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Abstract: According to the ever-growing supply and demand of IoT content, IoT big data in diversi-
fied applications are deemed a valuable asset by private and public sectors. Their privacy protection
has been a hot research topic. Inspired by previous work on bounded-error-pruned IoT content mar-
ket, we observe that the anonymity protection with robust watermarking can be developed by further
pruning data for better resource-efficient IoT big data without violating the required quality of sensor
service or quality of decision-making. In this paper, resource-efficient anonymity protection with
watermarking is thus proposed for data consumers and owners of IoT big data market via blockchain.
Our proposed scheme can provide the IoT data with privacy protections of both anonymity and
ownership in IoT big data market with resource efficiency. The experiments of four different-type
IoT datasets with different settings included bounded-errors, sub-stream sizes, watermark lengths,
and ratios of data tampering. The performance results demonstrated that our proposed scheme
can provide data owners and consumers with ownership and anonymity via watermarking the IoT
big data streams for lossless compressibility. Meanwhile, the developed DApp with our proposed
scheme on the Ethereum blockchain can help data owners freely share and trade with consumers in
convenience with availability, reliability, and security without mutual trust.

Keywords: anonymity; watermark; blockchain; IoT big data market

1. Introduction

On the Internet of Things (IoT), technology and diverse applications where everything
can be connected to the Internet, IoT systems can automatically sense, collect, display, or
transmit information for a long time. These applications bring about a close relationship
between human life and intelligence technologies. In recent years, due to continuous break-
throughs in communication technology with cloud, fog, and edge computing technology,
the speed of large amounts of IoT data generated is accelerated by the faster-than-ever
networking performance.

For the data owners in IoT big data markets [1,2], whether individuals, enterprises,
or government units, their diversified IoT data are regarded as very important assets.
However, most of the cloud storage services for these IoT big data are provided by third-
party service providers. It may have risks of data instability, leakage, and vulnerability.
Efficient privacy protection schemes for IoT big data have been a very popular research
topic. Further, governments in various countries have paid much more attention to the
protection of personal data privacy than before by making relevant laws and regulations.
They hope to balance data privacy and data availability without excessively restricting data
usability, such as the General Data Protection Regulations (GDPR) [3] set by the European
Union, which strictly regulates the personal data privacy.

Data anonymity is information with the intention of data privacy protection by re-
moving personally identifiable information in datasets, so that the identification that the
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data describe remains anonymous. Due to the diversified IoT applications usually having
their own bounded-error tolerance in their specific IoT data, in this paper, we extend the
idea of privacy protection for the bounded-error-pruned (BEP) IoT content marketplace
(BIoTCM) [4]. The extended idea is that the degree of IoT data anonymity can be decided
by the bounded-errors tolerated by data consumers for their IoT applications. That is to
say, the larger bounded-error indicates not only higher compression ratios for the BEP IoT
data in resource efficiency, but also a higher degree of data anonymity for data consumers
using BEP IoT data.

Moreover, we further take the advantage of the error-bounded interval ranging from
low-bound to upper-bound in data owners’ BEP IoT data, and a simple watermarking
scheme within the assigned bounded-error in BEP IoT data for owners’ ownership is pro-
posed. To the best of our knowledge, since the proposed watermarking scheme does not
affect the bounded-error tolerance in diversified IoT applications, our proposed watermark-
ing scheme is a kind of zero-bit watermarking [5–7] for ownership of BEP IoT data in the IoT
big data market. For the IoT big data market, we furnish this resource-efficient anonymity
protection with the watermarking (RAPW) scheme for data consumers’ anonymity and
owners’ ownership.

The proposed architecture of the IoT big data market with the RAPW scheme via
an Ethereum blockchain [8] is shown in Figure 1. We designed and developed a DApp
for an anonymous bounded-error IoT big data marketplace to assist IoT big data owners
and consumers without trusting each other. The IoT big data sharing and transactions
with data reliability and security were carried out through Ethereum smart contracts. The
owners’ IoT data source including online data from remote sensors and offline data from
databases can be linked to this DApp. Owners can further set different bounded-errors
(i.e., data resolutions) and watermarks through DApp to the backend blockchain system
for generating their RAPW-BEP IoT data on the decentralized IPFS file system. Then, these
RAPW-BEP IoT data with anonymity and watermarks can be purchased and downloaded
by consumers. The RAPW-BEP IoT data streams in owner-to-consumer pairs can still
preserve the energy efficiency in online sensing data and offline IoT big data.
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This paper conducted a performance test for the proposed RAPW scheme using differ-
ent kinds of real-world IoT datasets including temperature, the UV index, and COVID-19
open data. The preliminary results of the experiment show that the anonymous bounded-
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error IoT big data market using the RAPW scheme on an Ethereum blockchain can success-
fully generate the specified BEP data that conforms to bounded distortions of the original
data and ensure good accuracy of watermark extraction even from data tampering. It is
believed that such an architecture of the IoT big data market with the proposed RAPW
scheme can encourage more IoT data owners including government departments to provide
data consumers with valuable data for more diversified IoT applications.

2. Related Works

In diversified IoT systems, due to their applied technologies or hardware barriers,
the sensing IoT big data often differs from the real values such as analog to digital or
environmental noise. However, this error should be bounded to avoid excessive errors to
jeopardize the credibility of their IoT applications for users. The compression schemes for
resource efficiency in IoT data by taking advantage of the bounded-error can be classified
as lossy compression [9–11] and lossless compression [4,12]. The error-bounded lossy
compression schemes usually have higher compression performance than error-bounded
lossless compression schemes. Since error-bounded lossy compression schemes cannot
recover the original data from compressed data, they must take extra efforts to recover the
error-bounded data close to the original data.

As the requirements from the quality of sensor service (QoS2) and the quality of
decision (QoD) in respective online and offline IoT big data usually have bounded-error
tolerance in a real IoT system, the previous research proposed the LBE-RLE (layered
bounded-error run-length-encoding) compression scheme [12], as illustrated in Figure 2,
for online sensor data to reduce the power consumption of IoT communication to extend
the IoT system lifetime.
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Figure 2. A temperature sub-stream using LBE-RLE compression for resource-efficient IoT data [4].

In Figure 2, according to the assigned bounded-error (i.e., τlow = 1), in the 32 samples
of a temperature data stream in the black curve, this heuristic LBE-RLE lossless com-
pression scheme transforms the original data stream <14.6, 14.3, 14.1, 14, 13.9, 13.8, 13.9,
14.1, 14.7, 16.6, 18.4 20.1, 21, 21.3, 21.2, 20.5, 19.4, 18.3, 17.7, 17.1, 16.6, 16, 15.8, 15.7, 15.5,
15.6, 15.4, 15.1,15.4, 15, 14.9, 15.8> into orange line segments of the run-length sequence
<[13.7, 9], [17.4, 2], [20.3, 6], [17.3, 4], [15, 11]> starting at the lower-bound value of 13.7
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(i.e., 14.6 − τlow + 0.1) with much better compression performance for resource-efficient
transmission and storage of bounded-error-pruned (BEP) IoT temporal data without jeop-
ardizing IoT application’s QoS2/QoD.

Moreover, taking advantage of the BEP sensor data from different bounded errors
can provide different consumers with different QoS2/QoD requirements in their own IoT
applications. The previous work [4] proposed the above-mentioned BIoTCM framework
for owners and consumers on an Ethereum blockchain network to have preliminary privacy
protection for their BEP data with different market values. As shown in Figure 2, the BEP
data stream with a higher-bounded-error (i.e., τhigh) usually preserves a lower price or is
even free of charge in the proposed BIoTCM. That is to say, the BEP data stream with the
lower-bounded-error τhigh usually has a higher price for consumers, because its stream
values are much closer to the original data stream (i.e., the black curve). Through the
BIoTCM Ethereum smart contract [13], the owner’s original data stream and its BEP data
stream with different bounded-errors are transferred to the reliable IPFS (interplanetary file
system [14]). The files on the P2P IPFS file system preserve unique hash values for different
file contents [15]. Thus, these hash values can be used to retrieve these corresponding files
respectively for content integrity. Meanwhile, BIoTCM can simply protect the privacy of
different groups of consumers requesting the different BEP data streams with different BE
resolutions in the owner’s original data. For further privacy protection between consumers
requesting the same BEP data stream, BIoTCM stores the different PKI-encrypted files in
LBE-RLE compression for different consumers requesting the same BEP data streams.

In the literature review of [16], they identified wide-ranging and creative methodolo-
gies for cyber analytics and explored the risks of deliberately influencing or disrupting
behaviors in sociotechnical systems fostered by IoT big data. They argued that the de-
sign of IoT big data systems for edge computing environments is challenging, and one
of the most pressing points is security. In the significant research topic of multimedia
processing, digital watermarking is an imperceptible change to original digital media for
the ownership provision against piracy [17]. In this paper, we further proposed resource-
efficient anonymity protection with watermarking (RAPW) for IoT big data market via
Ethereum blockchain technology. Both the anonymity for different consumers and the
watermarking ownership for owners are resource-efficiently preserved in the IoT big data
market, because LBE-RLE-compressed files in smaller sizes for BEP data streams are stored
on the P2P IPFS file system through the DApp [18] and smart-contract deployed on the
Ethereum blockchain.

3. System Architecture and Proposed Scheme
3.1. Preliminaries for Resource Efficiency in BEP IoT Big Data

In the previously proposed LBE-RLE (layered bounded-error run-length-encoding)
scheme [12], the original sensor data from n samples can be represented in a data stream
Dsensor(n)Dsensor(n) as defined in Equation (1). In Equation (2), the BEP data stream DLBE(τ),
which has sequences of the same data values by the assigned bounded-error of τ, can
be further represented as DLBE−RLE(τ) for LBE-RLE lossless compression as shown in
Equation (3). The RLE subsequence of

[
d̃τ

i , ri

]
with ri repeated data value d̃τ

i is defined in

Equation (4). However, the RLE subsequence
[
d̃τ

i , 1
]

(i.e., ri = 1) is usually encoded as d̃τ
i

without coding the run-length of 1 as defined in Equation (5).

Dsensor(n) ≡ 〈d1, d2, · · · , dn〉 (1)

DLBE(τ) ≡ 〈d̃τ
1 , . . . , d̃τ

1 , d̃τ
2 , · · · , d̃τ

2 , . . . , d̃τ
m, . . . , d̃τ

m〉, m ≤ n (2)

DLBE−RLE(τ) ≡ 〈
[
d̃τ

1 , r1

]
,
[
d̃τ

2 , r2

]
, · · · ,

[
d̃τ

m, rm

]
〉, ri > 1, m ≤ n = ∑m

i=1 ri (3)[
d̃τ

i , ri

]
≡ ∪ri 〈d̃

τ
i 〉, ∃d̃τ

i : ∀j

∣∣∣dj − d̃τ
i

∣∣∣ ≤ τ,
(
∑i−1

k=1 rk

)
+ 1 ≤ j ≤∑i

k=1 rk, r0 = 0 (4)
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[
d̃τ

i , ri

]
≡ d̃τ

i , i f ri = 1 (5)

To theoretically demonstrate the resource efficiency in BEP IoT big data while using
lossless compression (i.e., Huffman coding), the average coding bit length of Shannon
entropy for original data samples Dsensor(n) and LBE-RLE samples DLBE−RLE(τ) is utilized,
as shown in Equations (6) and (7), respectively. They indicate the lower bounds of mean
coding length [19]. The BEP data stream DLBE−RLE(τ) in Equation (7) has more redundancy
in d̃τ

i than the original sensor data stream Dsensor(n) in Equation (6). Thus, the BEP data
stream DLBE−RLE(τ) has better RLE lossless compression in resource efficiency compared
to the original sensor data stream Dsensor(n). In Equations (6) and (7), the function p(x)
represents the occurrence probability of data value x in its data stream. Thus, the BEP-
enabled IoT sensors can save more power to transmit the compressed data for extending the
system lifetime without sacrificing QoS2/QoD requirements in diversified IoT applications.

entropy(Dsensor(n)) = ∑n
i=1 log2

1
p(di)

p(di) (6)

entropy(DLBE−RLE(τ)) = ∑m
i=1 log2

1

p
(

d̃τ
i

) p(d̃τ
i ) + ∑m

i=1 log2
1

p(ri)
p(ri), m ≤ n = ∑m

i=1 ri (7)

In the proposed IoT big data content market, the original IoT data of a data owner can
be represented as Equation (8), similar to Equation (1). Then the consumer can buy different
BEP data DOwner

LBE−RLE
(
τj
)
, as defined in Equation (9), from this data owner with a different

bounded-error τj in the original data DOwner
data (n). Since the sequences of the same data values,

as defined in Equation (9), are found under the condition of ∀=
J

∣∣∣∣downer
=
J

− d̃
τj(owner)
i

∣∣∣∣ ≤ τj

between the original data value downer
=
J

and its BEP value d̃
τj(owner)
i , the different τj applied in

Equation (10) will have different BEP data sequences as defined in Equation (9) to achieve
different data compressions. That is to say, the data streams DOwner

LBE−RLE
(
τj
)

for consumers
requesting the owner’s BEP data with same error bound τj are all the same to preserve the
anonymity between these consumers. On the other hand, privacy is preserved for differ-
ent groups of consumers requesting the owner’s BEP data with different error bounds τj

(e.g., DOwner
LBE−RLE(0.5) 6= DOwner

LBE−RLE(1.0)).

DOwner
data (n) ≡ 〈d1

owner, d2
owner, · · · , dn

owner〉 (8)

DOwner
LBE−RLE

(
τj
)
≡ 〈
[

d̃
τj(owner)
1 , r1

]
,
[

d̃
τj(owner)
2 , r2

]
, · · · ,

[
d̃

τj(owner)
m , rm

]
〉, ri > 1, m ≤ n = ∑m

i=1 ri (9)

[
d̃

τj(owner)
i , ri

]
≡ ∪ri 〈d̃

τjτj(owner)
i 〉, ∃d̃

τj(owner)
i : ∀=

J

∣∣∣∣downer
=
J

− d̃
τj(owner)
i

∣∣∣∣ ≤ τj,
(
∑i−1

k=1 rk

)
+ 1 ≤

=
J ≤∑i

k=1 rk, r0 = 0 (10)

[
d̃

τj(owner)
i , ri

]
≡ d̃

τj(owner)
i , i f ri = 1 (11)

3.2. System Architecture for IoT Big Data Market Using Ethereum Blockchain

In our system architecture for the IoT big data market (Figure 1), the concept of BEP
IoT content was used to not only extend the online IoT system lifetime [12,20], but also
to provide resource-efficient anonymity protection with watermark (RAPW) for IoT big
data via the blockchain smart contract. All the original data and its RAPW-BEP data for
data owners and consumers are lossless-compressed and then saved to a P2P IPFS file for
resource efficiency. The returned hash values for these IPFS files are stored in the blockchain
via a smart contract for later file retrieval with integrity. Since the hash value varies if the
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IPFS file is contaminated, the blockchain transaction information of the hash values for
IPFS files guarantee the content integrity of RAP-BEP-compressed files for IoT big data.

The backend smart contract provides data consumers with the requested IoT content
in different BEP precision from user-friendly frontend DApp. Then, the proposed RAPW
scheme can be used to provide IoT big data content in the marketplace for different-level
consumers’ access, according to the authority and payment between data consumers
and owners. In the RAPW scheme, the proposed RAPW-BEP algorithm uses the data
owner’s original IoT data stream to generate different BEP data streams with ownership
watermarks for different-level data consumers’ requests in bounded-error criteria of their
own IoT applications. Using our proposed RAPW-BEP algorithm, different owners can
insert their data ownership watermarks via the DApp to their different BEP data streams
for consumers. Meanwhile, the ownership of the RAPW-BEP data streams in the IoT big
data marketplace can be validated via our proposed RAPW-ReadWM algorithm, even if
the RAPW-BEP data stream has been contaminated to a certain degree.

However, the different bounded-errors assigned for different RAPW-BEP data streams
with the same watermark indicate the different degree of anonymity for the owner’s
original IoT data. That is to say, data consumers may request the same RAPW-BEP data
stream with the same BE and watermark. Then, only one single RAPW-RLE-compressed
file is stored on the P2P IPFS file system. To further protect the privacy of these consumers
using the same BE and watermark, the PKI-encrypted IPFS files for consumers who require
further privacy protection can be generated accordingly in spending more resources on
P2P IPFS systems in the IoT big data market.

The above-mentioned system flowchart of the proposed RAPW scheme using
blockchain technology for the IoT big data market is summarized in the Figure 3. More
detail of algorithms RAPW-RLE, RAPW-BEP, and RAPW-ReadWM in the proposed RAPW
scheme for the resource-efficient IoT big data market’s privacy protection in anonymity
with watermarking is described in the following sub-section.
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3.3. Resource-Efficient Anonymity Protection with Watermark (RAPW) Scheme

In the previous LBE-RLE example in Figure 2, the bounded-error τ can be regarded as
the anonymity degree of BEP data to the original data. The higher-bounded τ preserved in
the BEP data stream indicates that the higher anonymity with a higher compression ratio for
IoT big data market can be resource-efficiently achieved. In our proposed resource-efficient
anonymity protection with a watermark (RAPW) scheme, the starting point d̃τ

1 of the BEP
data stream is not heuristic anymore. In the proposed RAPW-RLE scheme, the starting
point is decided by the watermark inserted into the BEP data stream within the constraint
of bounded-error τ. As shown in Figure 4, the zooming view of Figure 2 indicates that
there are 19 possible starting points to achieve different LBE-RLE encoding (e.g., the orange,
green and blue lines), after we excluded the upper-bound and lower-bound curves in the
bounded region of the black curve within the bounded-error τ = 1. Thus, we redefined
the original IoT big data stream into N sub-stream Si as shown in Equation (12). The
sub-stream Si is then defined in Equation (13). Each owner’s watermark of its ownership
can be encoded to an integer stream W(l) of l integers, which is less than 20 or 10, as shown
in Equations (14) and (15) for bounded errors of τ = 1 and τ = 0.5, respectively.

DBigdata(N) ≡ 〈S1, S2, · · · , SN〉 (12)

SI(nI) ≡ 〈dI
1, dI

2, · · · , dI
nI
〉, I = 1, N (13)

W(l) ≡ 〈w1, w2, · · · , wl , wdelimiter〉, 1 ≤ wk ≤ 19, τ = 1, 1 ≤ l � N (14)

W(l) ≡ 〈w1, w2, · · · , wl , wdelimiter〉, 1 ≤ wk ≤ 9, τ = 0.5, 1 ≤ l � N (15)

SRAPW−RLE
I (τ, wk) ≡ 〈

[
d̃τ

1,wk
, r̃1

]
,
[
d̃τ

2,wk
, r̃2

]
, · · · ,

[
d̃τ

m,wk
, r̃m

]
〉, m ≤ ni = ∑m

→
i =1

r̃→
i

(16)

d̃τ
i,wk
≡ dI

j − τ + wk × 0.1, j =
(
∑i−1
→
i =1

r̃→
i

)
+ 1 (17)

∴ wk = d̃τ
i,wk
− (dI

j − τ)
/

0.1 , j =
(
∑i−1
→
i =1

r̃→
i

)
+ 1 (18)
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Without the loss of generality, as shown in Figures 2 and 4, the bounded region around
the original data can be evenly divided into 20 or 10 tracks, if τ = 1 or
τ = 0.5, which are {dI

1 − τ + 0.1× wj, 1 ≤ wj ≤ 19} or {dI
1 − τ + 0.1× wj, 1 ≤ wj ≤ 9}

in the first data of original data sub-stream S1(n1). Thus, the l + 1 integers (including
wdelimiter) from encoded watermark W(l) can be sequentially inserted into the first l + 1
sub-streams (i.e., S1, S2, · · · , Sl , Sl+1) by sequentially performing the RAPW-RLE algorithm,
as shown Algorithm 1, to have the watermarked sub-streams (i.e., SRAPW−RLE

1 , SRAPW−RLE
2 ,

. . . , SRAPW−RLE
l ) with BEP data for LBE-RLE compression in resource-efficient IoT big

data market. Since l is assumed much less than the total number N of sub-streams in
original data stream DBigdata(N) defined in Equation (12), the l-integer-encoded watermark
W(l) can be repeatedly inserted at floor(N/(l + 1)) times, because the delimiter wdelimiter
is needed to correctly read the l-integer-encoded watermark out from the N RAPW-RLE
sub-streams (i.e., SRAPW−RLE

I (τ, wk) in Equation (16)), which has been RAPW-RLE-encoded
from original IoT big data stream DBigdata(N) defined in Equation (12).

In the RAPW-RLE algorithm for RAPW-RLE-encoding the sub-streams SI(nI), as
defined in Equation (13) of original IoT big data, we can use the boundary index wk of the
lower-bound (e.g., dI

1 − τ) or the upper-bound (e.g., dI
1 + τ) in the τ-bounded region as

the delimiter wdelimiter (i.e., wdelimiter= 0, or wdelimiter = 10 for τ = 0.5 and wdelimiter = 20 for
τ = 1), since the initial data in RAPW-RLE-encoding starting at the boundary line may have
worse LBE-RLE encoding performance for compression without longer running BEP data,
as shown in Equations (6) and (7).

In Algorithm 2, we provide the RAPW-BEP algorithm to insert the sequential wa-
termark integers W(l) as defined in Equation (14) or Equation (15) into the N RAPW-
RLE-encoding sub-streams SRAPW−RLE

I (τ, wk) repeatedly for original IoT big data stream
DBigdata(N).

As with the description in the previous Section 3.2, the owner’s original IoT data are
RAPW-BEP-encoded via algorithms of RAPW-BEP and RAPW-RLE. Then, the RAPW-BEP-
encoded data stream is compressed and saved into P2P IPFS files. While the RAPW-BEP-
compressed file from the IPFS file system is needed to later validate the ownership, the
ownership watermark inserted by RAPW-BEP and RAPW-RLE algorithms can be read out
correctly via the RAPW-ReadWM algorithm as described in Algorithm 3.

According to the RAPW-RLE algorithm, each watermark integer in the watermark
integer string is repeatedly inserted into the starting data value d̃τ

i,wk
of every RLE run of[

d̃τ
i,wk

, r̃i

]
in the RAPW-RLE-encoded sub-stream, as defined in Equation (17). Then, our

proposed RAPW-ReadWM algorithm can read out the watermark and allows some noise
in the RAPW-RLE-encoded sub-stream within a certain degree via a given noise threshold.
Since the RAPW-ReadWM algorithm counts the occurrences of possible watermark integers
as calculated in Equation (18) in each run of

[
d̃τ

i,wk
, r̃i

]
. If the total of the occurrence values in

different watermark integers other than the watermark integer with maximum occurrence
is no more than a given threshold, the watermark integer with maximum occurrence is
confirmed as a legal watermark integer for this RAPW-RLE-encoded sub-stream.

Thus, the proposed RAPW scheme can provide IoT big data market with resource-
efficient anonymity and watermark protection. The watermark protection with robustness
can be realized by the noise threshold (i.e., wrThreshold) given in the RAPW-ReadWM
algorithm as shown in Algorithm 3.
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Algorithm 1. RAPW-RLE algorithm for a IoT data sub-stream with single watermark integer wk.

Input: bounded-error τ, sub-stream Si of IoT big data, integer digit wj of watermark {w1, w2, . . . ,
wl, wdelimiter}

Output: RLE sub-stream SRAPW−RLE
i for τ and wj

1: n = Si.dataSize
2: upperbound_Si[1:n].data = Si[1:n].data + τ

3: lowerbound_Si[1:n].data = Si[1:n].data − τ

4: Startindex = 1
5: Endindex = n
6: runLength = 1
7: while ( Startindex < n + 1)
8: startingData = lowerbound_Si[Startindex].data + wj ×0.1
9: while (Endindex > Startindex)
10: if (startingData > upperbound_Si[Endindex].data) or

(startingData < lowerbound_ Si[Endindex].data))
11: runLength = 1
12: else
13: runLength ++
14: end if
15: Endindex--
16: end while
19: SRAPW−RLE

i .append(startingData)
17: if (runLength > 1)
18: SRAPW−RLE

i .append(runLength)
20: Startindex = Startindex + runLength
21: end while

Algorithm 2. RAPW-BEP algorithm for IoT data stream with watermark integer string.

Input: bounded-error τ, IoT big data stream DBigdata, maximum size sizeMax for sub-stream of
DBigdata, owner’s watermark W[1:l + 1] = {w1, w2, . . . , wl, wdelimiter}

Output: RAPW-RLE data stream DRAPW−RLE with watermark W(l)
1: N = DBigdata.dataSize
2: sizeRemained = N
3: I = j = 1
4: while (sizeRemained > sizeMax)
5: Si.data = DBigdata[(i − 1) × sizeMax + 1:i×sizeMax]
6: Si.dataSize = sizeMax
7: wj = W[j]
8: DRAPW−RLE.append(RAPW-RLE(τ, Si, wj)) /* in Algorithm 1 */
9: j = j + 1
10: I = I + 1
11: if (j ≥ l + 1) /* l is defined in W[1:l] in Equation (14) or (15) */
12: j = 1
13: end if
14: sizeRemained = sizeRemained – sizeMax
15: end while
16: Si.data = DBigdata[(i − 1)×sizeMax + 1: (i − 1)×sizeMax + sizeRemained]
17: Si.dataSize = sizeRemained
18: wj = W[j]
19: DRAPW−RLE.append( RAPW-RLE(τ, Si, wj) ) /* in Algorithm 1 */
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Algorithm 3. RAPW-ReadWM algorithm for reading watermark from a RAPW-BEP data stream.

Input: bounded-error τ, RAPW-LBE data stream DRAPW−BEP, original stream DBigdata,
maximum size sizeMax of sub-stream, watermark robustness threshold wrThreshold

Output: Watermark W[]
1: N = DRAPW−BEP.dataSize
2: sizeRemained = N
3: I = k = i = j = 1
4. countofDelimiter = 0
5. lowerboundData[:] = DBigdata [:] − τ

6. countofWK[0:lMAX] = 0 /* clear counts of all possible wk */
7: while (sizeRemained > sizeMax)
8: wk = (DRAPW−LBE[I].di.staringPoint – lowerboundData[j])/0.1
9: countofWK[wk]= countofWK[wk] + 1 /* count occurrence of wk */
10: if (wk = wdelimiter)
11: k = 1
12: countofDelimiter ++
13: if (countofDelimiter = 2)
14: return W[] /* confirm the watermark integer list */
15: end if
16: end if
17: j = j + DRAPW−LBE[I].di.runLength
18: i = i + 1
19: if (j > sizeMax)
20: I++ /* jump to new sub-stream as defined in Equation (9) */
21: MaxcntInx = index of maximum count in CountofWK[]
22: Othercnt = total of CountofWK[] except index of MaxcntInx
23: if (Othercnt ≤ wrThreshold)
24: W[k] = MaxcntInx
25: k = k + 1
26: else
27: return NIL /* return no watermark and exit*/
28: end if
29: sizeRemained = sizeRemained − sizeMax
30: i = j = 1 /* first data in new sub-stream */
31: countofWK[0:lMAX] = 0 /*clear counts of all possible wk */
32: end if
33: end while
34: /* check the remained sub-stream if meeting the conditions of step 13 to 15 in while loop,
otherwise return no watermark and exit */

4. Experiments and Evaluations

The main sources of our experimental data were divided into four different kinds of
datasets, including Brazil’s underwater temperature [21], London’s ultraviolet index [22],
and the USA’s COVID-19 confirmed cases and deaths in New Jersey [23]. Each dataset had
the same 500 data values with different attributes and ranges.

4.1. Preliminary Experiments for IoT Data Owners and Consumers

However, we first used the original data sub-stream from Figure 2 to conduct the
preliminary testing for the IoT data owners and consumers of this data sub-stream. As
shown in Figure 5, it validated the DAPW-RLE sub-streams in different watermark integers
(i.e., ranging from 1 to 19 in Equation (14)) within the assigned bounded-error of 1. These
RAPW-RLE subs-streams preserved a similar shape to the original sub-stream (i.e., red
line) with privacy protection of anonymity for consumers, who subscribed a RAPW-BEP
data stream from an owner. Then, this RAPW-RLE data sub-stream could tell the owner’s
ownership from the inserted watermark integer.



Cryptography 2022, 6, 49 11 of 18

Cryptography 2022, 6, x FOR PEER REVIEW 10 of 18 
 

 

4. Experiments and Evaluations 

The main sources of our experimental data were divided into four different kinds of 

datasets, including Brazil's underwater temperature [21], London’s ultraviolet index [22], 

and the USA’s COVID-19 confirmed cases and deaths in New Jersey [23]. Each dataset 

had the same 500 data values with different attributes and ranges. 

4.1. Preliminary Experiments for IoT Data Owners and Consumers 

However, we first used the original data sub-stream from Figure 2 to conduct the 

preliminary testing for the IoT data owners and consumers of this data sub-stream. As 

shown in Figure 5, it validated the DAPW-RLE sub-streams in different watermark inte-

gers (i.e., ranging from 1 to 19 in Equation (14)) within the assigned bounded-error of 1. 

These RAPW-RLE subs-streams preserved a similar shape to the original sub-stream (i.e., 

red line) with privacy protection of anonymity for consumers, who subscribed a RAPW-

BEP data stream from an owner. Then, this RAPW-RLE data sub-stream could tell the 

owner’s ownership from the inserted watermark integer. 

 

Figure 5. RAPW-BEP sub-streams with different single watermark integers (1 to 19) with  = 1. 

Then, to simply validate if this RAPW-RLE sub-stream with watermarking can still 

preserve the resource efficiency in lossless compression with different assigned bounded-

errors (i.e., BE = 1.0 and 0.5), we used this original data sub-stream again to conduct the 

preliminary testing for the entropy value (as calculated in Equation (7)) of this IoT data 

sub-stream using different possible watermark integer. As shown in Equations (14) and 

(15), the watermark integer for a single sub-stream was ranged from 1 to 19 if BE equaled 

1.0 and from 1 to 9 if BE equaled 0.5. In Figure 6, these entropy results indicate that all the 

entropies of RAPW-BEP sub-streams with different watermark integers were much lower 

than the original sub-stream in lossless compression for better resource efficiency. 

Figure 5. RAPW-BEP sub-streams with different single watermark integers (1 to 19) with τ = 1.

Then, to simply validate if this RAPW-RLE sub-stream with watermarking can still
preserve the resource efficiency in lossless compression with different assigned bounded-
errors (i.e., BE = 1.0 and 0.5), we used this original data sub-stream again to conduct the
preliminary testing for the entropy value (as calculated in Equation (7)) of this IoT data sub-
stream using different possible watermark integer. As shown in Equations (14) and (15),
the watermark integer for a single sub-stream was ranged from 1 to 19 if BE equaled 1.0
and from 1 to 9 if BE equaled 0.5. In Figure 6, these entropy results indicate that all the
entropies of RAPW-BEP sub-streams with different watermark integers were much lower
than the original sub-stream in lossless compression for better resource efficiency.
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4.2. Examine for RAPW-BEP IoT Data Streams with Different Settings

To further demonstrate the feasibility of our proposed RAPW schemes, we used
four different kinds of datasets from open data. They were the underwater temperature
dataset [21] with slow variation in larger data values, the UV index dataset [22] with
slow variation in smaller data values, and the COVID-19 dataset [23] with confirmed case
and death numbers with a very large burst in much larger values and smaller values,
respectively. In these different-type datasets, we equally picked up 500 sequential data
among them as the input for our proposed RAPW scheme, as shown respectively in the
RAPW-RLE and RAPW-BEP algorithms of Algorithms 1 and 2, to output the RAPW-BEP
data streams for owners and consumers in IoT big data market. Since the long IoT data
stream is usually segmented into small-sized sub-stream for the required service response
time, the applied sub-stream sizes were all the same 32 in the first experiment for these four
different kinds of datasets.

As simply shown in Equation (16) of our proposed RAPW scheme, each RAPW-BEP
sub-stream possessed a watermark integer from the IoT data owner’s watermark integer
string sequentially. The watermark integer 0 was considered a delimiter to represent the
end of the watermark integer string. Therefore, the watermark string could be told from
the long-running sub-stream in the whole RAPW-BEP data stream. To provide sufficient
availability in the watermark integer string for owner’s ownership representation, because
different bounded errors will have the inherent limitation of a watermark integer range, our
applied lengths of watermark integer string in testing were 4, 6, 8, and 10 (not including
the delimiter) for these four different kinds of datasets, respectively.

In Figure 7, the RAPW-BEP data stream for Brazil’s underwater temperature dataset
is shown in the blue line in the figure top, and the green line is the original temperature
dataset. The applied bounded-error for this temperature data stream was 1.0. In the lower
part of Figure 7, the square line in gray is the repeated watermark integer strings. The
watermark integer 0 indicates the delimiter between the same watermark strings. These
watermark integers in the watermark integer string should be assigned from the input
watermark from the data owner. In our experiments, all the watermark integer strings
were randomly generated with different lengths for fair testing. The applied length of the
watermark integer string in Figure 7 was 4.
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In Figure 8, the RAPW-BEP data stream for the UV index dataset in London’s area
is shown in the blue line in the figure top, and the green line is the original temperature
dataset. The applied bounded-error for this temperature data stream was 0.5. In the lower
part of Figure 8, the gray square line is the repeated watermark integer strings with a length
of 6. The RAPW-BEP data stream for the COVID-19 confirmed dataset of New Jersey, USA
is shown in the blue line at the bottom of Figure 9. The vague green line at the bottom of
the figure is the original confirm dataset. The gray square line is the repeated watermark
integer string with a length of 8. In Figure 10, the RAPW-BEP COVID-19 death dataset
is shown in the blue line in the figure bottom and the original dataset is the vague green
line. At the top of the figure, the gray square line is the repeat watermark integer strings
with a length of 10. All the applied confirmed and death datasets possess a large burst of
data value with different scales. We believe these four different-type datasets validate the
performance of our prosed RAPW scheme comprehensively.

Cryptography 2022, 6, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 8. Data sequence of RAPW-BEP temperature data stream with six watermark integers. 

 

Figure 9. Data sequence of RAPW-BEP COVID-19 confirm data stream witheight watermark inte-

gers. 

Figure 8. Data sequence of RAPW-BEP temperature data stream with six watermark integers.

4.3. Overall Performance Evaluation with Watermarking Robustness

To fully demonstrate the resource efficiency and watermarking robustness in the
proposed RAPW scheme, we applied different settings of bounded-error, watermark length
(WL), and sub-stream size (SS) to find out the corresponding compression ratio (as shown
in Equation (19)) and robustness ratio (as shown in Equation (21)).

In Equation (19), the improvement of the compression ratio of the RAP-BEP data
stream is defined by dividing the compression bits of the RAPW-BEP data stream by
the compression bits of the original data stream. The compression bits of the RAPW-
BEP data stream can be obtained by multiplying the length of the RAPW-BEP stream
(i.e., nRAPW−BEP) and RAPW-BEP stream’s entropy (i.e., entropy(DRAPW−BEP(τ, ω)), a
similar calculation as in Equation (7)). n is the length of the original data stream, τ is the
bounded-error, ω is the applied watermark, and the entropy of the original data stream
(i.e., entropy(Dsensor(n)) was defined in Equation (6).

Compression Ratio =
RAPW − BEP Data Stream Compression Bits

Original Data Stream Compression Bits
=

nRAPW−BEP × entropy(DRAPW−BEP(τ, ω))

n× entropy(Dsensor(n))
(19)
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With Equation (19), we applied different bounded-errors of 1.0 and 0.5, watermark
lengths (WL) of 4, 8, and 12, sub-stream size (SS) of 16, 32, and 48 on four different-type
datasets to validate the compression ratio performance of our proposed RAPW scheme
in resource efficiency in the IoT big data market. The compression performance results
for two different bounded-errors are illustrated in Figures 11 and 12, respectively. Then,
we found that the high-bounded-error usually had a better compression ratio than the
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low-bounded-error for the RAPW-BEP data stream. It is notable that the smaller IoT data
values with a lower variation preserved a better compression ratio in the RAPW-BEP data
stream, no matter what the different settings of watermark length (WL) and sub-stream
size (SS) are assigned in experiments. Thus, the RAPW-BEP data stream of the COVID-19
death dataset had a poor compression ratio since its large-value burst with high variation.
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Without the loss of generality, in the COVID-19 confirmed and death datasets, all
the integer data values were first normalized to have one decimal place and were then
applied to bounded-errors of 1.0 and 0.5 for the performance evaluations of proposed
RAPW schemes. Thus, the actual bounded-errors in the confirmed and death cases in the
COVID-19 dataset were 10 and 5, respectively.

In the proposed RAPW scheme, the integers in the watermark integer string for the
data owner were sequentially inserted into the RAPW-BEP sub-streams from the original
data streams. All the watermark integer strings with different lengths applied in our
experiment on four different-type datasets were generated at random to fairly demonstrate
the watermarking performance. All the watermark extraction results are listed in Table 1
to indicate if the watermark could be correctly read from the RAPW-BEP data streams of
these four different-type IoT datasets.

Table 1. Extraction results of random watermarks for four different datasets with different settings.

Watermark Length,
Sub-Stream Size/Dataset

WL = 4,
SS = 16

WL = 8,
SS = 16

WL = 12,
SS = 16

WL = 4,
SS = 32

WL = 8,
SS = 32

WL = 12,
SS = 32

WL = 4,
SS = 48

WL = 8,
SS = 48

WL = 12,
SS = 48

Temperature (BE = 1.0) ok ok ok ok ok ok ok ok Incomp.
UV Index (BE = 1.0) ok ok ok ok ok ok ok ok Incomp.

COVID Confirm (BE = 1.0) ok ok ok ok ok ok ok ok Incomp.
COVID Death (BE = 1.0) ok ok ok ok ok ok ok ok Incomp.
Temperature (BE = 0.5) ok ok ok ok ok ok ok ok Incomp.

UV Index (BE = 0.5) ok ok ok ok ok ok ok ok Incomp.
COVID Confirm (BE = 0.5) ok ok ok ok ok ok ok ok Incomp.
COVID Death (BE = 0.5) ok ok ok ok ok ok ok ok Incomp.

As shown in Table 1, only the results from the setting of “WL = 12 and SS = 48” were
not “ok” in all testing datasets. This is because the sizes of the original data stream in
our testing datasets were 500. If the watermark string length was 12 and the sub-stream
size was 48 in the applied test setting, the size of the original data stream should be larger
than (12 + 1) × 48 (i.e., 624) to read a complete watermark string correctly. As shown in
the constraint of the data stream size n in Equation (20), the reason why the incomplete
watermark was found in the extraction resulted from the setting of watermark string length
of 12 and sub-stream size of 48.

n ≥ (WL + 1)× SS (20)

However, the watermark of RAPW-BEP data streams of anonymous consumers is
used to identify the IoT data owner’s ownership in owner’s RAPW-BEP data streams
for consumers’ anonymity using different data resolutions (i.e., bounded-errors) with
different prices. According to the blockchain system flowchart described in Figure 3
using the proposed RAPW scheme, the owner’s original data and the owner’s RAPW-
BEP data streams with different data resolutions in BE are all stored on the P2P IPFS
system with their unique hash values. Though these unique hash values, which can be
stored on the Ethereum blockchain via a smart contract, can guarantee their unchangeable
content including owners’ original data and their BEP data for consumers, the security
notions for our proposed approach are still concerned that the anonymous consumers may
either accidentally or intentionally tamper or even resell these downloadable BEP contents
without authorization. To correctly read out the watermark embedded in the downloaded
BEP data stream, our proposed RAPW-ReadWM algorithm, as illustrated in Algorithm 3,
must include the owner’s original data stream in P2P IPFS, the bounded-error value τ in
blockchain, and the consumers’ downloaded BEP data stream which can be tampered.

Considering the above-mentioned security notions about the blind watermark removal
and tampering attacks (i.e., with perfect knowledge of the watermark scheme) in the threat
models [24] for our proposed watermark scheme, we further conducted the experiment to
validate the robustness of watermarking in the proposed RAPW scheme. Using the given
tempered data ratios of 1%, 2%, 10%, and 20%, we then randomly selected the data values
in the data stream to change their value within the given BE setting. This experiment on
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the four different-type testing datasets used all the same settings as in Table 1. Then, the
RAPW-ReadWM algorithm in Algorithm 3 was used to read the inserted watermark out
from all tampered data streams with different tampered ratios of 1%, 2%, 10%, and 20%.
All the testing with different tampered ratios for the validation of watermark correctness
were repeated 15 times to find out the successful ratio on average for RAPW watermarking
robustness.

Robustness ratio =
# o f success f ul watermark extractions

# o f inserted watermarms
= 1− # o f mismatched and imcomplete watermarks

# o f inserted watermarks
(21)

The so-called robustness ratio is defined in Equation (21). The mismatched watermarks
and incomplete watermarks (as shown in Table 1) were all culled to demonstrate the
robustness ratio in strictness. The experimental result of the robustness ratio for RAPW
watermarking is shown in Table 2. The COVID-19 confirmed dataset with the largest
burst of data values had the worse robustness, since it possessed the smallest number of
run-length coding to protect the inserted watermark integer from tampering.

Table 2. Robustness ratio of RAPW for four different datasets from different tampered ratios.

Tampered Ratio/Dataset 1% 2% 10% 20%

Temperature 83% 77% 56% 30%
UV index 83% 78% 50% 28%

COVID confirmed cases 63% 58% 32% 21%
COVID death 83% 76% 41% 14%

5. Conclusions and Future Work

The concept of bounded-error-pruned (BEP) IoT content was used in this paper to
propose new resource-efficient anonymity protection with watermarking (RAPW) for the
IoT big data market via an Ethereum blockchain smart contract. In this decentralized
IoT big data market, the owner’s IoT big data and their different RAPW-BEP IoT data for
anonymous consumers were securely stored on the P2P IPFS file system with immutability
and availability.

Through the experiments on the four different-type datasets including large data
values with small variations, small data values with small variations, large bursts in large
data values, and large bursts in small data values, the proposed watermarking scheme
in RAPW-BEP IoT data can further provide data ownership protection for owners with
robustness without degrading the inherent resource efficiency in BEP IoT big data. Thus,
we believe that our proposed RAPW scheme can encourage more IoT big data owners
including public sectors to provide consumers valuable data with anonymity for further
fostering more diversified IoT applications.

In the future, we hope to validate and enhance our RAPW performance on not only
the more diversified and complicated IoT datasets, such as visual and audible IoT datasets,
but also by comparing and consolidating with other IoT watermark techniques [17] in cost
efficiency, for better robustness in watermark protection from the data tampering from
malicious users in IoT big data markets.
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