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Abstract: The rapidly increasing use of the internet has led to an increase in new devices and
technologies; however, attack and security violations have grown exponentially as well. In order to
detect and prevent attacks, an Intrusion Detection System (IDS) is proposed using Logical Analysis
of Data (LAD). Logical Analysis of Data is a data analysis technique that classifies data as either
normal or an attack based on patterns. A pattern generation approach is discussed using the concept
of Boolean functions. The IDS model is trained and tested using the Bot-IoT dataset. The model
achieves an accuracy of 99.98%, and is able to detect new attacks with good precision and recall.

Keywords: Internet of Things (IoT); Intrusion Detection System (IDS); Logical Analysis of Data
(LAD); pattern generation

1. Introduction

With the internet now playing a significant role in every field of life, whether educa-
tion, military, finance, medicine, industry, or otherwise, the risk of security violations is
increasing daily. Cyberattacks are becoming a challenging issue nowadays, with attackers
developing new ways of attacking devices using new technologies. Thus, a better system is
required to detect and prevent such attacks in real time.

The use of the internet has led to the deployment of Internet of Things (IoT) devices
in smart homes, smart grids, cyber–physical systems, and healthcare systems [1]. The IoT
is a group of interconnected physical devices that are equipped with processor, memory,
and network cards and managed by web services or other interfaces [2]. Such devices
are rapidly becoming used in business processes. An increase in the use of IoT devices
attracts cyberattackers to exploit the weaknesses of these devices. The standardization of
the security of IoT devices is yet to be defined, which adds to their security weaknesses.
As new IoT technologies are emerging daily, the number of such devices is increasing as
well, leading to security vulnerabilities.

An Intrusion Detection System (IDS) is used to detect attacks in a network by monitor-
ing patterns in order to detect attacks. These patterns can be of normal traffic or abnormal
traffic. An IDS deployed in an IoT environment has to monitor the traffic and alert the
system administrator when abnormal traffic is observed. Because IoT devices are small,
with low memory and processing power, the main aim is to keep the processing load
to a minimum. Hence, host-based intrusion detection systems should be avoided in the
IoT environment. Network-based intrusion detection systems can be used at the network
boundary to monitor the traffic entering IoT devices. Such an intrusion detection system
works based on two mechanisms, namely, anomaly detection and misuse detection. Mis-
use detection systems use predefined attack patterns to detect new attacks. In this case,
zero day attacks cannot be detected. Anomaly detection system are based on the patterns
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of normal observations, making them more effective in detecting zero day attacks; however,
they have high false positive rates [3].

Many IDS variants have been developed using machine learning-based approaches.
These models are trained on large datasets in order to identify the patterns that can be used
to classify unknown traffic data as either abnormal and normal. In the case of IoT devices,
there is a need for an IDS that can run on low-power systems. Logical Analysis of Data
(LAD) is a classification technique that uses the concept of partially defined Boolean func-
tions. It is a binary classification process in which patterns are generated that can classify an
observation as normal or an attack. The patterns are a simple combination of the features
that influence the classification the most. The main advantage of Logical Analysis of Data
is that it provides an explanation of how a certain phenomenon works and what features
are involved in the attack. Thus, knowledge of system vulnerabilities can be obtained
using LAD.

In this paper, we develop an IDS model to detect malicious traffic in a network using
the Bot-IoT dataset. Logical Analysis of Data is used along with the Information Gain
ratio technique to select important features and generate patterns to classify the unknown
observations. The IDS model is used as a binary classifier. A LAD-based IDS model is
designed and tested for different types of attacks. The main contributions of this paper are
as follows:

• A LAD-based IDS model designed using the information gain ratio method for feature
selection. The IDS model is used to classify data as normal or attack.

• An improvised pattern generation technique is described based on different binary
combinations.

• Further, different LAD classifiers are developed to detect different types of attacks in
the Bot-IoT dataset. The performance of the LAD-based IDS model is compared with
existing machine learning techniques on the Bot-IoT dataset.

The rest of this paper is divided into five sections. Section 2 provides a brief overview
of the work carried out on IDS models and Bot-IoT dataset. Section 3 describes the Logical
Analysis of Data technique and the use of the gain ratio method to generate the supporting
set of features, then defines the pattern generation algorithm. The experimental results are
stated in Section 4. Finally, the paper is concluded in the Section 5.

2. Related Work

This section provides an overview of related studies on the Bot-IoT dataset, focusing
on machine learning-based approaches. Ferrag et al. [4] have presented a comprehensive
survey of deep learning approaches implemented for cybersecurity intrusion detection
with a focus on two new datasets, including the Bot-IoT dataset.

Shafiq et al. [5] proposed a new framework model, CorrAUC, based on a combina-
tion of the correlation attribute evaluation (CAE) metric and the area under the curve
(AUC) to filter the features accurately. On this basis, the authors developed a new feature
selection algorithm based on the wrapper technique for selecting effective features for
malicious Bot-IoT traffic identification. They were able to find five optimum feature sets
with discriminative power for detection of malicious attacks.

Another study by Shafiq et al. [6] used the Bot-IoT dataset to identify cyberattacks
in IoT networks. The authors extracted a set of 44 effective features and utilized five
different ML algorithms, namely, naive Bayes, BayesNet, C4.5 decision tree, random tree,
and random forest for analysis. Lastly, the authors used a bijective soft set for selection and
decision making from the implemented machine learning algorithms.

Leevy et al. [7] developed an easy-to-learn approach for the Bot-IoT dataset, using
only three features out of 29, and implemented a decision tree classifier. Another study
presented by Satish Pokhrel et al. [8] used different machine learning algorithms, such as
a Multilayer Perceptron Artificial Neural Network (MLP-ANN), naive Bayes model, and
K-Nearest Neighbor (KNN) to develop a model. The authors implemented a combination
of feature engineering and SMOTE with the machine learning algorithms, and selected the
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best algorithm using a reference point based on accuracy and the ROC-AUC performance
metric. The authors further applied this model on real-time balanced and imbalanced
datasets for performance comparison to demonstrate the impact of data imbalance and
how it affects different metrics such as f1-score, accuracy, precision, and recall.

Another research study [3] proposed a feature selection algorithm to select important
features, called correlated-set thresholding gain ratio (CST-GR), which the authors imple-
mented on a Raspberry Pi. This algorithm enables detection systems to work with very
few features, making them lightweight and fast. The authors observed that the proposed
CST-GR algorithm achieved good accuracy and significantly reduced processing time.

In [9], the authors developed a multivariate Intrusion Detection System (IDS) capable
of providing access control and outlier detection methods to detect anomalous behaviour
in IEC-104. The IEC protocol is used in SCADA systems where there are no sufficient
authorization mechanisms. This weakness can be exploited by attackers to control field
devices. Three outlier detection algorithms, One Class-Support Vector Machine (OC-SVM),
LOF, and Isolation Forest, were evaluated. The IDS achieved an accuracy and F1 score of
98% and 87%, respectively.

In [10], the authors described a learning recurrent Random Neural Network (RNN)
for building a lightweight detector that can detect attacks on IoT systems. Their experiment
was performed using the 5% version of the Bot-IoT dataset, and a 96% detection rate was
achieved using this method.

In [11], the authors proposed a hybrid anomaly mitigation framework using fog
computing to detect anomalies. The framework used both signature based and anomaly
based method. The signature-based method used a database of blacklisted IP addresses
to detect attacks faster, whereas the anomaly-based method used a gradient boosting
algorithm to classify the network traffic into attack and normal. The XGBoost classifier
achieved an accuracy of 99%.

In [12], the authors provided a comparison of the performances of the two deep
learning models, namely, a Self-normalizing Neural Network (SNN) and a Feed-forward
Neural Network (FNN), using the Bot-IoT dataset. The FNN performed better than
the SNN, as shown by various performance metrics and the Cohen Cappas score. The
authors studied the performance of these models against the adversarial samples from
the Bot-IoT dataset. The results showed that SNN performed better than FNN against
adversarial attacks.

3. Logical Analysis of Data

Logical analysis of data is a technique for data analysis that analyses the subset of the
combination of an observation’s feature variables (binary variables) in order to identify
unique patterns that can be used to detect the positive or negative nature of an unknown
observation. Earlier, this approach was applied only to binary data. More recently, however,
it has been extended to incorporate non-binary data. A description of the LAD technique is
provided below.

Consider a dataset of binary values having a set of true observations Ω+ and a set of
false observations Ω− (Ω+ ∪ Ω− ⊆ {0, 1}n). Each observation has n + 1 binary attributes,
in which the last bit represents the label. Thus, a collection of binary observations can be
illustrated by a partially defined Boolean function (pdBf) φ. As such, finding an extension f
of the pdBf is the main aim of LAD; this helps in the classification of unknown observations
in the sample space. However, this is not achievable, and thus we have tried to find
an extension f′ that closely approximates extension f on the basis of optimality criteria.
Extension of pdBf is expressed in a disjunctive normal form (DNF), for example, −b1 b̄2.
LAD requires the following steps to build a classifier [13]:

1. Binarization of observations.
2. Support set generation.
3. Pattern generation.
4. Classifier design.
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In the real world, data are not always in binary form. Thus, in order to make LAD
applicable to non-binary data, an approach is proposed to convert non-binary data to
binary data in Section 3.1. In Section 3.2, an approach to generate a support set is proposed.
Finally, in Section 3.3 an improvised pattern generation approach is proposed that covers
almost every observation that leads to the formation of a smaller number of patterns. Thus,
the theory formation step is not required.

3.1. Binarization of Observations

To transform the numerical attributes to binary attributes, a cut-point or threshold-
based approach is proposed in [14]. The level variable and interval variable are the two
types of Boolean variables correlated to every numerical attribute x. The level variables
are directly related to the cut-points which show that the initial value of the attribute is
greater or smaller than the given cut-point β. A Boolean variable b(x, β) is a level variable
associated with an attribute x using a cut-point β, such that

b(x, β) =

{
1, if x ≥ β

0, otherwise
(1)

The level variable takes a value of either 0 or 1 depending on whether the attribute
value is larger or smaller than the cut-point. In the same way, for a pair of cut-points β1
and β2, an interval variable b(x, β1, β2) is associated with the corresponding attribute x
such that

b(x, β1, β2) =

{
1, if β1 ≤ x < β2

0, otherwise
(2)

For the generation of cut-points, consider a numerical attribute x having k + 1 unique
values which are arranged in descending order such that

x0 > x1 > ... > xk (3)

A cut-point is introduced between every two consecutive values xi and xi+1 if they
have different labels using the following equation:

βx
j =

1
2
(xi + xi+1) (4)

An example is shown below to demonstrate the cut-point generation process.
Table 1 shows a sample dataset with six features and one label column. It has two classes,
0 and 1. In order to perform binarization, each attribute is considered separately. Here,
we use a feature F to describe how cut-points for this feature are calculated. First, the
values of feature F are arranged in descending order. It is shown in the second sub-table of
Table 2. It can be seen that same two values, i.e., 0, of feature F have different class labels.
Thus, we combine these two rows and provide this 0 value with a new label, 2, as we
already have two labels, 0 and 1. Now, the cut-points are calculated between those feature
values which have different class labels.

Table 1. Numerical attributes.

S. No. A B C D E F Label

1 0 0 123 6 1 1 1
2 232 8153 5 5 0.2 0.2 0
3 199 420 30 32 0 0 0
4 0 0 121 19 0 0 1
5 0 0 166 9 1 1 1
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Table 2. Binarization: numerical data.

F Label F Label F Label

1 1 1 1 1 1
0.2 0 1 1 1 1
0 0 → 0.2 0 → 0.2 0
0 1 0 0 0 2
1 1 0 1

The cut-points obtained for feature F using the process explained above are −βF
1 = 0.6,

βF
2 = 0.1. Similarly, the rest of the numerical attributes provided in the Table 1 must be

binarized. The level variables and interval variables generated are shown in Tables 3 and 4,
respectively.

Table 3. Binary attributes: level variable.

(A
≥

99
.5

)

(B
≥

21
0)

(C
≥

75
.5

))

(D
≥

25
.5

)

(D
≥

5.
5)

(E
≥

0.
6)

(E
≥

0.
1)

(F
≥

0.
6)

(F
≥

0.
1)

La
be

l

b1 b2 b3 b4 b5 b6 b7 b8 b9

a 0 0 1 0 1 1 1 1 1 1
b 1 1 0 0 0 0 1 0 1 0
c 1 1 0 1 1 0 0 0 0 0
d 0 0 1 0 1 0 0 0 0 1
e 0 0 1 0 1 1 1 1 1 1

Table 4. Binary attributes: interval variable.

(25.5 ≥ D ≥ 5.5) (0.6 ≥ E ≥ 0.1) (0.6 ≥ F ≥ 0.1) Label
b10 b11 b12

a 1 0 0 1
b 0 1 1 0
c 0 0 0 0
d 1 0 0 1
e 1 0 0 1

To transform a nominal attribute x, a binary variable b(x, ui) is associated with each
distinct value ui of nominal attribute such that

b(x, ui) =

{
1, if x = ui

0, otherwise
(5)

An example of nominal attributes is shown in Table 5.

Table 5. Binarization: nominal data.

x b13 (x_A) b14 (x_B) b15 (x_C) Label

a A 1 0 0 1
b B 0 1 0 0
c B 0 1 0 0
d C 0 0 1 1
e A 1 0 0 1

3.2. Support Set Generation

After binarization of the non-binary attributes, the retrieved binary dataset is very
likely to have irrelevant attributes, that is, absence of such attributes does not affect the
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final result. Thus, the objective of this section is the removal of the irrelevant attributes
from the set of binary attributes to obtain a set of redundant free attributes, which is called
a minimal support set. The general characteristic of the observation is maintained, i.e., an
observation does not have a negative and positive nature at the same time. The support set
problem can be considered similar to solving the set cover problem.

A number of algorithms that aim to solve the set cover problem are discussed in [15,16].
In order to find a minimal support set for our binary dataset, we propose the use of the
Information Gain ratio to select the best attribute in our dataset. The gain ratio is used
by the C4.5 algorithm to select the best feature for building the decision tree [17]. The
information gain ratio of each attribute is calculated based on its entropy. The attribute
having the highest information gain ratio is added to the support set. The entropy for binary
classification is calculated using Equation (6), where D represents the dataset. Assuming
that a feature X has n distinct values, the dataset can be partitioned into n disjoint subsets.
The information gain of a feature X in dataset D is calculated by Equation (7) using the
entropy given in Equation (6). In order to find the gain ratio, we use the split information
in Equation (8) to normalize the information gain [17,18]:

E(D) = −(P(0) ∗ log2(P(0)) + P(1) ∗ log2(P(1))) (6)

Info-Gain(D,X) = E(D)−
n

∑
i=0

|Di|
|D| ∗ E(x) (7)

SplitInfo (A) = −
n

∑
j=1

|Dj|
|D| ∗ log2

|Dj|
|D|

Gain Ratio = Info-Gain(D,X)/SplitInfo (A)

(8)

3.3. Improvised Pattern Generation

Before entering into the depths of pattern generation, there is particular terminology
that must be understood. A Boolean variable or its negation is called a literal, and a
combination of such literals is called a term. The number of literals in a term is called
the degree of a term. A unique term of degree n is called a characteristic term. A term is
considered to be a positive pattern if it covers at least one true observation and zero false
observation. A negative pattern can be defined in a similar way. In [18], the authors explain
the pattern generation process. Two approaches are used for pattern generation. The
bottom-up approach starts with a single literal. If this literal covers only positive (negative)
observations, then it is termed a positive (negative) pattern. Otherwise, another literal
is added to it until a pattern is obtained, and this process is repeated until most of the
observations have been covered. The top-down approach begins with a characteristic term.
This term is already a pattern, as it covers either positive or negative observation. The literals
are removed from this term one by one until a pattern is obtained covering only positive
(negative) observations. Both approaches can be used to cover maximum observations.

Here, we have tried to follow a different procedure to generate patterns. In the
proposed pattern generation process, an improvised bottom-up approach is followed. The
algorithm is described in Algorithm 1. This algorithm tries to find various combinations
of 0 and 1. Each combination is supposed to cover few observations; obs_positive and
obs_negative denotes the minimum number of positive and negative observations which
must be covered by a term in order to consider it as a positive or negative pattern. All the
observations that correspond to a combination are stored, then the unique values covered
by this combination are counted. If the label of all these covered observations is 1 and
number of observations is greater than obs_positive, then it is a positive pattern. Otherwise,
if the label is 0 and number of observations are greater than obs_negative, it is added to the
list of negative patterns. These covered observations are then deleted from the dataset and
the process is repeated for a new combination.
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Here, we generate patterns with a maximum degree of 3. The minimum coverage of
true and false observations are 10 and 1 for the generation of positive and negative patterns,
respectively. This threshold is obtained by empirical analysis, and changes depending on
the dataset. In our algorithm, we expect that maximum number of observations is covered
by a unique pattern. The values have been fixed after performing the experiment number
of times with different values. Considering the example above, using the support set b1,
the positive pattern generated is b̄1.

Algorithm 1 Pattern Generation Algorithm.

Input: Ω+, Ω− ⊂ {0, 1}n :- Sets of true and false observations in binary (support set data) having X
number of attributes.
D :- maximum degree of generated pattern.
obs_positive and obs_negative :- minimum number of positive and negative observations covered
by each pattern respectively.

Output: Set of Positive and Negative Patterns.
while dataset is not empty or no. of observations left in the dataset ≥ 500 do

for d = 1, . . . , D do
for each combination L of length d among all the attributes do

select_data = all the observations with attributes given in L
for each unique value V in select_data do

covered ={φ}
for each observation O in select_data do

if O == V then
Append the count of O in covered.

end
end
if (Label of all covered observations is 1 and no. of observations covered ≥ obs_positive)
then

append unique pattern L to positive_pattern.
Delete covered observations from the dataset.

else
if (Label of all covered observations is 0 and no. of observations covered ≥ obs_negative)
then

append unique pattern L to negative_pattern.
Delete covered observations from the dataset.

end
end

end
end

end
end

3.4. Classifier Design

The patterns generated in the pattern generation step are transformed into rules that
form the classifier. A rule formed using the pattern obtained by b̄1 is (A < 99.5)⇒ label = 1.
Thus, the corresponding pseudo-code is

if A < 99.5 then
Label = 1

end if
Nested if–else can be used to design a classifier using more than one positive rule. In a

similar way, a classifier can be designed using negative rules, or a hybrid classifier can be
designed using both positive and negative rules.

4. Results and Discussion
4.1. Dataset

Several datasets have been introduced in the intrusion detection literature, among
which are KDD-CUP99, NSL-KDD, UNSW-NB15, CIC-DoS-2017, and CSE-CIC-IDS. There
is a lack of availability of realistic datasets, which is a major challenge when working on IDS
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models. Organizations hesitate to disclose their network traffic data due to privacy concerns,
as it can reveal sensitive configuration information. The KDD-CUP99 dataset is the most
widely used dataset for evaluating intrusion detection models. However, KDD-CUP99
suffers from several weaknesses, including redundant rows, irrelevant features, and the
non-stationary nature of the dataset [19]. NSL-KDD is a refined version of the KDD-CUP99
dataset which has only selected records, and overcomes the drawbacks of KDD-CUP99
dataset. However, NSL-KDD dataset lacks observations related to low-footprint attacks
and modern cyberattacks. The UNSW-NB15 dataset has modern cyberattacks included
in it. The CIC-DoS-2017 has records of DoS attacks, as there has been an increase in such
attacks. The CSE-CIC-IDS consists of seven different types of attacks. However, there
are no datasets specific to IoT used for IDS evaluation. The Bot-IoT dataset focuses on
IoT network architecture. It has five types of classes: DDoS, DoS, Reconnaissance, Theft,
and Normal [2]. The dataset has 72 million rows and 46 features, including three class
categories. Because large dataset size can hinder computation, a 5% version of the original
dataset has been released. In this study we use the smaller dataset, which has only the
ten best features, meaning that a few irrelevant features have been discarded. The feature
selection process is described in Appendix A. As LAD is a binary classification technique,
in our experiments all attacks are denoted by 1 and normal observations are denoted by 0.

4.2. Experimental Setup

All experiments were performed on a laptop computer with 24 GB RAM and an Intel
i5 processor. The training dataset contained 1,048,576 observations, ten features, and a
class label. The testing dataset contained 733,706 rows with ten features. The dataset was
preprocessed by removing duplicate rows. In the binarization process, only level variables
were generated. This was done in order to reduce the number of binary variables and
keep the size of the dataset small. In order to cover the maximum number of observations
for a pattern, we considered a support set of ten positive (attack) observations, meaning
each pattern must cover at least ten positive observations in order to become a prime
pattern. The parameters used to evaluate the performance of our intrusion detection model
are accuracy, recall, precision, and F1-score. The confusion matrix considered for our
experiment is shown in Table 6.

Table 6. Confusion matrix.

Predicted Label
Attack Normal

True Label Attack True Positive False Negative
Normal False Positive True Negative

4.3. Performance Evaluation Metrics

Many experiments were conducted to evaluate the performance and efficiency of the
LAD-based IDS, for which we used the metrics defined below:

Accuracy =
TN + TP

FP + FN + TP + TN

Precision =
TP

TP + FP

Recall =
TP

FP + FN

F1-score =
2× precision× recall

precision + recall
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Here, TP stands for True Positive, which means that samples are correctly classified
as an attack, TN stands for True Negative, meaning that the samples are classified as
normal data, FP denotes False Positive, which indicates that normal samples are incorrectly
identified as an attack, and FN refers to False Negative, which indicates that attack samples
were wrongly identified as normal data [20].

4.4. Experimental Results

During the binarization step of LAD, 751 binary variables were generated. Only
those features with cutpoints less than 175 were considered. This was done to limit the
number of level variables in order to avoid long computation. A large number of cutpoints
for a feature indicate that there is more randomness in the feature, which means that it
does not influence the classification process. Such features were eliminated during the
binarization phase.

The next step is support set generation, in which redundant variables are removed.
The information gain ratio method was used to obtain the support set of features, with a
total of 23 features selected.

In the pattern generation step, positive and negative patterns were generated.
Algorithm 1 was used to generate the patterns. Eight positive patterns and six nega-
tive patterns of degrees 2 and 3 were generated. Here, each positive pattern covers at least
ten positive observations and no negative observation. Similarly, negative observations
cover at most one negative observation. A hybrid classifier was built using both positive
and negative patterns together and tested on the Bot-IoT test dataset.

The classifier has fourteen rules, which were validated using the test dataset. The
confusion matrix for the Bot-IoT test dataset is shown in Figure 1. It can be concluded from
Figure 1 that the normal observations are far fewer compared to the attack observations in
the test dataset. While most of the attack observations are classified correctly, 74 normal
observations are misclassified as attacks. The LAD-based IDS has an accuracy of 99.98%
and recall of 99.99%. As the training dataset has a higher number of attack observations
compared to normal observations, our IDS model is able to detect attacks 99% correctly.
Normal observations have been misclassified due to a lower number of normal records
in the training dataset, and thus the false positive rate is high. The precision and F1 score
values in Table 7 are 99.98% and 99.99%, respectively. The False Positive Rate (FPR) is
69.15%, which is very high, and is due to misclassification of normal (negative) instances.
This could be reduced if a greater number of normal observations were present in the
training dataset. The False Negative Rate (FNR) is 0.001%, which shows that very few
attack (positive) instances were misclassified as normal (negative).

Normal 33 74

T
ru

e
 L

a
b

e
l

Attack 8 733,590

Normal Attack

Predicted label

60000

40000

20000

Figure 1. Confusion matrix for IDS using LAD.
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Table 7. Performance of LAD-based IDS on Bot-IoT dataset.

Performance Metric Percentage (%)

Accuracy 99.98
Recall 99.99

Precision 99.98
F1 Score 99.99

FPR 69.15
FNR 0.001

The performance of our LAD-based IDS model was compared with various machine
learning and deep learning techniques, as shown in Table 8. In [4], the authors used
a Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Deep
Neural Network (DNN) on the 5% Bot-IoT dataset, achieving an accuracy of 98.37%, 98.31%,
and 98.22%, respectively. In [2], Support Vector Machine (SVM), Recurring neural network
(RNN), and Long Short-Term Memory RNN (LSTM) were used, obtaining an accuracy
of 88.37%, 99.74%, and 99.74%, respectively. The precision of RNN (99.99%) and LSTM
(99.99%) were higher than our LAD-based IDS (99.89%). The accuracies of Gaussian Naive
Bayes, K-Nearest Neighbour (KNN), and Multi-layer Perception–Artificial Neural Network
(MLP-ANN) were 99.4%, 99.6%, and 87.4%, respectively. Thus, it can be concluded that the
LAD-based IDS model performed well on the Bot-IoT dataset with an accuracy of 99.98%.
The recall of 99.99% shows that the attacks were correctly classified by our IDS model.

Table 8. Performance comparison of LAD-based IDS with other machine learning and deep
learning classifiers.

Classifier Accuracy (%) Precision (%) Recall (%)

CNN [4] 98.371
RNN 98.311
DNN 98.221

SVM [2] 88.372 100 88.371
RNN 99.740 99.990 99.749
LSTM 99.741 99.991 99.750

Gaussian Naive Bayes [8] 99.4
KNN 99.6

MLP ANN 87.4
LAD 99.988 99.989 99.998

We developed a LAD classifier for each category of attack in the Bot-IoT dataset. The
dataset consists of four types of attack: DDoS, DoS, Reconnaissance, and Theft. Four
different datasets were created by separating all the attack types along with normal ob-
servations. These datasets were used to train four LAD classifiers. Each LAD classi-
fier was tested against its attack type and again using the entire test dataset. Table 9
shows the results of all the LAD classifiers for specific attacks and the whole test dataset.
The LAD classifiers developed for DDoS, DoS, and Reconnaissance attacks perform well
on the entire dataset, which means that the LAD classifier is able to classify unknown
attacks even when these attacks are not present in the training set. The classifier for Theft
attacks performs well when detecting theft attacks on the test dataset, although it is not able
to classify other attacks; however, its precision is 100%, which shows that all the normal
instances are correctly classified. The performance of this classifier is low on the entire
dataset, because its training set did not contain other types of attacks and because the size
of the dataset is very small. This performance can be improved by using a larger number
of theft instances. The False Positive rate for the DoS and Reconnaissance LAD classifiers is
high due to misclassification of normal observations. These four classifiers were built using
different datasets of specific attack types. Hence, the features involved in the detection of
these attacks are quite different. Appendix B discusses the features used to detect specific
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types of attacks. The Bot-IoT dataset has a higher number of attack observations compared
to normal instances. Classifiers built on this dataset have low false negative rates, as they
are able to classify all the attacks correctly.

Table 9. Performance metrics of LAD Classifiers developed for each category of attack.

Type of Classifier Test Dataset Accuracy
(%)

Precision
(%) Recall (%) F1 Score

(%) FPR FNR

Normal-DDoS DDoS 99.97 99.99 99.97 99.98 0.009 0.0002
Full Test Dataset 98.87 99.99 98.87 99.43 0.009 0.01

Normal-DoS DoS 99.97 99.97 100 99.98 0.90 0.0
Full Test Dataset 99.97 99.98 99.98 99.98 0.90 0.0001

Normal-
Reconnaissance

Reconnaissance 99.53 99.54 99.98 99.76 0.77 0.0001
Full Test Dataset 99.97 99.98 99.99 99.98 0.77 0.0009

Normal-Theft Theft 99.17 100 92.85 96.29 0.0 0.07
Full Test Dataset 43.71 100 43.71 60.83 0.0 0.56

5. Conclusions

Our paper focuses on developing an Intrusion Detection System for IoT environments.
The Bot-IoT dataset is used to train and test an IDS model. The IDS model is built using
the Logical Analysis of Data technique. LAD uses binary data to produce patterns for
classification of new data into normal and abnormal traffic. The binarization process is used
to convert numerical data into binary. The information gain ratio criteria is used to select
features that have high discriminating power. In addition, a new way of generating patterns
is discussed in this paper. This algorithm describes the process of pattern generation using
different combinations of binary variables. The classifier is built using the positive and
negative patterns. This LAD classifier performs significantly well in comparison to other
state-of-the-art techniques, with an accuracy of 99.98% and an F1 score of 99.99%. We can
conclude that our LAD-based IDS model can detect attacks in near-real time and provide
insight about vulnerabilities in the system through its patterns. The results of the classifiers
trained for each type of attack show that our LAD-based IDS model is able to detect new
attacks. The LAD method uses a lower amount of data to train and develop the classifier.
This is an advantage, as large amounts of data are difficult to manage and are often not
easily available. In future research, the LAD technique used here could be further enhanced
by using different techniques to obtain the support set, while the performance metrics
could be improved by using a more balanced dataset.
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Appendix A

The Bot-IoT dataset consists of 72 million rows and 46 features, including three label
features. This dataset size is too large and difficult to handle. Thus, the authors of [2]
extracted 5% of the original dataset. This 5% dataset, which is the training and testing
set, has three million rows. In order to reduce the dimensionality of the dataset, feature
selection was carried out by calculating the Correlation Coefficient and Joint Entropy

https://research.unsw.edu.au/projects/bot-iot-dataset
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between the features. A feature was selected if its entropy score was high and its correlation
coefficient score was low. The ten best features which had the highest combined average
correlation coefficient and joint entropy were extracted; REF. [2] describes all the features
and feature selection techniques. Table A1 provides the details of all the features. Out of
these 43 features, the best features that were selected are: seq, stddev, N_IN_Conn_P_SrcIP,
N_IN_Conn_P_DstIP min, state_number, mean, srate, drate, and max. As LAD is a binary
classification technique, we removed category and subcategory features.

Table A1. Selected features of the dataset.

Features Description

pkSeqID Row Identifier
Stime Record start time
flgs Flow state flags seen in transactions
flgs_number Numerical representation of feature flags
Proto Textual representation of transaction protocols present in network flow
proto_number Numerical representation of feature proto
saddr Source IP address
sport Source port number
daddr Destination IP address
dport Destination port number
pkts Total count of packets in transaction
bytes Total number of bytes in transaction
state Transaction state
state_number Numerical representation of feature state
ltime Record last time
seq Argus sequence number
dur Record total duration
mean Average duration of aggregated records
stddev Standard deviation of aggregated records
sum Total duration of aggregated records
min Minimum duration of aggregated records
max Maximum duration of aggregated records
spkts Source-to-destination packet count
dpkts Destination-to-source packet count
sbytes Source-to-destination byte count
dbytes Destination-to-source byte count
rate Total packets per second in transaction
srate Source-to-destination packets per second
drate Destination-to-source packets per second
TnBPSrcIP Total Number of bytes per source IP
TnBPDstIP Total Number of bytes per Destination IP
TnP_PSrcIP Total Number of packets per source IP
TnP_PDstIP Total Number of packets per Destination IP
TnP_PerProto Total Number of packets per protocol
TnP_Per_Dport Total Number of packets per dport
AR_P_Proto_P_SrcIP Average rate per protocol per Source IP (calculated by pkts/dur)
AR_P_Proto_P_DstIP Average rate per protocol per Destination IP
N_IN_Conn_P_SrcIP Number of inbound connections per source IP
N_IN_Conn_P_DstIP Number of inbound connections per destination IP
AR_P_Proto_P_Sport Average rate per protocol per sport
AR_P_Proto_P_Dport Average rate per protocol per dport
Pkts_P_State_P_Protocol_P_DestIP Number of packets grouped by state of flows and protocols per destination IP
Pkts_P_State_P_Protocol_P_SrcIP Number of packets grouped by state of flows and protocols per source IP
attack Class label: 0 for Normal traffic, 1 for Attack Traffic
category Traffic category
subcategory Traffic subcategory

The Logical Analysis of Data technique uses this dataset to develop the classifier. The
support set of features consists of the binary variables that correspond to these ten features
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of the original dataset. The pattern generation process produces patterns that are combi-
nations of these features. The features used in the patterns to build the LAD classifier are:
state_number, min, seq, N_IN_Conn_P_DstIP, mean, srate and N_IN_Conn_P_SrcIP.

Appendix B

The Bot-IoT dataset consists of four types of attack observations. DDoS, DoS, Recon-
naissance, and Theft are the categories of attacks in the dataset. To develop an LAD-based
IDS, these attack categories were combined into one and labelled as 1, whereas normal
observations were labelled as 0. Further, for each type of attack a different LAD classifier
was developed by training on that specific type of attack. Four different LAD classifiers
were built for detecting different type of attacks. To develop these LAD classifiers, different
sets of patterns were generated involving different features. Table A2 shows the different
sets of features used by the different LAD classifiers corresponding to the different types
of attacks.

Table A2. Features involved in various attacks.

Attack Features Involved in the Attack

DDoS stddev, seq, N_IN_Conn_P_DstIP
DoS seq, mean, state_number, drate, srate

Reconnaissance seq, N_IN_Conn_P_SrcIP, state_number, mean,
N_IN_Conn_P_DstIP, drate, srate

Theft seq, min, state_number
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