multidir, the hierarchy tree of this root
directory becomes a mount point that automatically displays the user’s selected file in an
unencrypted format. This provides the user with the flexibility to store secure multimedia
files without being restricted to a single directory location. Simultaneously, all stored files
are transparently encrypted on the corresponding source directory, which is provided a
suffix extension /Multidir.sec to distinguish it.

ParallelFS was also designed to handle a dynamic key management process and
enforce user authentication during the mount time. The system administrator is responsible
for installing the ParallelFS file system and configuring the authentication policy to allow a
non-privileged user to mount the file system and enter a secure mounting session. Each
user has a login authentication key that is used to mount the file system, which is generated
from a hash of the Linux login passphrase using SHAKE-128 [33]. In addition, each user
has a public and private key pair (Pk, Prk) that is used to encrypt/decrypt symmetric file
encryption keys. When file data are encrypted with a symmetric key (K), the Pk of the
user is used to encrypt K and append it to the header of the multimedia file. Figure 2
summarizes the interaction between the proposed multimedia file system components in
performing the encryption/decryption processes for a stored/opened multimedia file.

Cryptography 2023, 7, x FOR PEER REVIEW 7 of 17

Figure 2. Workflow of ParallelFS components for multimedia file encryption/decryption.

4.2. Sequential vs. Parallel Processing Patterns

In sequential processing, encryption is composed of a chain of sequential processes

of file blocks that run dependently; the encryption of each block depends on the instant

output of a previous ciphered block. Therefore, reading or writing a large storage file

using cryptographic services is a major bottleneck [32]. The difficulty of this challenge

increases if applied to user space applications. Cryptographic file systems typically

optimize performance because they combine encryption and integrity protection

techniques, and all related computations are performed in a highly seamless and

compatible manner, without many data copies between the kernel and user space.

However, the file system schemes were designed in such a way to primarily handle a file

as an addressable sequence of bytes and blocks, thereby preventing them from exploiting

the recent advances in multi-core processors.

Parallel cryptographic file systems can significantly address the processing overhead

incurred by cryptographic operations and reduce the system response time. Here, the

encryption and decryption of separate file blocks were computed independently and

processed concurrently using multiple processes and threads in a parity form. Although

cryptographic file systems require less memory in sequential construction, the parallel

cryptographic file system effectively provides a high-performance cryptographic solution

to treat large data files and reduce the effects of bottlenecks (imposed by heavy

workloads), and it can thus be used to satisfy real-time demands [34]. We improved the

performance of existing cryptographic file systems by developing ParallelFS to support

the cryptographic workload by concurrently processing a common set of multimedia file

blocks.

The primary goal of ParallelFS is to achieve both a higher cryptographic performance

and a faster response time for each multimedia file read and write request. However, the

performance level is driven by reserved processes, resource workloads, and the

technological environment. Moreover, the variation in synchronization and the difference

in the computation of parallel threads affect the performance of CPU cores. In a multi-core

CPU, one core may be overloaded by waiting for I/O operations or entering a low-power

idle state. When executing tasks that vary in size, one core may complete its process before

other cores, thereby reducing the efficiency and increasing the system response time. To

avoid this, in the proposed scheme, we measured the CPU utilization of threads by

measuring the amount of time each thread spends executing on the core. Thread

scheduling in ParallelFS is based on the completely fair scheduler (CFS) of Linux. It

periodically and dynamically measures the CPU utilization of running threads such that

fewer cryptographic processing tasks are assigned to heavily loaded cores, whereas larger

tasks are scheduled to cores with less data processing or are in an idle state. We designed

Figure 2. Workflow of ParallelFS components for multimedia file encryption/decryption.

4.2. Sequential vs. Parallel Processing Patterns

In sequential processing, encryption is composed of a chain of sequential processes
of file blocks that run dependently; the encryption of each block depends on the instant
output of a previous ciphered block. Therefore, reading or writing a large storage file
using cryptographic services is a major bottleneck [32]. The difficulty of this challenge
increases if applied to user space applications. Cryptographic file systems typically opti-
mize performance because they combine encryption and integrity protection techniques,

Cryptography 2023, 7, 12 7 of 17

and all related computations are performed in a highly seamless and compatible manner,
without many data copies between the kernel and user space. However, the file system
schemes were designed in such a way to primarily handle a file as an addressable se-
quence of bytes and blocks, thereby preventing them from exploiting the recent advances
in multi-core processors.

Parallel cryptographic file systems can significantly address the processing overhead
incurred by cryptographic operations and reduce the system response time. Here, the
encryption and decryption of separate file blocks were computed independently and
processed concurrently using multiple processes and threads in a parity form. Although
cryptographic file systems require less memory in sequential construction, the parallel
cryptographic file system effectively provides a high-performance cryptographic solution
to treat large data files and reduce the effects of bottlenecks (imposed by heavy workloads),
and it can thus be used to satisfy real-time demands [34]. We improved the performance of
existing cryptographic file systems by developing ParallelFS to support the cryptographic
workload by concurrently processing a common set of multimedia file blocks.

The primary goal of ParallelFS is to achieve both a higher cryptographic performance
and a faster response time for each multimedia file read and write request. However, the
performance level is driven by reserved processes, resource workloads, and the techno-
logical environment. Moreover, the variation in synchronization and the difference in the
computation of parallel threads affect the performance of CPU cores. In a multi-core CPU,
one core may be overloaded by waiting for I/O operations or entering a low-power idle
state. When executing tasks that vary in size, one core may complete its process before other
cores, thereby reducing the efficiency and increasing the system response time. To avoid
this, in the proposed scheme, we measured the CPU utilization of threads by measuring the
amount of time each thread spends executing on the core. Thread scheduling in ParallelFS
is based on the completely fair scheduler (CFS) of Linux. It periodically and dynamically
measures the CPU utilization of running threads such that fewer cryptographic processing
tasks are assigned to heavily loaded cores, whereas larger tasks are scheduled to cores with
less data processing or are in an idle state. We designed a thread pool in the ParallelFS file
system daemon to perform parallel encryption tasks running on the CPU cores. Figure 3
shows the scheduling of threads on CPU cores, where Tz denotes the thread size in bytes,
and U is the core utilization ratio.

Cryptography 2023, 7, x FOR PEER REVIEW 8 of 17

a thread pool in the ParallelFS file system daemon to perform parallel encryption tasks

running on the CPU cores. Figure 3 shows the scheduling of threads on CPU cores, where

Tz denotes the thread size in bytes, and U is the core utilization ratio.

Figure 3. Structure of thread scheduling on CPU cores in the designed ParallelFS.

4.3. ParallelFS File System Structure

Parallel encryption based on a multi-core processor can be implemented using two

different methods. The first method can be carried out using the forking approach by

creating a number of child processes, where each child process has a different process ID

and a separate memory location in a virtual memory with a different address space, which

are executed independently of each other. In the second method, a threading approach

can be used by creating a number of threads that belong to a single parent process and

share the same address space and parameters through global variables. Figure 4 shows

the architecture of parallel encryption design using fork- and thread-based parallelism

methods.

(a) Fork-based parallelism (b) Thread-based parallelism

Figure 4. Parallel encryption architecture using fork- and thread-based parallelism methods.

Figure 3. Structure of thread scheduling on CPU cores in the designed ParallelFS.

Cryptography 2023, 7, 12 8 of 17

4.3. ParallelFS File System Structure

Parallel encryption based on a multi-core processor can be implemented using two
different methods. The first method can be carried out using the forking approach by creat-
ing a number of child processes, where each child process has a different process ID and a
separate memory location in a virtual memory with a different address space, which are exe-
cuted independently of each other. In the second method, a threading approach can be used
by creating a number of threads that belong to a single parent process and share the same
address space and parameters through global variables. Figure 4 shows the architecture of
parallel encryption design using fork- and thread-based parallelism methods.

Cryptography 2023, 7, x FOR PEER REVIEW 8 of 17

a thread pool in the ParallelFS file system daemon to perform parallel encryption tasks

running on the CPU cores. Figure 3 shows the scheduling of threads on CPU cores, where

Tz denotes the thread size in bytes, and U is the core utilization ratio.

Figure 3. Structure of thread scheduling on CPU cores in the designed ParallelFS.

4.3. ParallelFS File System Structure

Parallel encryption based on a multi-core processor can be implemented using two

different methods. The first method can be carried out using the forking approach by

creating a number of child processes, where each child process has a different process ID

and a separate memory location in a virtual memory with a different address space, which

are executed independently of each other. In the second method, a threading approach

can be used by creating a number of threads that belong to a single parent process and

share the same address space and parameters through global variables. Figure 4 shows

the architecture of parallel encryption design using fork- and thread-based parallelism

methods.

(a) Fork-based parallelism (b) Thread-based parallelism

Figure 4. Parallel encryption architecture using fork- and thread-based parallelism methods. Figure 4. Parallel encryption architecture using fork- and thread-based parallelism methods.

The structure of the ParallelFS was designed using the threading approach. Here,
the FUSE driver was used to hook the system calls related to the ParallelFS operations.
When the I/O request accesses a file in a mount point directory, the request is forwarded to
perform the customized cryptographic procedure. Otherwise, the process passes the request
to the underlying kernel file system. When the write () request is received, the plaintext file
is divided into several blocks, each with a maximum size of 4 KB. The blocks are then split
into several sub-blocks, with four sub-blocks of 1 KB each. We used a pre-fork technique
by creating a task manager, and the inter-process communication (IPC) method was used
to push the tasks to the task manager queue. This can provide an efficient mechanism for
communication between multiple processes and reduce the effect of bottlenecks imposed
by the allocation of processes and threads, which should lead to a higher performance.
Moreover, we built a thread pool that includes several threads belonging to one parent
process and shares the same address space and parameters through global variables. The
created threads then pop the tasks from the task manager and distribute them according to
the CFS CPU scheduler. Here, the push operation is given a higher priority than that of the
pop operation in the task manager. In addition, a lock was designed to block threads when
the task manager empties.

After the threads are created, each thread is encrypted independently, and all threads
are encrypted in parallel. In addition, all encryption parameters required by the encryption
function, such as the encryption key and parameters, are passed. Subsequently, the output
of each thread is collected in reverse order, considering the task order, as tasks do not end
in the same order. Algorithm 1 describes the steps involved in ParallelFS when a write ()
request is received for a multimedia file.

Cryptography 2023, 7, 12 9 of 17

Algorithm 1: Multimedia file write in ParallelFS

//Receive file write () request
Begin

(B1, . . . , Bn)← Split (F)
(SB1, . . . , SBn)← Split (Bi)
(SB1, . . . , SBn)→ Call CreateTasks ()
(Tsk1, . . . , Tskn)→ Push (Task_Manager)
ThreadPool← Call CreateThread ()
for ∀Tski in Task Manager do

Tski ← Pop (Task_Manager)
Connect Tski to Thrdx
Create MemorySlot ()

end for
//Perform parallel encryption for created threads
for ∀ Thrdx in ThreadPool do

Call KeyGenration ()
Call ParallelEncrypt (Thrd1,.., Thrdn)
Call chunks_write ()

Call save_header ()
end for

End

At the beginning of this study, we attempted to pass the sub-block data as a usual
parameter used in various programming languages. This implies serializing the parameter
and sending it through an internal queue structure. However, we determined that this
method suffers from high workloads and is considerably time-consuming. To avoid these
drawbacks, we attempted to allocate shared memory before creating the process pool.

We allocated many shared memory slots, each of the same size as the sub-block, and
the number of slots is that of the pre-forked processes, which should be a multiple of four
with a minimum of four slots, because the structure of most present multi-core processors
has four processes and threads. Simultaneously, a lock is used around each slot to ensure
that all slots belong to the same task and to avoid any deadlock caused by having slots
belonging to different tasks and no free slots for each to be realized. After filling the slots
with the data segments, we queue the tasks for each passing key and IV, which could be in
a shared memory. Moreover, for the index of each shared slot, we associated an IPC event
with all service subprocesses. We then wait until the slots notify us using event.wait() at one
end and event.notify() at the other. When all segments are complete and notify, the waiting
caller collects the result from the same slot as the encoding function. It obtains the sub-block
from a shared memory, encrypts it, and then places it back in the same shared memory.
When threads of the second method are used, instead of the first method’s processes, slots
of global variables are used in the same manner.

4.4. Parallel Encryption and Decryption

A multimedia file written in a mounted directory is intercepted by ParallelFS. The file is
then encrypted using a hybrid encryption scheme with symmetric and asymmetric ciphers.
In symmetric encryption, the Blowfish encryption algorithm is used to encrypt all file
blocks with a key length of 128 bits and a block size of 4 KB. A 64-bit file salt was randomly
generated for each new multimedia file encryption. The counter mode (CTR) was used
in our scheme. The CTR is a fully parallelizable mode of operation that works effectively
on multimedia encryption and provides random access to any block cipher without error
propagation or ciphertext expansion. Each data block has a unique IV generated by
XORing the file salt, with the counter block corresponding to each data block. This prevents
similar plaintext blocks from being encrypted to the same ciphertext block. Therefore, the
uniqueness requirement of the counter block across all file blocks is necessary to guarantee
greater protection. After the file body is symmetrically encrypted, the encryption key (with

Cryptography 2023, 7, 12 10 of 17

a file salt) is asymmetrically encrypted using the RSA-2048 algorithm with the user’s public
key, which is then stored with the header of the multimedia file. Algorithm 2 describes
the file encryption steps involved in the ParallelFS daemon. First, the system generates
all unique encryption block counters (ctr) with the same number (n) of data blocks (B) in
the multimedia file (F). Then, all unique IVs associated with all data blocks are created by
XORing the global file salt (FSalt) with each corresponding block encryption counter (ctri).

Algorithm 2: Parallel multimedia file encryption

Input: F,Pk
Output: CF, CK
Begin

K, FSalt← RandomGenerate ()
Bi ← Call CreateFileBlocks (F)
SBi ← Call CreateSubBlocks (B)

//Generate file counters
for ∀SBi ∈ (B1,.., Bn) do

ctr:= (ctr1, . . . , ctrn)← RandomGenerate ()
end for

//Parallel sub-blocks encryption using CPU cores
for ∀Bi ∈ F do

for ∀SBi ∈ Bi do
IVi ← FSalt ⊕ ctri
Connect SBi to Thrdx

end for
CBi ← ParallelEncrypt (Blowfish (SBi, K, IVi))

end for
CF: = (CB1, . . . , CBn)

//Symmetric key encryption using RSA-2048
CK← Encrypt (RSA (K, FSalt))
Return CF, CK

End

Figure 5 presents the parallel encryption processing of a data block. As the input, the
encryption function takes a single 4 KB data block (Bi) segmented into m sub-blocks (SB1,
SB2, . . . , SBm), the corresponding unique IVi, and the encryption key K. The same IV is
used, with all sub-blocks belonging to the same parent block, and the same K is shared
among all file blocks. The parallel encryption function is ready for execution as soon as it
completes receiving the encryption parameters. Each sub-block of data is associated with a
thread to encrypt the data segment independently without relation to other sub-blocks, and
all threads execute concurrently in parallel. Once the parallel execution of all sub-blocks
is accomplished, this results in encrypted sub-blocks (CSB1, CSB2, . . . , CSBm), which are
combined into a ciphered block (CB). This operation is repeated with all file blocks (n), and
all resulting ciphered blocks are collected (CB1, CB2, . . . , CBn) and written to the disk as a
ciphered multimedia file (CF).

Decryption works similarly, but in reverse. First, both K and FSalt are extracted from
the image header, decrypting them using the user’s private key and reconstructing all of
the used IVs. As the input, the decryption function takes the encrypted blocks (CB1, CB2,
. . . , CBn), the corresponding IVi, and the same encryption K. Subsequently, each encrypted
block is segmented into sub-blocks and processed concurrently in parallel. This operation
is repeated until all ciphered blocks are decrypted resulting in the original plaintext of the
multimedia file F. Algorithm 3 describes the parallel decryption steps involved in ParallelFS
when a read () request is received for a stored multimedia file.

Cryptography 2023, 7, 12 11 of 17

Cryptography 2023, 7, x FOR PEER REVIEW 11 of 17

 CBi ← ParallelEncrypt (Blowfish (SBi, K, IVi))

 end for

 CF: = (CB1, …, CBn)

 //Symmetric key encryption using RSA-2048

 CK ← Encrypt (RSA (K, FSalt))

 Return CF, CK

 End

Figure 5 presents the parallel encryption processing of a data block. As the input, the

encryption function takes a single 4 KB data block (Bi) segmented into m sub-blocks (SB1,

SB2,…, SBm), the corresponding unique IVi, and the encryption key K. The same IV is used,

with all sub-blocks belonging to the same parent block, and the same K is shared among

all file blocks. The parallel encryption function is ready for execution as soon as it

completes receiving the encryption parameters. Each sub-block of data is associated with

a thread to encrypt the data segment independently without relation to other sub-blocks,

and all threads execute concurrently in parallel. Once the parallel execution of all sub-

blocks is accomplished, this results in encrypted sub-blocks (CSB1, CSB2,…, CSBm), which

are combined into a ciphered block (CB). This operation is repeated with all file blocks (n),

and all resulting ciphered blocks are collected (CB1, CB2,…, CBn) and written to the disk as

a ciphered multimedia file (CF).

Figure 5. Parallel encryption processing on ParallelFS.

Decryption works similarly, but in reverse. First, both K and FSalt are extracted from

the image header, decrypting them using the user’s private key and reconstructing all of

the used IVs. As the input, the decryption function takes the encrypted blocks (CB1, CB2,…,

CBn), the corresponding IVi, and the same encryption K. Subsequently, each encrypted

block is segmented into sub-blocks and processed concurrently in parallel. This operation

is repeated until all ciphered blocks are decrypted resulting in the original plaintext of the

multimedia file F. Algorithm 3 describes the parallel decryption steps involved in

ParallelFS when a read () request is received for a stored multimedia file.

Algorithm 3: Parallel multimedia file decryption.

 Input: CK, CF, Prk

 Output: F

 Begin

 //Symmetric key decryption using RSA-2048

 K, FSalt ← Decrypt (RSA (CK))

 //Parallel sub-blocks decryption using CPU cores

 for ∀CBi ∊ F do

Figure 5. Parallel encryption processing on ParallelFS.

Algorithm 3: Parallel multimedia file decryption

Input: CK, CF, Prk
Output: F
Begin
//Symmetric key decryption using RSA-2048

K, FSalt← Decrypt (RSA (CK))
//Parallel sub-blocks decryption using CPU cores

for ∀CBi ∈ F do
for ∀CSBi ∈ CBi do

ctri ← Fetch ()
IVi ← FSalt ⊕ ctri
Connect CSBi to Thrdx

end for
Bi ← ParallelDecrypt (Blowfish (CSBi, K, IVi))

end for
F:= (B1, . . . , Bn)

Return F
End

5. Performance Analysis

This section discusses the evaluation of the performance of ParallelFS in terms of
multimedia file write and read operations. The aim is to evaluate the effect of parallel
processing on cryptographic performance and assess the complexity of ParallelFS required
to improve the response time. In the experiments, we first evaluated the performance of
ParallelFS in writing and reading multimedia files with cryptographic operations using
different file sizes. Then, the execution times were compared to normal write and read oper-
ations for the same file sizes on the standard Ext4 Linux file system. Next, the performance
of ParallelFS was compared with that of cryptographic file systems that perform sequential
cryptographic processing. We ran all experiments on a multi-core machine equipped with
an Intel Core i5-2450M, 2.5 GHz CPU with two cores inside and two threads per core, 4 GB
of main memory, 3 MB of cache, and 320 GB of hard disk at 7200 rpm. The machine had
Linux Ubuntu 18.04 64-bit installed, and its file system was Ext4, with a 4 KB block size.

The experiments were conducted on a group of multimedia files, including image,
audio, and video files ranging in size from 5 to 50 MB. The value presented in each test result
was the average of 20 repeated runs, and the file cache was flushed after each experiment
to ensure the accuracy of the results. The execution times of different operations were
measured and recorded using Python cProfiler [35], which was also used to analyze the
statistics to determine and address bottlenecks within the ParallelFS code.

First, we measured the multimedia file read and write time performance in parallel
using fork- and thread-based parallelism methods. In the fork-based method, a fork of

Cryptography 2023, 7, 12 12 of 17

multiple processes was used, and in the thread-based method, a single process of multiple
threads was used. In both methods, a pool of four processes/threads was created. Moreover,
in all parallel experiments, a block of 4 KB was segmented into four sub-blocks of 1 KB
each and processed concurrently using Blowfish-CTR.

To measure the read and write times, we used an image file of 8 MB and created
multiple process pools using the first method. The first process pool had a single process of
four threads; each thread processed 1 KB of data segments. However, these threads were
independent of each other’s control within the process. The second process pool had two
processes and two threads each, whereas the third process pool has four processes with
a single thread each. In the second method, we created a pool of a single process of four
dependent threads sharing the same resources through global variables. Figure 6 compares
the times elapsed for writing and reading an image file in ParallelFS using the two pro-
cessing method scenarios. The second method of a single process and multiple dependent
threads exhibited the best performance of approximately 14.8% for file read operations
and 11% for write operations. This was significant because of the intercommunication
overhead between multiple processes and threads, the creation of virtual memory, and
the associated management overhead. Thus, the context switches between threads in the
second method seem to be cheaper than those that occur between the multiple processes in
the first method. Consequently, the parallelism in ParallelFS was implemented based on
the threading approach of the second method.

Cryptography 2023, 7, x FOR PEER REVIEW 13 of 17

Figure 6. Comparison of parallel writing and reading of an 8 MB file using different numbers of

processes and threads with Methods 1 and 2.

Next, we compared the performance of ParallelFS over multimedia file writes and

reads with cryptographic services with normal write and read processes without

encryption using the standard Ext4. We began the experiment by writing and reading a

file of 5 MB and repeated the tests regularly by increasing the file size to 50 MB. In

addition, we flushed the file cache for each test. Accordingly, the elapsed times for all the

read and write operations were recorded. Figure 7 compares the total times measured for

writing and reading multimedia files using ParallelFS and Ext4. ParallelFS can achieve

average throughputs of 19.2 and 37.1 MB/s for writing and reading files, respectively, with

cryptographic protections. By contrast, the average throughputs for the normal processes

to write and read same-sized files using the standard Ext4 were 123.2 and 155.1 MB/s,

respectively. Moreover, we calculated the execution time that elapsed during the

multimedia file read and write operations in ParallelFS. These times include the time of

the actual encryption and decryption operations and that of the other required file system

processes performed inside the kernel and at the user level. The related write/read times

of other executed processes include the time spent seeking the writing/reading blocks of

file data, the I/O time spent on writing/reading data blocks into a local buffer to perform

the encryption/decryption task, the workload time spent on encrypting or decrypting the

symmetric keys, and time spent saving or extracting keys from the file header.

(a) (b)

Figure 7. Comparison of execution times of (a) writing and (b) reading multimedia files using

ParallelFS versus standard Ext4.

0

25

50

75

100

125

150

175

200

225

250

275

300

Proc=1 Proc=2 Proc=4 Proc=1

Thrd=4 Thrd=2 Thrd=1 Thrd=4

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Method 2Method 1

Parallel Write Parallel Read

Figure 6. Comparison of parallel writing and reading of an 8 MB file using different numbers of
processes and threads with Methods 1 and 2.

Next, we compared the performance of ParallelFS over multimedia file writes and
reads with cryptographic services with normal write and read processes without encryption
using the standard Ext4. We began the experiment by writing and reading a file of 5 MB and
repeated the tests regularly by increasing the file size to 50 MB. In addition, we flushed the
file cache for each test. Accordingly, the elapsed times for all the read and write operations
were recorded. Figure 7 compares the total times measured for writing and reading
multimedia files using ParallelFS and Ext4. ParallelFS can achieve average throughputs
of 19.2 and 37.1 MB/s for writing and reading files, respectively, with cryptographic
protections. By contrast, the average throughputs for the normal processes to write and
read same-sized files using the standard Ext4 were 123.2 and 155.1 MB/s, respectively.
Moreover, we calculated the execution time that elapsed during the multimedia file read
and write operations in ParallelFS. These times include the time of the actual encryption and
decryption operations and that of the other required file system processes performed inside
the kernel and at the user level. The related write/read times of other executed processes

Cryptography 2023, 7, 12 13 of 17

include the time spent seeking the writing/reading blocks of file data, the I/O time spent
on writing/reading data blocks into a local buffer to perform the encryption/decryption
task, the workload time spent on encrypting or decrypting the symmetric keys, and time
spent saving or extracting keys from the file header.

Cryptography 2023, 7, x FOR PEER REVIEW 13 of 17

Figure 6. Comparison of parallel writing and reading of an 8 MB file using different numbers of

processes and threads with Methods 1 and 2.

Next, we compared the performance of ParallelFS over multimedia file writes and

reads with cryptographic services with normal write and read processes without

encryption using the standard Ext4. We began the experiment by writing and reading a

file of 5 MB and repeated the tests regularly by increasing the file size to 50 MB. In

addition, we flushed the file cache for each test. Accordingly, the elapsed times for all the

read and write operations were recorded. Figure 7 compares the total times measured for

writing and reading multimedia files using ParallelFS and Ext4. ParallelFS can achieve

average throughputs of 19.2 and 37.1 MB/s for writing and reading files, respectively, with

cryptographic protections. By contrast, the average throughputs for the normal processes

to write and read same-sized files using the standard Ext4 were 123.2 and 155.1 MB/s,

respectively. Moreover, we calculated the execution time that elapsed during the

multimedia file read and write operations in ParallelFS. These times include the time of

the actual encryption and decryption operations and that of the other required file system

processes performed inside the kernel and at the user level. The related write/read times

of other executed processes include the time spent seeking the writing/reading blocks of

file data, the I/O time spent on writing/reading data blocks into a local buffer to perform

the encryption/decryption task, the workload time spent on encrypting or decrypting the

symmetric keys, and time spent saving or extracting keys from the file header.

(a) (b)

Figure 7. Comparison of execution times of (a) writing and (b) reading multimedia files using

ParallelFS versus standard Ext4.

0

25

50

75

100

125

150

175

200

225

250

275

300

Proc=1 Proc=2 Proc=4 Proc=1

Thrd=4 Thrd=2 Thrd=1 Thrd=4

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Method 2Method 1

Parallel Write Parallel Read

Figure 7. Comparison of execution times of (a) writing and (b) reading multimedia files using
ParallelFS versus standard Ext4.

When calculating the time taken by the major executed processes, the actual encryption
process accounted for approximately 70% of the real write time on ParallelFS. The other
related writing processes on ParallelFS required 30% of the real write time, divided as
follows: 21.7% for the I/O write process, 7.4% for the write seek process, and slightly
less than 1% for loading public key and saving header processes. Moreover, the actual
decryption process on ParallelFS required an average of 75% of the real read time. The
other related read processes accounted for 25% of the real read time, divided as follows:
21.6% for the I/O read process, 2.5% for the read seek process, and slightly less than 1% for
loading the user’s private key and parsing the header.

We tested ParallelFS against benchmarked cryptographic user space file systems using
ImgFS [17] and EncFS [24] in writing and reading multimedia files with cryptographic
operations, as shown in Figure 8. These results indicate that ParallelFS outperforms
the benchmarked file systems for both write and read operations. When calculating the
average performance, ParallelFS improves the response time for writing multimedia files
with efficiencies of 33.3% and 41.2%, and read efficiencies of 26.4% and 17.6% of the write
and read performance using ImgFS and EncFS, respectively.

During the development of ParallelFS, we have taken into account that the designed
cryptographic file system should provide a higher security level against malicious attacks
and meet security requirements. Storage security is a long-term requirement because the
attacker has a long time to analyze and break the security system; this is unlike ephemeral
transmission, where security is required during the time of data transmission [36]. In Paral-
lelFS, legitimate user authentication is protected. Each user has a unique login passphrase
for entering a secure mounting session, and ParallelFS must validate the authenticity of the
user before each file system mount.

The confidentiality of multimedia files is ensured, as ParallelFS automatically converts
the plaintext into a ciphertext; therefore, it is extremely difficult to recover the original
files without proper encryption keys and encryption parameters. In ParallelFS, when a
new multimedia file is stored on the disk for the first time, the file is encrypted with a
unique symmetric key, which is then encrypted by the asymmetric encryption. Moreover,
the malicious user is still unable to recover the files using a brute-force attack, as they
need to know the random values of the file’s salt and the IVs associated with the file
blocks. Data freshness is indispensable for data storage encryption in reducing various
types of attacks. In ParallelFS, each block of a file is encrypted differently due to the

Cryptography 2023, 7, 12 14 of 17

unique IV used with each block, thus preventing file blocks from being encrypted to the
same ciphertext blocks each time the file is encrypted. Furthermore, the attacker cannot
recover the encryption parameters of a multimedia file from other stored files using an
offline dictionary attack because new parameters are used with each encrypted file. Key
generation and management are transparently managed and controlled by ParallelFS. Secret
keys encryption parameters are asymmetrically protected with the public key of the files’
owner; therefore, the user cannot determine the secret keys related to multimedia files that
he is not authorized to read. We conclude that the proposed ParallelFS is highly secure and
can effectively resist attacks and meet the desired security requirements. Table 1 compares
the security and efficiency features of ParallelFS with related FUSE-based cryptographic
file systems.

Cryptography 2023, 7, x FOR PEER REVIEW 14 of 17

When calculating the time taken by the major executed processes, the actual

encryption process accounted for approximately 70% of the real write time on ParallelFS.

The other related writing processes on ParallelFS required 30% of the real write time,

divided as follows: 21.7% for the I/O write process, 7.4% for the write seek process, and

slightly less than 1% for loading public key and saving header processes. Moreover, the

actual decryption process on ParallelFS required an average of 75% of the real read time.

The other related read processes accounted for 25% of the real read time, divided as

follows: 21.6% for the I/O read process, 2.5% for the read seek process, and slightly less

than 1% for loading the user’s private key and parsing the header.

We tested ParallelFS against benchmarked cryptographic user space file systems

using ImgFS [17] and EncFS [24] in writing and reading multimedia files with

cryptographic operations, as shown in Figure 8. These results indicate that ParallelFS

outperforms the benchmarked file systems for both write and read operations. When

calculating the average performance, ParallelFS improves the response time for writing

multimedia files with efficiencies of 33.3% and 41.2%, and read efficiencies of 26.4% and

17.6% of the write and read performance using ImgFS and EncFS, respectively.

(a)

(b)

Figure 8. Comparison of execution times of (a) writing and (b) reading multimedia files using

ParallelFS versus benchmarked user space file systems.

During the development of ParallelFS, we have taken into account that the designed

cryptographic file system should provide a higher security level against malicious attacks

Figure 8. Comparison of execution times of (a) writing and (b) reading multimedia files using
ParallelFS versus benchmarked user space file systems.

Table 1. Comparison of security and efficiency features of ParallelFS with FUSE-based approaches.

Feature CFS [23] ImgFS [17] EncFS [24] SafeFS [26] OutFS [13] Proposed
ParallelFS

Cryptography
DES cipher using

ECB and
OFB modes

Hybrid Blowfish
and RSA ciphers
using OFB mode

AES and Blowfish
symmetric

ciphers

AES cipher using
CBC mode

Hybrid AES and
BF-IBE ciphers

Hybrid Blowfish
and RSA ciphers
using CTR mode

Encryption
key length 56-bit Blowfish 128-bit

& RSA 1024-bit 192-bit AES 128-bit AES 128-bit &
BF-IBE 160-bit

Blowfish 128-bit
& RSA 2048-bit

Cryptography 2023, 7, 12 15 of 17

Table 1. Cont.

Feature CFS [23] ImgFS [17] EncFS [24] SafeFS [26] OutFS [13] Proposed
ParallelFS

Fine-grain
cryptographic

level

Entirely mounted
directory files

Individual
image file

Entirely mounted
directory files

Entirely
mounted driver Individual file Individual

multimedia file

Cryptographic
processing style Sequential Sequential Sequential Sequential Sequential Parallel

Transparency
level

Partially
transparent Fully transparent Partially

transparent
Partially

transparent Fully transparent Fully transparent

Multi-user system No Yes No No Yes Yes
Data freshness No Yes Yes No Yes Yes

Key refreshment No Yes No No Yes Yes
Attack resistance Moderate Strong Moderate Moderate Strong Strong

Efficiency Low efficiency Moderately
efficient

Moderately
efficient Low efficiency Moderately

efficient Highly efficient

User convenience Slightly
convenient

Highly
convenient

Moderately
convenient

Slightly
expensive

Highly
convenient

Highly
convenient

6. Conclusions and Future Work

This study presented the development of a parallel cryptographic user space file sys-
tem called ParallelFS to reduce the cryptographic overheads incurred during the reading
and writing of large multimedia files by leveraging the parallelism of multi-core proces-
sors. ParallelFS was designed to perform cryptographic and key management operations
in a fully dynamic manner that is completely transparent to users. Parallelization was
performed by dividing each 4 KB file block into four sub-blocks. Each sub-block was
processed independently, and all were encrypted or decrypted concurrently. We used two
methods to execute parallelism: the forking approach, which involves several indepen-
dent sub-processes through an IPC using virtual memory, and the threads approach, with
several dependent threads using global variables. However, we determined that the latter
approach had an efficiency that was approximately 11% higher than that of the former
approach. The performance of ParallelFS was demonstrated on multimedia files’ read and
write operations and then compared with related schemes. We compared the performance
of ParallelFS against related user space encryption file systems, and the results proved that
ParallelFS is able to outperform them. It can effectively improve the writing performance
of multimedia files with parallel cryptographic protection, with an efficiency up to 35%,
and the reading performance by about 22%, as compared to normal sequential encryption
processing in FUSE-based benchmarks. Our experiments indicated that ParallelFS achieved
the goal of this study: to attain a higher processing speed with a reduced response time.

Several performance overhead factors account for much of the ParallelFS runtime,
namely, task creation, the distribution among processes and threads, termination, inter-
process communication, the splitting and collecting of fragments of file blocks, and the
limited cache size of the FUSE library. In future work, we plan to refine the performance of
ParallelFS by improving on these factors and using more intelligent techniques.

Author Contributions: Methodology, O.A.K. and N.M.K.; Software, O.A.K. and N.M.K.; Validation,
W.A. and S.A. (Samer Atawneh); Formal analysis, O.A.K. and W.A.; Resources, N.M.K., W.A., M.A.,
S.A. (Sultan Alamri), S.A. (Samer Atawneh) and M.K.A.; Data curation, M.A.; Writing—original draft,
O.A.K. and N.M.K.; Writing—review & editing, O.A.K. and N.M.K.; Visualization, N.M.K., W.A.,
M.A. and M.K.A.; Supervision, O.A.K. and N.M.K.; Project administration, O.A.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2023, 7, 12 16 of 17

References
1. Khashan, O.A.; Khafajah, N.M. Secure Stored Images Using Transparent Crypto Filter Driver. Int. J. Netw. Secur. 2018, 20,

1053–1060.
2. Khashan, O.A.; Zin, A.M.; Sundararajan, E.A. Performance study of selective encryption in comparison to full encryption for still

visual images. J. Zhejiang Univ. Sci. C 2014, 15, 435–444. [CrossRef]
3. Saračević, M.; Sharma, S.K.; Ahmad, K. A novel block encryption method based on Catalan random walks. Multimed. Tools Appl.

2022, 81, 36667–36684. [CrossRef]
4. Khashan, O.A.; Zin, A.M. An efficient adaptive of transparent spatial digital image encryption. Procedia Technol. 2013, 11, 288–297.

[CrossRef]
5. Zin, A.M. Transparent Encryption Technique for Trusted Computing. J. Phys. Conf. Ser. 2019, 1339, 012011.
6. Seong, Y.S.; Cho, C.; Jun, Y.P.; Won, Y. Security Improvement of File System Filter Driver in Windows Embedded OS. J. Inf. Process.

Syst. 2021, 17, 834–850.
7. Cho, C.; Seong, Y.; Won, Y. Mandatory Access Control Method for Windows Embedded OS Security. Electronics 2021, 10, 2478.

[CrossRef]
8. Soriano-Salvador, E.; Guardiola-Múzquiz, G. SealFS: Storage-based tamper-evident logging. Comput. Secur. 2021, 108, 102325.

[CrossRef]
9. Guardiola-Múzquiz, G.; Soriano-Salvador, E. SealFSv2: Combining storage-based and ratcheting for tamper-evident logging. Int.

J. Inf. Secur. 2022, 1–20. [CrossRef]
10. Franzen, F.; Andreas, M.; Huber, M. FridgeLock: Preventing Data Theft on Suspended Linux with Usable Memory Encryption. In

Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 16–18 March
2020; pp. 215–219.

11. Zhang, Y.; Duan, S.; Zhang, D.; Ren, J. Transparent computing: Development and current status. Chin. J. Electron. 2020, 29,
793–811. [CrossRef]

12. Bhatt, G.; Bhavsar, M. Performance consequence of user space file systems due to extensive CPU sharing in virtual environment.
Clust. Comput. 2020, 23, 3119–3137. [CrossRef]

13. Khashan, O.A. Secure outsourcing and sharing of cloud data using a user-side encrypted file system. IEEE Access 2020, 8,
210855–210867. [CrossRef]

14. Khafajah, N.M.; Seman, K.; Khashan, O.A. Enhancing the adaptivity of encryption for storage electronic documents. Int. J. Tech.
Res. Appl. 2014, 2, 28–32.

15. Khashan, O.A.; Zin, A.M. Transparent Cryptography for Storage Images; UKM Press, Universiti Kebangsaan Malaysia: Selangor,
Malaysia, 2020; pp. 8–20.

16. Vangoor, B.K.R.; Tarasov, V.; Zadok, E. To FUSE or Not to FUSE: Performance of User-Space File Systems. FAST 2017, 17, 59–72.
17. Khashan, O.A.; Zin, A.M.; Sundararajan, E.A. ImgFS: A transparent cryptography for stored images using a filesystem in

userspace. Front. Inf. Technol. Electron. Eng. 2015, 16, 28–42. [CrossRef]
18. Zou, Y.; Chen, C.; Deng, T.; Zhang, J.; Zhu, X.; Chen, S.; Yin, S. User-level parallel file system: Case studies and performance

optimizations. Concurr. Comput. Pract. Exp. 2022, 34, e6905. [CrossRef]
19. Lee, S.; Jho, N.S.; Chung, D.; Kang, Y.; Kim, M. Rcryptect: Real-time detection of cryptographic function in the user-space

filesystem. Comput. Secur. 2022, 112, 102512. [CrossRef]
20. Bijlani, A.; Ramachandran, U. Extension framework for file systems in user space. In Proceedings of the 2019 USENIX Annual

Technical Conference (USENIX ATC 19), Renton, WA, USA, 10–12 July 2019; pp. 121–134.
21. Demir, L.; Thiery, M.; Roca, V.; Tenkes, J.M.; Roch, J.L. Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic

Co-Processors (long version). In Proceedings of the SECRYPT 2020-17th International Conference on Security and Cryptography,
Lieusant, Paris, 8–10 July 2020; pp. 1–11.

22. Brož, M.; Patočka, M.; Matyáš, V. Practical cryptographic data integrity protection with full disk encryption. In Proceedings of the
IFIP International Conference on ICT Systems Security and Privacy Protection, Poznan, Poland, 18–20 September 2018; pp. 79–93.

23. Blaze, M. A cryptographic file system for Unix. In Proceedings of the 1st ACM Conference on Computer and Communications
Security (CCS’93), Fairfax, VA, USA, 3–5 November 1993; pp. 9–16.

24. Gough, V. EncFS. 2004. Available online: https://github.com/vgough/encfs (accessed on 10 December 2022).
25. Leibenger, D.; Fortmann, J.; Sorge, C. Encfs goes multi-user: Adding access control to an encrypted file system. In Proceedings of

the 2016 IEEE Conference on Communications and Network Security (CNS), Philadelphia, PA, USA, 17–19 October 2016; pp.
525–533.

26. Pontes, R.; Burihabwa, D.; Maia, F.; Paulo, J.; Schiavoni, V.; Felber, P.; Mercier, H.; Oliveira, R. Safefs: A modular architecture for
secure user-space file systems: One fuse to rule them all. In Proceedings of the 10th ACM International Systems and Storage
Conference, Haifa, Israel, 22–24 May 2017; pp. 1–12.

27. Yoshimura, T.; Chiba, T.; Horii, H. EvFS: User-level, Event-Driven File System for Non-Volatile Memory. In Proceedings of the
11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 19), Renton, WA, USA, 8–9 July 2019.

28. Vangoor, B.K.R.; Agarwal, P.; Mathew, M.; Ramachandran, A.; Sivaraman, S.; Tarasov, V.; Zadok, E. Performance and resource
utilization of fuse user-space file systems. ACM Trans. Storage 2019, 15, 1–49. [CrossRef]

http://doi.org/10.1631/jzus.C1300262
http://doi.org/10.1007/s11042-021-11497-5
http://doi.org/10.1016/j.protcy.2013.12.193
http://doi.org/10.3390/electronics10202478
http://doi.org/10.1016/j.cose.2021.102325
http://doi.org/10.1007/s10207-022-00643-1
http://doi.org/10.1049/cje.2020.07.001
http://doi.org/10.1007/s10586-020-03074-6
http://doi.org/10.1109/ACCESS.2020.3039163
http://doi.org/10.1631/FITEE.1400133
http://doi.org/10.1002/cpe.6905
http://doi.org/10.1016/j.cose.2021.102512
https://github.com/vgough/encfs
http://doi.org/10.1145/3310148

Cryptography 2023, 7, 12 17 of 17

29. He, X.; Long, Y.; Zheng, L. A Transparent File Encryption Scheme Based on FUSE. In Proceedings of the 2016 12th International
Conference on Computational Intelligence and Security (CIS), Wuxi, China, 16–19 December 2016; pp. 642–645.

30. Schmuck, F.; Haskin, R. GPFS: A Shared-Disk File System for Large Computing Clusters. In Proceedings of the Conference on
File and Storage Technologies (FAST 02), Monterey, CA, USA, 28–30 January 2002.

31. Carns, P.H.; Ligon, W.B., III; Ross, R.B.; Thakur, R. PVFS: A Parallel File System for Linux Clusters. In Proceedings of the 4th
Annual Linux Showcase & Conference (ALS 2000), Atlanta, GA, USA, 10–14 October 2000.

32. Khashan, O.A.; Ahmad, R.; Khafajah, N.M. An automated lightweight encryption scheme for secure and energy-efficient
communication in wireless sensor networks. Ad Hoc Netw. 2021, 115, 102448. [CrossRef]

33. Federal Information Processing Standards Publication. 2015, SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions; Federal Information Processing Standards Publication. In Information Technology Laboratory; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2015.

34. Khashan, O.A. Parallel proxy re-encryption workload distribution for efficient big data sharing in cloud computing. In Proceedings
of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
27–30 January 2021; pp. 0554–0559.

35. Python Standard Library. The Python Profilers. Available online: http://docs.python.org/2/library/profile.html (accessed on
13 October 2022).

36. Khashan, O.A.; Khafajah, N.M. Efficient Hybrid Centralized and Blockchain-based Authentication Architecture for Heterogeneous
IoT Systems. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 726–739. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.adhoc.2021.102448
http://docs.python.org/2/library/profile.html
http://doi.org/10.1016/j.jksuci.2023.01.011

	Introduction
	Background and Design Goals
	Overview of FUSE
	Design Goals

	Related Work
	Proposed Parallel Multimedia Encryption File System
	Design Overview
	Sequential vs. Parallel Processing Patterns
	ParallelFS File System Structure
	Parallel Encryption and Decryption

	Performance Analysis
	Conclusions and Future Work
	References

