
����������
�������

Citation: Addobea, A.A.; Li, Q.;

Amankona, I.O.; Hou, J. A Batch

Processing Technique for Wearable

Health Crowd-Sensing in the Internet

of Things. Cryptography 2022, 6, 33.

https://doi.org/10.3390/

cryptography6030033

Academic Editors: Cheng-Chi Lee,

Mehdi Gheisari, Mohammad Javad

Shayegan, Milad Taleby Ahvanooey

and Yang Liu

Received: 4 May 2022

Accepted: 22 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

A Batch Processing Technique for Wearable Health
Crowd-Sensing in the Internet of Things
Abigail Akosua Addobea 1,* , Qianmu Li 1 , Isaac Obiri Amankona 2 and Jun Hou 3,*

1 School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,
China; qianmu@njust.edu.cn

2 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; obiriisaac@gmail.com

3 School of Social Sciences, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
* Correspondence: abigailaddobea@ymail.com or abigailaddobea@njust.edu.cn (A.A.A.);

houjunnjust@163.com (J.H.); Tel.: +86-131-828-06133 (A.A.A.)

Abstract: The influx of wearable sensor devices has influenced a new paradigm termed wearable
health crowd-sensing (WHCS). WHCS enables wearable data collection through active sensing to
provide health monitoring to users. Wearable sensing devices capture data and transmit it to the
cloud for data processing and analytics. However, data sent to the cloud is vulnerable to on-path
attacks. The bandwidth limitation issue is also another major problem during large data transfers.
Moreover, the WHCS faces several anonymization issues. In light of this, this article presents a batch
processing method to solve the identified issues in WHCS. The proposed batch processing method
provides an aggregate authentication and verification approach to resolve bandwidth limitation
issues in WHCS. The security of our scheme shows its resistance to forgery and replay attacks, as
proved in the random oracle (ROM), while offering anonymity to users. Our performance analysis
shows that the proposed scheme achieves a lower computational and communication cost with a
reduction in the storage overhead compared to other existing schemes. Finally, the proposed method
is more energy-efficient, demonstrating that it is suitable for the WHCS system.

Keywords: wearable health crowd-sensing; internet of things; batch processing; wearable devices

1. Introduction

The evolution of mobile technology has enabled continuous physiological data collec-
tion in a vital-sign monitoring system, lowering healthcare expenses and improving disease
management. The cost-effectiveness of vital-sign monitoring systems for the collective
wellbeing of the populace has triggered a new health phenomenon known as wearable
health crowd-sensing (WHCS) [1]. WHCS is an approach involving a broader group of
dispersed audience that utilizes wearable devices with embedded health sensors to provide
continuous monitoring with the extraction of personal health data to promote data sharing
and analysis. WHCS has numerous advantages in terms of minimizing data acquisition
costs, making it possible for researchers and businesses to obtain data for analysis without
investing large sums of money. Cloud computing for WHCS is an intriguing solution
for data storage and analysis. It provides lower data storage and maintenance costs with
constant availability of computing resources, enabling users to access cloud resources at
their leisure. Considering the scenario presented in Figure 1, sensors are deployed on a
patient to collect vital signs. The gateway transmits the collected data from the sensors to
the aggregator. The gateway is a transmission medium that transfers wearable data using
wireless technology such as WIFI, cellular communication, and the Bluetooth technology.
The gateway in the scenario can be a mobile device with storage, battery, and network
capabilities that can serve as a communication link between the wearable devices and the
aggregator. The aggregator garners the wearable data from the gateway and processes

Cryptography 2022, 6, 33. https://doi.org/10.3390/cryptography6030033 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6030033
https://doi.org/10.3390/cryptography6030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-6447-6820
https://orcid.org/0000-0002-0998-1517
https://orcid.org/0000-0002-1642-0291
https://orcid.org/0000-0002-6986-4961
https://doi.org/10.3390/cryptography6030033
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6030033?type=check_update&version=1

Cryptography 2022, 6, 33 2 of 26

it into batches before releasing it to the cloud. The cloud acts as a repository for data
storage as well as the provision of data analytics. As the cloud server is semi-trusted and
susceptible to cyber-attacks, what is the guarantee that the data received from the cloud
server will be the original data obtained directly from the wearable sensors? Despite the ef-
ficient functionality of cloud-based WHCS, it is not without drawbacks. First and foremost,
the transfer of large amounts of generated wearable data is limited by low bandwidth in
network-constrained domains. As a result, pending wearable data may be abandoned due
to network congestion. Moreover, wearable devices cannot conduct high-level program-
ming tasks on the massive amounts of generated data due to their tiny size and lack of
computational resources. In addition, on-path attackers, such as man-in-the-middle (MITM)
and man-in-the-mobile (MITMO) attacks, may intercept and modify transmitted data from
wearable devices to the cloud. Typically, these attackers capture host devices to filter user
data and redirect the filtered information to the attacker’s web server. The Zeus malware is
a prime example. Again, crowd-sensing systems face anonymization issues whereby the
private information of a user is extracted from the collected data before it reaches the cloud.
The extracted confidential information includes the user’s name, location, and IP address.
In this case, the private information can be traced to identify the legitimate data owner,
causing a breach of privacy [2].

Figure 1. Wearable health crowd-sensing platform.

Even though public-key infrastructure (PKI) can provide WHCS with data security
benefits, it is not without security issues. PKI offers the benefits of confidentiality, integrity,
and authenticity. Nevertheless, identity and certificate management issues affect the
traditional PKIs [3] thereby leading to an increase communication overhead. Additionally,
a certificate authority can compromise the private key of a user. Consequently, Boneh and
Franklin [4] introduced Identity-Based Cryptography (IBC) to address the shortcomings
of traditional PKIs. With IBC, a private key generator (PKG) derives the complete private
keys for users based on the PKG’s master secret key. However, the dependence of PKGs on
user-generated private keys introduces the inherent key escrow problem. Thus, a malicious
PKG can compromise the user’s identity due to its exclusive ability to generate private
keys. Al-Riyami and Patterson [5] proposed certificateless cryptography (CLC) to address
the inherent key escrow problems in IBC and resolve certificate management issues in
traditional PKI. The concept arose from searching for public-key schemes that do not rely
on certificates and lack the key escrow feature of identity-based cryptography (IBC). CLC

Cryptography 2022, 6, 33 3 of 26

provides security for WHCS by bridging the gap between traditional PKI and IBC. Using
the CLC method, the PKG and the system user jointly generate private and public keys.
Thus, the PKG does not possess the complete private key of the user, but generates a
partial private key that is sent to the user. The user, therefore, derives their private key
through self-selected security parameters and the partial private key obtained from the
PKG. CLC [5] being a variant of IBC, offers non-repudiation, and supports lightweight
infrastructures, such as wearable systems. Moreover, the CLC is highly desirable for
deployment in situations with low bandwidth. Motivated by the addressed concerns,
the main contributions of the proposed article is outlined as follows:

• Firstly, this article proposes a batch processing technique based on certificateless
cryptography for the wearable health crowd-sensing (WHCS) system. The batch
processing technique uses aggregate authentication and verification procedure to
improve bandwidth limitation issues in large data transfers.

• Secondly, the proposed scheme provides anonymity by obscuring users’ identities
during data transmission. In obscuring the user’s identity, the wearable device and
the aggregator perform anonymous computation on the user’s identity to derive
anonymity tuples before sending the user’s wearable data to the cloud.

• The formal security analysis proves the scheme is resistant to forgery and replay
attacks, assuming that the Computational Diffie-Hellman (CDH) problem is hard
to solve by a probabilistic polynomial-time (PPT) attacker in the random oracle
model (ROM).

• Additionally, results from our performance evaluation have shown the proposed
method to be more efficient than other existing batch processing schemes, reducing
computational and communication costs while achieving less storage overhead.

• Results from our power consumption analysis prove the proposed scheme to be energy
efficient, making it suitable for network bandwidth environments.

The article’s organization is as follows: Section 2 summarises existing research in
wearable health crowd-sensing. Section 3 focuses on the preliminaries and definitions
of the underlying basic syntax. Section 4 presents the system architecture, the design
objectives and the scheme construction. Section 5 examines the security proofs of the
proposed scheme. Section 6 highlights the performance evaluation of the scheme. Section 7
contains the discussion, while Section 8 concludes the work.

Motivation

Considering the global pandemic crisis, many people cannot live normal lives due to
the restrictive nature of COVID-19 rules. Most governments have enforced rigorous rules
to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even
though most individuals were forced to work from home, some governments imposed
lockdowns while initiating a social distancing strategy on the general populace. As such,
most advanced nations, such as China, the United States, et cetera, have established mass-
testing procedures to prevent the spread of the virus to identify infected people. While
mass testing has proven to be an effective method, there are some concerns: for example,
the movement of health professionals during mass testing becomes costly in terms of
logistics, and occasionally, there is a lack of health professionals to participate in the mass
testing exercise. So, using a crowd-sensing strategy to identify citizen complaints is an
excellent way to discover possible emergencies and solutions. Moreover, using wearable
smart devices for pre-symptomatic detection [6] and contact tracing [7] can help crowd-
sensing methods to obtain data so that governments can make informed decisions on
epidemic control [1]. Although prior studies on public-key cryptography have shown the
practicability of WHCS, there are still existing issues that need to be addressed. Either
the existing solutions are too computationally intensive, introducing extra communication
overhead for wearable devices, or the security of anonymity is overlooked. As a result,
this article presents a batch processing scheme based on certificateless cryptography (CLC).
CLC is an ideal PKC primitive that is designed to support lightweight infrastructure [5].

Cryptography 2022, 6, 33 4 of 26

Constructing a batch processing scheme using certificateless cryptography is an ideal
solution for bandwidth issues during large data transfers. Consequently, the CLC method
is suited for low-power smart devices such as wearable systems. Meanwhile, the provision
of anonymity is not left out. The proposed batch solution performs anonymous calculations
to users’ identities before relaying the collected data to the cloud for storage and analysis.
Another significant advantage is eliminating the inherent key escrow since private key
generation is not solely left on the key generation server (KGS). However, the user is
responsible for deriving their full private keys from their identity and the partial private
key produced by the KGS. Lastly, the batch processing method can protect users against
forgery and replay attacks initiated by cyber adversaries.

2. Summary of Existing Research

Wearable health crowd-sensing (WHCS) has been inspired by the incorporation of
artificial intelligence (AI) analytical capabilities into wearable devices, whereby users
generate a substantial amount of wearable data utilizing monitoring sensors. The generated
data is sent to the cloud for processing and analysis, enabling enterprises to make more
informed decisions by detecting customer demands and determining how to satisfy them.
Several existing works tackle crowd-sensing paradigm-related concerns.

The survey presented by Liu et al. [8] examined crowd-sensing strategies on mobile
networks. In the mobile crowd-sensing IoT, the observed resource utilization concerns,
precisely bandwidth issues resulting from the generation of vast amounts of data. Ce-
cilia et al. [1] also described how crowd-sensing approaches were applied in Spain to detect
COVID-19 early warning indications. In addition, Owoh et al. [9] provided a security study
for crowd-sensing networks that rely on end-to-end encryption. His scheme design was
based on a symmetric method but he did not demonstrate how the scheme could ensure
user security. As security and confidentiality are essential in wireless communications,
Daojing et al. [2] highlighted anonymization issues in crowd-sensing networks. The paper
considered how an organization (PEPSI) uses an Identity-Based Encryption (IBE) method
to encrypt a user’s information before sending the information to the service provider. One
major flaw of this approach is the inherent key escrow in IBE. Kamil et al. [10] introduced a
lightweight aggregation certificateless signature strategy for crowd-sensing that is more
resistant to possible attacks such as replay, MITM, and impersonation attacks. Pius et
al. [11] also presented a security framework for mobile crowd-sensing applications. How-
ever, the authors in [11] did not provide a security proof to demonstrate the security of
their scheme. The scheme does not solve the pertinent crowd-sensing issues of bandwidth,
anonymization, and other security problems. Although their scheme was constructed
using encryption, it required more heavy computational operations with an extra commu-
nication overhead. Li et al. [12] also presented a de-duplication protocol to identify and
remove duplicates for edge-assisted crowd-sensing services. Their protocol prevents the
leakage of linked, duplicated data.

Ni et al. [13] also proposed a robust privacy-preserving crowd-sensing called SPOON.
In SPOON, the service providers recruit mobile users based on their locations and select
appropriate sensing reports depending on their trust levels without compromising user
privacy. Sensing tasks are protected with proxy re-encryption and BBS+ signature to
prevent privacy leakage.

The authors in [14] examined a security flaw in an existing scheme and designed a
certificateless signature scheme (CLS) without map-to-point (MTP) and Random Oracle
(ROM) to address data authenticity issues at the same time providing data crowd-sensing
security for cloud-assisted Industrial Internet of Things (IIoT) applications. Shim et al. [15]
proposed an obfuscatable anonymous authentication model to address device capture at-
tacks when mobile devices are misplaced. The authors created an obfuscated authentication
procedure to transform the authentication request algorithm into an unintelligible form.
Their method provides users with authenticity and unlinkability by applying encrypted
group signature and linear encryption.

Cryptography 2022, 6, 33 5 of 26

Although Certificateless Cryptography (CLC) methods are well-suited for low-resource
devices and low-bandwidth applications, several aggregate CLC algorithms do not support
complete batch processing. For instance, Kumar et al. [16] presented a certificateless aggre-
gate signature scheme for healthcare wireless sensor networks (CASS-HWSN). The pro-
posed approach is energy efficient in the healthcare wireless sensor networks (HWSN).
However, the scheme only satisfies partial batch processing. Their scheme also incurred
extra verification costs as the number of participants in the network grows making it
unfeasible for healthcare wireless sensor networks. Similarly, Asari et al. [17], proposed hi-
erarchical anonymous certificateless authentication protocol (HACA) to achieve anonymity.
Their protocol maps distinct identities to various pseudonyms. However, their analysis
presented the aggregate verification feature but excluded the aggregate authentication
method, which does not satisfy the complete batch processing procedure.

3. Preliminaries
3.1. Bilinear Pairings

The concept of bilinear pairings was originally introduced by Joux [18] in his proposal
of a pairing-based three-party key-exchange protocol. As used in the scheme construction,
this subsection defines the underlying concept of bilinear pairing. A pairing (also known
as Bilinear pairing) is bilinear map of ê : G1 ×G1 → G2 where G1 denotes an additive
cyclic group and G2 denotes a multiplicative cyclic group both of prime order q having
a generator P ∈ G1 [19]. The bilinear map ê : G1 ×G1 → G2 is an admissible map if it
satisfies the following properties:

1. Bilinearity: ∀P ∈ G1, ∀P ∈ G2 and a, b ∈ Z∗q , then ê(aP, bQ) = ê(P, Q)ab. ∀a, b ∈
Z∗q , ê(aP, bQ) = ê(P, Q)ab where aP = P + P + P . . . + P (a times) and bP = P + P +
P . . . + P (b times) where a, b are scalar multiplication in the additive group [4].

2. Non-degeneracy: a bilinear pairing ê(P, Q) 6= 1G2 is non-degenerate if all the pairs in
G1 do not map to the pairs in G2 where 1G2 is the identity element of G2.

3. The algorithm should be efficiently computed, such that ∀P, Q ∈ G1, there exists
an efficient algorithm to compute that ê(P, Q). Such a mapping ê is called a bilinear
mapping which can be constructed using the Weil or Tate Pairings [20].

3.2. Hardness Assumption

The hardness of the proposed algorithm is based on the following assumption:
Computational Diffie–Hellman Assumption (CDH) in G1: Given (P, aP, bP) for some

unknown a, b∈Zq, the goal of the adversary is to compute abP∈G1. The success probability
of any probabilistic polynomial time algorithm in solving the CDH problem is defined as
SuccCDH = Pr[A(P, aP, bP) = abP] where a, b ∈R Z∗q .

3.3. Formal Definition of a Certificateless Signature Scheme (CLS)

We present the construction of the proposed scheme based on the generic model of
a CLS scheme in [5]. The mathematical symbols used in the CLS are shown in Table 1.
The CLS model consists of two entities, the KGS (key Generation Server) and the User
(U), who execute the CLS algorithm. The algorithm consists of Setup, Partial-Private Key
Extract, Set-secret value, Set-private key, Set-public key, Sign, Verify.

• Setup[(1k) → (params, msk)]: The KGC takes a security parameter 1k and runs the
setup algorithm to return params and msk. It keeps msk secret and publicly publishes
params.

• Partial-Private-Key extract[(params, msk, IDi) → Di]: The KGC takes params, msk
and the identity IDi of Useri as input. It returns a partial private key value Di and
sends it to the user through a secure channel.

• Set-Secret-Value[(params, IDi)→ xi]: The user (U) runs this algorithm by taking its
identity Idi and params. It returns xi as its secret value.

Cryptography 2022, 6, 33 6 of 26

• Set-Private-Key [(params, IDi, Di)→ Si]: the user (U) takes params, IDi, Di as inputs,
and generates a private key as Si.

• Set-Public-Key [(params, IDi, xi) → Pi]: the user (U) takes params, IDi, xi as inputs,
and returns Pi as public key.

• Sign[(params, IDi, Si)→ σi]: The user (U) signs a message m by taking identity IDi,a
private key Si as inputs and generates a valid signature as σi. It sends the signature
value σi to the KGS through a secure channel.

• Verify[m ?
= (σi, IDi, Pi)]: The KGS receives σi and performs the verification algorithm

by taking the user’s identity IDi , public key Pi to obtain the message m. It checks if σi
received from the user is a valid signature. It returns true for a valid signature and
returns false for an invalid signature. It therefore rejects the message if the signature
is invalid.

Table 1. Notations and description of abbreviated text.

Notation Description

1k Security Parameter
Bl WD anonymity computed tuple

BlPMCS AU anonymity computed tuple
ê Bilinear map

ê : G1 ×G1 → G2 Bilinear pairing
G1 , G2 Additive and Multiplicative cyclic groups

H1, H2, H3 Three One-Way hash functions
IDi user identity
msk master secret key
m message

params Public parameters
P Generator

〈xMCS, PMCS〉 master secret/public key pair
si user generated secret value
Ri partial public parameters
Qi Partial private key generated by MCS

Pri = 〈si, Si〉 User private key
Pi = 〈Ri, Qi〉 User public key

AU Aggregation Unit
KGS Key Generation Server
MCS Medical Cloud Server

U User
WD Wearable device

3.4. Security Model

The hardness of our scheme is based on the security model of a certificateless cryptog-
raphy (CLC) addressed in [5,21] which considers two adversaries: A1 modeled as a Type 1
adversary and A2 modeled as a Type 2 adversary capable of forging the signature.

• Adversary A1 depicts a dishonest user who does not have access to the master secret
key msk, but may request public keys and replace public keys of its choice, extract
partial private keys, extract private keys and make forge queries on signatures of
identities of its choice.

• Adversary A2 represents a mistrusted KGS, which has, access to the master key but
does not perform public key replacement. It has the ability to compute partial private
keys having the master secret key. However, it is restricted not to replace public keys
and make private key extraction queries.

3.4.1. Game 1

In Game 1, adversary A1 makes queries to the hash oracles, queries to extract Par-
tial Private Key, makes Private Key queries, performs public key replacement and forge

Cryptography 2022, 6, 33 7 of 26

queries to the sign oracle. The challenger C runs the Setup, Attack and Forgery algorithms
as follows:

1. Setup: The challenger C takes a security parameter 1k as input, and runs the setup
algorithm to obtain the master secret key msk and generate the system parameters
params. The challenger C keeps msk secret, and sends params to A1.

2. Attack: The adversary A1 challenges the oracle by making the following queries:

• Create User: If an identity IDi has already been created, then there is nothing
to be done. Otherwise the oracle runs the Private-key extract, Set-secret value,
Set-public key algorithm to obtain a secret value xi, a partial private key Di and
returns the Pi as the public key.

• Hash Queries: the adversary A1 make hash queries to the hash oracles.
• Extract partial private key queries: The adversary A1 makes a request on the

partial private key on chosen identity IDi. The oracle runs the query and returns
Di, if IDi has been created, otherwise it returns a null ∅.

• Set Secret value: The adversary A1 makes a request on a chosen IDi. The oracle
returns xi as the secret value if the identity IDi has been created. Otherwise it
returns a null ∅.

• Private-key-Extraction: On input of an arbitrary identity IDi it returns Di to the
adversary A1 if IDi has been created. Otherwise it returns a null ∅.

• Replace public key: the oracle runs this query and replaces the public key P∗i on
the requested identity IDi.

3. Sign: Adversary A1 makes a query on a chosen identity IDi, a message m and Pi.

• If IDi has been created, it outputs a signature σ such that Veri f y(IDi, m, Pi, σ) =
true.

• If IDi has not been created, it returns an ∅.

4. Forgery: Adversary A1 outputs a forgery on (ID∗i , P∗i , m∗, σ∗) and wins the game if
Veri f y(IDi, m, Pi, σ)=true, ID∗ has never been queried or has never been submitted
to the Partial private key oracle.

Definition 1. Let AdvA1 be the advantage of a Type I adversary A1 adaptively winning chosen
messages and chosen identities attack in the above security game, where coin tosses are made by
the challenger. We say a certificateless signature scheme is secure against Type I adversary in
the random oracle model (ROM), if, for all probabilistic polynomial-time (PPT) adversary A1,
the success probability of AdvA1 is negligible.

3.4.2. Game 2

Similarly in Game 2, adversary A2 makes queries to the hash oracles, makes Pri-
vate Key queries,performs public key replacement and forge queries to the sign oracle.
The challenger C runs the Setup, Attack and Forgery algorithms as follows:

1. Setup: The challenger C takes as input a security parameter 1k, and runs the setup
algorithm to obtain the master secret key msk and the system parameters params.
The challenger C keeps msk secret, and sends params to A2.

2. Attack: Adversary A2 makes similar queries defined in Game 1 in Section 3.4.1 but
does not query the partial private key extract.

3. Sign: A2 makes a query on a chosen identity IDi, a message m and Pi and returns a
signature σ as in the sign phase of Game 1 in Section 3.4.1.

4. Forgery: adversary A2 outputs a forgery on (ID∗i , P∗i , m∗, σ∗) and wins the game
if Veri f y(IDi, m, Pi, σ) = true, ID∗i has never been queried or has never been submit-
ted to the Partial private key oracle.

Definition 2. Let AdvA2 be the advantage of a Type II adversaryA2 adaptively winning the chosen
messages and chosen identities attack in the above security game, where the challenger tosses a coin.
We say a certificateless signature scheme is secure against Type II adversary in the random oracle

Cryptography 2022, 6, 33 8 of 26

model (ROM), if, for all probabilistic polynomial-time (PPT) adversary A2, the success probability
of AdvA2 is negligible.

3.5. System Requirements

To achieve secure data transmission in WHCS system, the following security require-
ments must be achieved:

• Non-repudiation: it is noteworthy that the entities existing within the wearable health
crowd-sensing(WHCS) system do not deny accessing the system resources for authen-
tication to share wearable data.

• Resistance to forgery attacks: this feature requires the inability of any known adversary
of forging valid individual and aggregate signatures from the wearable data.

• Resistance to Replay attacks: the feature prevents an adversary from replaying a
message during message interception to modify the wearable data.

• Data Privacy: although our scheme requires the user to submit its identity for authen-
tication, we assume the medical cloud server cannot leak the private information of
the user.

• Anonymity: it requires that the identity of user is not revealed during message transfer
from the wearable device onto the medical cloud server.

• Aggregate Authentication and verification: The medical cloud server is able to au-
thenticate large wearable sensor data simultaneously. Likewise, aggregate message–
signature pair can be verified through aggregate verification.

4. System Architecture

This section provides an overview of the system architecture of the proposed scheme.
It first introduces the entities and describes their respective roles in the system. Secondly, it
discusses the design objectives and finally presents the scheme description.

4.1. Entity Roles

According to Figure 2, the system entities consist of a wearable device (WD), a user (U),
an aggregation unit (AU), and a medical cloud server (MCS). We give a brief description of
their roles in the system.

1. Wearable device (WD): The wearable device is equipped with micro-sensors to mon-
itor and detect the user’s physiological data. It performs sensing functions such as
monitoring heartbeat and detecting health abnormalities such as COVID-19 symp-
toms. It serves as the collection point to collect all the captured wearable sensor data.
It performs anonymity computations to hide the user’s identity before submitting the
wearable data to the aggregation unit.

2. User (U): The user represents the device owner who wears the wearable device for
daily personal health monitoring. The user can request a copy of their data from the
medical cloud server.

3. Aggregation unit (AU): The aggregation unit consists of the user’s mobile devices
that aggregates all the received wearable sensor data from the wearable device. Since
the mobile device is computationally powerful than the wearable device, it is desig-
nated to perform aggregation functions. It also performs anonymous computation to
generate an anonymity tuple, which conceals the user’s identity before transferring
the wearable sensor data to the medical cloud server.

4. Medical cloud server (MCS): The medical cloud server represents the trusted cloud
model. It receives the aggregated wearable sensor data from the aggregation unit and
performs batch processing functions on the received data. It also stores and analyzes
the received wearable sensor data. It sends a copy of the user’s data based on the
user’s request.

Cryptography 2022, 6, 33 9 of 26

Figure 2. Wearable health crowd-sensing system architecture.

Design Objectives

A wearable health crowd-sensing (WHCS) system provides constant health monitoring
to wearable device users in remote environments. The system tracks a user’s health by using
a wearable device to capture the physiological data of the user’s daily activities. It facilitates
the early detection of health abnormalities, prompting health responders to provide a quick
diagnosis. The wearable device collects the captured wearable sensor data and transmits the
data to the aggregation unit. The aggregation unit then gathers all the captured data from
the wearable devices, performs anonymization algorithms on the user’s identity, and sends
it to the medical cloud server for data processing and storage. Notably, the aggregation
unit comprises mobile devices (such as smartphones, tablets, and iPads). In addition,
current mobile devices are computationally equipped to perform edge computing tasks,
which is why they are adopted to perform aggregate authentication functions in the WHCS.
In the WHCS, the wearable device cannot process massive physiological data due to its
resource-constrained nature. Similarly, the lack of computational power prevents them from
processing extensive data. More so, transmitted data is constantly vulnerable to various
adversarial attacks. Finally, the massive wearable sensor data transfer creates bandwidth
constraints in the WHCS network environment. The constructive batch processing method,
which relies on certificateless cryptography (CLC), is adopted to address these concerns and
resolve the bandwidth limitation issues during data transfer. In order to provide anonymity
to users, the wearable device obscures the user’s identity before transmitting the wearable
data to the aggregation unit. The aggregation unit also hides the user’s data for the second
time before finally relaying the wearable data onto the medical cloud server. Consequently,
the CLC method is designed to suit light portable systems such as wearable devices.

Cryptography 2022, 6, 33 10 of 26

4.2. Scheme Construction

This subsection describes the scheme generation according to Figure 3. According
to [5], a certificateless signature consists of five stages, namely: setup, partial-private key
derivative, key generation, signing, and verification. The proposed batch processing wear-
able health crowd-sensing scheme consists of seven stages, namely: setup, partial-private
key derivative, key generation, aggregation unit registration, anonymity computation,
signing, verification, and batch processing. The anonymity computation is executed by
both the wearable device and the aggregation unit. The batch processing comprises both
aggregate authentication and aggregate verification.

1. Setup(1k): The medical cloud server (MCS) executes the setup algorithm by taking
a security parameter 1k as input. The MCS defines two cyclic groups G1 and G2
where G1 is an additive group and G2 is a multiplicative group of prime order q.
With P as a generator, MCS constructs a bilinear pairing ê : G1 ×G1 → G2. It selects
xMCS ∈R Z∗q as its master secret key and derives its corresponding master public key
as PMCS = xMCSP. It returns a master private/public key pair as (xMCS, PMCS). It
chooses three one-way hash functions H1 : {0, 1}∗ → G1; H2 : {0, 1}∗×G1 → Z∗q ; H3 :
{0, 1}∗ ×G1 ×G1 → Z∗q ; and generates system parameters as params. It publicly
publishes params and keeps xMCS private. Refer to (Algorithm 1).

2. Partial-Private Key Derivative: This algorithm comprises of two steps.

(a) In the first step, the user(U) chooses si ∈R Z∗q and computes Ri = siP. It sets
the partial public parameters as 〈Idi, Ri〉 and sends it to the medical cloud
server as seen in (Algorithm 2).

(b) The medical cloud server(MCS) receives 〈IDi, Ri〉 from the user and calculates
the partial private key for the user as Si = xMCSQi, where Qi = H1(IDi||Ri).It
sends 〈Qi, Si〉 through a secure channel to the user(U). Refer (Algorithm 3).

3. Key Generation: The user(U) executes the key generation algorithm by generating
its full public/private key pair 〈Pi, Pri〉 where Pri = (si, Si) and Pi = (Ri, Qi) after
obtaining 〈Qi, Si〉 from the MCS. From (Algorithm 4).

4. Aggregation unit Registration: The aggregation unit (which comprises of the user’s
mobile devices) randomly selects ci ∈R Z∗q , and registers itself to the medical
cloud server (MCS) by computing (Ji, Ti) where Ji = ciQi and Ti = ciSi. Reference
(Algorithm 5).

5. Anonymity Computation: The wearable device initially hides the user’s identity by
computing, Bl = (Idi||hi||Wi||ti||m||Ui)

l and sends Bl to the aggregation unit (AU).
The aggregation unit (AU) in turn computes BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS to
hide the user’s identity for the second time. The aggregation unit(AU) sends the tuple
BlPMCS to medical cloud server (MCS). Reference (Algorithms 6 and 7).

6. Signing: The user takes its private key Pri = (si, Si), and signs its wearable sensor
data m, by taking a nonce ni ∈R Z∗q , applying a timestamp ti ∈ Ts, and signs the
wearable sensor data as in Algorithm 8). It returns a signature value σi = 〈Ui, Vi〉 and
sends σi to the medical cloud server (MCS). Reference in (Algorithm 8).

7. Verification: The medical cloud server(MCS) receives both BlPMCS and the signature
σi = 〈Ui, Vi〉.
(a) After receiving the tuple BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS from the AU,
the MCS checks the validity of the tuple through the timestamp, ti. If the
timestamp ti has elapsed, that means the tuple is invalid and hence rejects it.
Else, it accepts the tuple and computes it as B1/l = (Idi||hi||Wi||ti||m||Ui)

xMCS .
(b) It also verifies signature and checks the equation: ê(Vi, P) = ê(Ji + hiUi, PMCS).

It accepts the signature, if it is valid. Otherwise it rejects it. Refer to (Algorithm 9).

8. Batch Processing: The aggregate authentication and verification occur at this stage.
In the aggregate authentication, the identities of the individual users, with their
corresponding public keys and generated signature values, are aggregated by their
respective aggregation units and sent to the medical cloud server for verification.

Cryptography 2022, 6, 33 11 of 26

(a) Aggregate authentication: The respective aggregation units aggregates all
messages from the respective users n having identities (Idi . . . Idn) with cor-
responding public keys (Ri . . . Rn). It then transmits them onto the medical
cloud server (MCS).

(b) Aggregate Verification: the medical cloud server (MCS) performs the aggre-
gate verification algorithm to verify the received accumulated tuples and the
received wearable sensor data from the aggregation units.

Figure 3. The process flow of system architecture.

The scheme algorithm is described below:

Algorithm 1: Setup (1k) (Run by Medical cloud Server)

1 Begin Setup;
2 Input: Security parameter 1k;
3 Output: Master secret key xMCS, master public key PMCS, public parameters

paramsξ, Two Cyclic group elements G1,G2 of prime order q;
4 Takes security parameter 1k; Define two cyclic groups G1,G2 where G1 is an

additive group and G2 is a multiplicative group, having < P > as a generator,
construct a bilinear pairing ê : G1 ×G1 → G2;

5 Choose three one-way hash functions H1 : {0, 1} → G1,
H2 : {0, 1}∗ ×G1 × Zq

∗ → G1, H3 : {0, 1}∗ ×G1 ×G1 → Z∗q ;
6 Select xMCS ∈R Z∗q as a master secret key; Compute a master public key as

PMCS = xMCSP; Makes master secret key xMCS private.;
7 Makes master public key PMCS public.;
8 Generate system parameters as params ξ = {G1,G2, ê, q, PMCS, H1, H2, H3};

Publicly publish system parameters params ξ = {G1,G2, ê, q, PMCS, H1, H2, H3};
Keep master secret key xMCS private;

9 End setup;

Cryptography 2022, 6, 33 12 of 26

Algorithm 2: Partial-Key Extraction Algorithm Part 1 (IDi, si) (Executed by U)

1 Input: User identity IDi and randomly selected si;
2 Output: User derived Partial public Parameter;
3 Begin Extraction;

4 User selects si
R−→ Z∗q ;

5 Calculates user partial public parameter as siP→ Ri;
6 Returns (IDi, Ri) to the medical cloud server as (IDi, Ri)→ MCS;
7 . User sends identity and partial public parameter (IDi, Ri) to the medical cloud

server;

Algorithm 3: Partial-Key Extraction Algorithm Part 2 (IDi, Ri, H1) (Executed
by MCS)

1 . Receives identity and partial public parameter (IDi, Ri) from user;
2 Continue Extraction;
3 Input: User identity IDi, User generated partial public parameter, H1 ;
4 Output: Partial private key for user ;
5 Takes H1 and (IDi, Ri);
6 Computes H1(IDi||Ri)→ Qi;
7 Generates (xMCS||Qi)→ Si;
8 Derives partial private key as 〈Qi, Si〉 ;
9 Returns〈Qi, Si〉 → User(U) ;

10 . Sends partial private key to user as 〈Qi, Si〉;
11 End Extraction;

Algorithm 4: Key Generation〈Qi, Si〉 Algorithm (Run by user)

1 Input: Partial private key as 〈Qi, Si〉 ;
2 Output: Private key , Public key;
3 Begin Key Generation;
4 The User (U) obtains 〈Qi, Si〉 as partial key extract from the medical cloud

server(MCS).;
5 Gets < Qi, Si > from MCS;
6 User (U) set private key and public key as (Pri, Pi) as shown below;
7 Set Private Key (si, Si)→ Pri;
8 Set Public Key (Ri, Qi)→ Pi;
9 End Key Generation;

Algorithm 5: Aggregation unit Registration(ci)(Run by aggregation unit)

1 The AU registers itself to the medical cloud server by doing the following:;
2 Begin Registration;

3 Select ci
R−→ Z∗q ;

4 Computes ciQi → Ji;
5 Computes ciSi → Ti;
6 End Registration;

Cryptography 2022, 6, 33 13 of 26

Algorithm 6: Anonymity (l) (performed by Wearable device)

1 To achieve user anonymity, the wearable device performs the following to hide the
user’s identity before transferring it to the aggregation unit. ;

2 Begin Anonymity Computation;

3 Select l R−→ Z∗q ;
4 Compute the tuple Bl = (Idi||hi||Wi||ti||m||Ui)

l ;
5 Sends Bl → AU;
6 . Sends Bl to the aggregation unit;
7 End Anonymity Computation

Algorithm 7: Anonymity (PMCS)(Performed by Aggregation Unit)

1 The aggregation unit (AU) receives Bl and also computes the following tuple and
sends the tuple to the medical cloud server (MCS).;

2 Begin Anonymity Computation;
3 Takes PMCS;
4 Computes tuple BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS ;
5 Sends tuple BlPMCS → MCS ;
6 Sends BlPMCS to medical cloud server (MCS);
7 End Anonymity Computation

Algorithm 8: Signing (m, ni, ti, Pri) (Run by user(U))

1 Input: message m, Private key Pri = (si, Si), nonce ni, timestamp ti;
2 Output: Signature value σi = 〈Ui, Vi〉;
3 The wearable user chooses a its private key Pri = (si, Si), its wearable data m,

a nonce ni ∈R Z∗q , a timestamp ti ∈ Ts, and computes the following;
4 Begin Signing;

5 Select ni
R−→ Z∗q ;

6 Select ti ∈ Ts;
7 Computes niRi → Ui;
8 Computes (ni||ti, Ui)→Wi;
9 Computes H3(m||Wi)→ hi ;

10 Computes Ti + nihisiPMCS → Vi;
11 Returns signature σi = 〈Ui, Vi〉;
12 Sends signature σi=〈Ui, Vi〉 to medical cloud server as σi → MCS;
13 End Signing;

The medical cloud server (MCS) checks for correctness by computing the following:

ê(Vi, P) = ê(Ti + nihisiPMCS, P)

= ê(Ti, P)ê(nihisiPMCS, P)

= ê(ciSi, P)ê(nihisiP, PMCS)

= ê(Ji, PMCS)ê(hiUi, PMCS)

= ê(Ji + hiUi, PMCS)

Cryptography 2022, 6, 33 14 of 26

Algorithm 9: Verification(σi, Pi) (Run by Medical cloud Server)

1 Input: signature σi, User public key Pi = (Ri, Qi);
2 Output: message value m;
3 Receives tuple BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS from AU;
4 . Checks timestamp ti validity;
5 if ti is valid then
6 accept tuple BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS and compute
B1/l = (Idi||hi||Wi||ti||m||Ui)

xMCS ;
7 else
8 Reject tuple BlPMCS ,If ti is invalid.

9 Begin verification;
10 Computes H1(Idi||Ri)→ Qi;
11 Computes H3(m||Ui)→ hi;
12 Checks if ê(Vi, P) = ê(Ji + hiUi, PMCS) to verify signature σi;
13 End verification;

Batch Processing

The batch processing methods performs both aggregate authentication and aggregate
verification by aggregating all the captured wearable sensor data from different wearable
devices as follows:

1. Aggregate Authentication:

The medical cloud server (MCS) receives
{

Vi, Ui, m, IDi, ti, BlPMCS
}

of each user. Sup-
pose there are n number of users (U1 . . . Un) with identities (IDi . . . IDn) having
public keys of (R1 . . . Rn) with generated signatures as (σ1 . . . σn). The authenticated
signature values are aggregated as follows:

(a) V = ∑n
i=1 Vi

(b) U = ∑n
i=1 Uihi

(c) R = ∑n
i=1 Ri

(d) J = ∑n
i=1 Ji

The aggregated values are sent to the MCS for aggregate verification.
2. Aggregate Verification:

After receiving the aggregated signature values, the MCS checks the validity of
aggregate signatures by verifying if ê(Vi, P) = ê(J + U, PMCS) and performs the
correctness equation as follows:

ê(Vi, P) = ê(
n

∑
i=1

Vi, P)

=
n

∏
i=1

ê(Vi, P)

=
n

∏
i=1

ê(Ti + nihisiPMCS, P)

=
n

∏
i=1

ê(Ti, P)ê(nihisiPMCS, P)

=
n

∏
i=1

ê(J , PMCS ê(Uihi, PMCS)

= ê(J + U, PMCS)

Cryptography 2022, 6, 33 15 of 26

5. Security Proofs and Analysis
5.1. Security Proofs

Theorem 1. The proposed scheme is existentially unforgeable in the random oracle (ROM) against
adversaries A1 and A2 against adaptive chosen-message attack under the CDH problem with the
assumption that the CDH problem is hard to solve.

In the random oracle, A1 is an adversary (a probabilistic Turing machine) who can forge the
signature in a response–attack game having a running time t and making hash queries qHi to the
hash oracles Hi for i ∈ 1, 2, 3 executing partial private key queries qk, making private key queries as
qsk and signature queries qsig. The Adversary has the advantage of winning the game if it is able to
solve the following:

AdvCDH
BPWHCSCertless,A

(A1)=E ′>qE 1(
qsig(1− qk

2t

)
(

1− qsk
qt

)

With running time T = t
′
+O(qsig+k)tp+O

(
qH1qH2 qH3+qEqH1qH2 qH4

)
te.

Proof of Theorem 1. Let (P, X = aP, Y = bP)∈G1. The goal is to compute abP from the
tuple (P, aP, bP)∈G1 with the assumption that there exists an adversary A1 of Type 1
capable of computing the CDH problem. The AdversaryA1 cooperates with the Challenger,
C, in the following ways.

1. Setup: The challenger C performs a system setup by randomly picking a security
parameter 1k, and establishes the system parameters as
ξ=
{
G1,G2, MCSpub, ê,P , q, H1, H2, H3

}
and sets MCSpub=X. Before executing the

query, C maintains a list Li=(Idi, si, Ri, Si). A challenged identity Idi is selected at
random by the challenger C and answer queries made by the adversary A1 based on
the following oracles LH1 , LH2 , LH3 , L1, L2.

2. H1 Query: C initially creates an empty list containing the tuples 〈Idi, Ri, Qi, ci, coin xi〉.
A query is made on Idi and C flips a coin xi. If xi

yields−→0, then Pr(coin xi) = ε, else

if xi
yields−→1, Pr(coin xi) = 1− ε and updates the tuples with 〈Idi, Ri, Qi, ci, coin xi〉 in

both cases. If xi
yields−→0, then C chooses αi∈RZ∗q and sets Qi = H1(Idi ‖ Ri) = bαiP but

if xi
yields−→1, then it sets Qi = αiP. It finally returns Qi and updates the list LH1 .

3. H2 Query: A query is made on 〈mi, Ui〉 to the H2 oracle. C scans the list LH2 =
〈mi, Ui, hi〉 and checks if the tuple exists. If it exists, C returns 〈mi, Ui〉 as answer.
Otherwise, C picks hi∈RZ∗q and returns hi as answer and updates the list LH2 with the
tuple 〈mi, Ui, hi〉.

4. H3 Query: A query is made on 〈mi, Ui〉. C checks if the tuple 〈mi, Ui, ci〉 exists in the
list LH3 . If it exists, 〈mi, Ui〉 is returned to A1. Otherwise, it picks ci∈RZ∗q and returns
ci as a new hash value of H3 and sends 〈mi, Ui〉 to A1 and updates the list with the
tuple 〈mi, Ui, ci〉.

5. Reveal-Partial-Private-Key Queries : A1 makes a query on Idi. C flips a coin xi.

If xi
yields−→0, C outputs a failure. Else, if xi

yields−→ 1, and Li contains (Idi, si, Ri, Si), C
checks if Si = ⊥. If Si 6= ⊥, C returns Si to A1. Otherwise, if Si = ⊥, C recovers
〈Idi, Ri, Qi, ci, coin xi〉 from the list LH1 and selects αi∈RZ∗q , and defines
Qi = H1(Idi||Ri) = αiP. C computes Si = xMCSαiP and returns Si as answer and

adds an element to the tuple (Idi, si, Ri, Si). It finally updates the list Li. If xi
yields−→ 1,

and the list does not contain the tuple (Idi, si, Ri, Si,), then C sets Si = ⊥, and com-
putes Si = xMCSαiP. C adds an element to the tuple (Idi, si, Ri, Si,) and inserts it to Li
and returns Si as an answer.

6. Public-key Queries: A request is made on an identity Idi. On receiving the query,
a public key request Ri is selected from the list Li and C checks the tuple (Idi, si, Ri, Si)

Cryptography 2022, 6, 33 16 of 26

if it exists in Li. C checks if Ri = ⊥. If it holds, C selects si∈RZ∗q and sets Ri = siP,
and updates the list with (si, Ri). Otherwise, C returns Ri to A1. If (Idi, si, Ri, Si,) is
not in Li, let Si = ⊥, then C selects si∈RZ∗q and sets Ri = siP . C inserts Ri into the
tuple (Idi, si, Ri, Si,) and returns Ri as a reply to A1.

7. Secret-key Queries: A1 makes a query on a chosen identity Idi. On receiving a query,
C checks if Idi = Id∗i and if Si = ⊥. If they hold, C selects si∈RZ∗q and returns si and
updates the list Li = (Idi, si, Ri, Si). Otherwise, if si 6= ⊥, C sends si as a response
to A1.

8. Query on Public key Replacement: When the adversaryA1 submits a query to replace
the public key Idi. C checks the tuple if the tuple (Idi, si, Ri, Si) exists in the list Li and
sets Ri = R∗i and si = ⊥. It updates the list with the tuple (Idi, si, Ri, Si). If the tuple
(Idi, si, Ri, Si) does not exist in Li, C sets Ri = R∗i and si = ⊥, it then updates the list
with the tuple (Idi, si, R, Si).

9. Sign queries: A1 makes a sign query on an identity Idi with (mi, Vi), C searches the
tuple (Idi, si, Ri, Si) from the list Li. If the list Li contains (Idi, si, Ri, Si), C checks
whether Si = ⊥. If Si = ⊥, C makes a public-key Query to generate si and sets
Ri = siP. Otherwise, if the tuple is empty C makes a public key query to generate si
and sets Ri = siP and adds (Idi, si, Ri, Si) to the list, Li. It computes the following:

(a) Ui = niRi.
(b) Wi = (ni||ti, Ui).
(c) hi = H3(mi||Wi).
(d) Vi = Ti + nihisiPMCS.

and returns σi = 〈Ui, Vi〉 as a signature on the message m.
10. Forgery: Applying the forking lemma, C outputs two signatures σ∗i = 〈U∗i , V∗i 〉 and

σ∗i = 〈U∗i , V
′∗
i 〉 where Vi 6= V

′∗
i . Therefore, V∗i = T∗i + n∗i h∗i s∗i PMCS

and V
′∗
i = T∗i + n∗i h

′∗
i s∗i PMCS. C tosses a coin xi, if xi

yields−→ 1, C outputs a failure
and aborts the simulation. Otherwise, C computes

ê(V∗i , P) = ê(T∗i + n∗i h∗i s∗i PMCS, P) (1)

ê(V
′∗
i , P) = ê(T∗i + n∗i h

′∗
i s∗i PMCS, P) (2)

ê(V∗i , P) = ê(T∗i + n∗i h∗i s∗i P, PMCS) (3)

ê(V
′∗
i , P) = ê(T∗i + n∗i h

′∗
i s∗i P, PMCS) (4)

From Equations (3) and (4)

ê
(

V∗i −V
′∗
i , P

)
= ê

((
h∗i − h∗

′
i

)
n∗i s∗i P

)

ê
(

V∗i −V
′∗
i , P

)
= ê

((
h∗i − h∗

′
i

)
n∗i S∗i

)

Notice that, Qi = αibP and S∗i = xMCSQi = aαibP.
Therefore,

V∗i −V
′∗
i = (h∗i − h∗

′
i)aαibP

Hence, abP = (V∗i −V
′∗
i)(h∗i − h∗

′
i)
−1

α−1
i .

From the above proof, it is computationally hard for a polynomial time-bounded
adversary of Type 1, A1 having the probability ε of solving the CDH problem. Hence,
the proposed scheme has proven to be existentially unforgeable against adaptive chosen
message attack of the Type 1 adversaryA1 in the random oracle under the CDH assumption.

Theorem 2. The proposed scheme is existentially unforgeable in the random oracle (ROM) against
adversaries A2 and A2 against adaptive chosen-message attack under the CDH problem with the
assumption that the CDH problem is hard to solve. For the Type 2 adversary A2 , the proposed

Cryptography 2022, 6, 33 17 of 26

scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle
with the assumption that the CDH problem is hard to solve. For a polynomial time-bounded
adversary having an advantage ε of forging the signature of the proposed is negligible after making
the following queries to the random oracle, qHi to the hash oracles Hi for i ∈ 1, 2, 3 executing partial
private key queries qk, making private key queries as qsk and signature queries qsig. The Adversary
A2 has the advantage of winning the game if it is able to solve the following:

AdvCDH
BPWHCSCertless,A

(A1)=E ′>qE 1(
qsig(1− qk

2t

)
(

1− qsk
qt

)

With running time T=t
′
+O(qsig+k)tp+O

(
qH1qH2 qH3+qEqH1qH2 qH4

)
te

The proof of Theorem 2 is similar to the proof of Theorem 1.

5.2. Analysis

1. E1 denotes an event in which the adversaryA1 queries the partial private key which
results in the probability of E1 (Pr[E1]) =

qk
2t . The success probability of E1 occurring

is 1− qk
2t .

2. E2 denotes an event in which the adversary A1 makes sign queries E2 (Pr[E2]) =
1/qsig.

3. E3 indicates an event in which the adversaryA1 has queries to the private keys = qsk
qt .

The success probability of E3 occurring is 1− qsk
qt . The success probability ofA1 winning

the game is E ′>qE 1(
qsig(1−

qk
2t

)
(

1− qsk
qt

)

5.3. Security Requirements Analysis

1. Non-Repudiation: The proposed scheme satisfies non-repudiation since the wearable
user cannot deny signing its wearable sensor data to the medical cloud server. Neither
can the medical cloud server deny verifying the user’s data. Therefore, in case of any
denial, the identity of the wearable user can serve as proof.

2. Anonymity: The scheme ensures that the user’s (device owner) identity is not
revealed during the transfer of data. The wearable device firstly computes
Bl = (Idi||hi||Wi||ti||m||Ui)

l to conceal the wearable user’s identity before trans-
mitting to the aggregation unit. subsequently, the aggregation unit also computes
BlPMCS = (Idi||hi||Wi||ti||m||Ui)

lPMCS before transmitting it to the medical cloud server.
Consequently, both wearable device and aggregation unit do not reveal the user’s
identity during the data transfer process.

3. Resistance to forgery Attacks: According to the random oracle of theorem 1, the prob-
ability of a polynomial adversary forging a valid signature is negligible under the
assumption that the ability to solve the CDH problem is hard. Hence, the scheme can
resist forgery attacks.

4. Resistance to replay attacks: Timestamps provide the precise time or period during
which the user signed their wearable sensor data. It prevents an adversary from re-
playing a message if the timestamp validity of the corresponding signature is expired.

5. Aggregate authentication: The proposed scheme ensures batch authentication of n
messages from n group of users. Consequently, the medical cloud server is able to
authenticate an individual user by computing {Vi, Wi, m, Idi, ti, Ui}.

6. Aggregate Verification: the proposed scheme extends the batch processing to verify
aggregated message-signature pairs from a large group of users to improve bandwidth
efficiency during batch data transfer.

Cryptography 2022, 6, 33 18 of 26

6. Performance Evaluation

This section discusses the performance evaluation of the batch processing method pre-
sented in this paper. Based on Certificateless cryptography, the batch processing approach
is categorized into aggregate authentication and aggregate verification. The evaluation
of the proposed scheme is compared with schemes in [22–24] and ref. [17] in terms of
functional analysis, computation and communication cost.

6.1. Background of Comparative Schemes

Authors in [22] presented an aggregated signature for SaaS authentication (SecAuth-
SaaS) for cloud computing that works as a collaborative service attestation to provide
authentication and non-repudiation for software as a service (SaaS). Similarly, Wang et
al. [23] also performed a batch verification Cryptanalysis for a mobile healthcare crowd-
sensing (CABV-MHCS) that is secure against forgery, identity, and security attacks.

A novel Certificateless aggregate signature scheme for healthcare multimedia social
network (CASS-HMSN) was suggested by [24] to fix the security flaws identified in [16]
for cloud environments. Asari et al. [17] also proposed the Hierarchical Anonymous
Certificateless Authentication (HACA-ADS (B)) that preserves conditional privacy for the
Automatic Dependent Surveillance-Broadcast (ADS-B) environment.

Finally, the presented scheme also proposed a batch processing technique based on
Certificateless cryptography to resolve bandwidth limitations of large data transfers from
wearable health crowd-sensing. The proposed method also provides anonymity to users’
identity during data transmission.

6.2. Functionality Analysis

In functional analysis, we compare Batch Processing (aggregating authentication and
verification), Forgery Attack, Non-Repudiation, Anonymity, Replay Attack, and Bandwidth
improvement. The schemes for comparison use CLC method. According to Table 2, all
the schemes showed to be resilient against forgery attacks (especially Type 1 and Type 2
adversaries). For batch processing, schemes that showed both aggregate authentication
and aggregate verification are considered to satisfy batch processing. As shown in Table 2,
all schemes demonstrated both aggregate authentication and aggregate verification with
the exception of HACA-ADs-B [17] that fulfilled partial batch processing since their scheme
considered only aggregate verification. The proposed scheme, HACA-ADS-B [17], CABV-
MHCS [23], satisfies non-repudiation; nevertheless, CASS-HMSN [24] did not explicitly
demonstrate the non-repudiation feature in their work. Regarding anonymity, HACA-
ADS-B [17] uses short pseudonyms to preserve anonymity. Consequently, the scheme in
CABV-MHCS [23] allows a client to encrypt its identity before submitting it to a data center.
In case of message interception, an adversary in CABV-MHCS [23] cannot reveal the client’s
identity without knowing the secret key of the data center. Similarly, the proposed scheme
fulfils the anonymity requirement since the wearable device and the aggregation unit
perform anonymization algorithms to conceal user’s identity before sending the wearable
sensor data. Schemes in CABV-MHCS [23] and the proposed scheme are secure against any
replay attacks due to the presence of timestamps validity in the scheme. Thus, an adversary
cannot replay a message if the timestamp is invalid. All schemes facilitate batch verification
in bandwidth-constrained contexts.

Cryptography 2022, 6, 33 19 of 26

Table 2. Functional Analysis.

Functionality SecAuth-SaaS [22] CABV-MHCS[23] CASS-HMSN [24] HACA-ADS-
B [17] Proposed

Batch Processing 3 3 3 7 3

Forgery Attack 3 3 3 3 3

Non-Repudiation 3 3 7 3 3

Anonymity 7 3 7 3 3

Replay Attack 7 3 7 7 3

Bandwidth
Performance 3 3 3 3 3

6.3. Computational Cost

For fair analysis, we implement the MIRACL library on a Raspberry Pi with an
ARMv7 processor of 1GB memory on Ubuntu 18.04 operating system. For our client-side,
the Raspberry Pi acts as the wearable client while the Lenovo laptop acts as the server. We
perform the experiments and test the running times on the existing and proposed schemes.
The experiment uses a PBC library of Type A elliptic curve y2 = (x3 + x) mod p with a
512-bit prime field with a group order of 160-bit on a Lenovo laptop with an 8GB RAM,
64 bits of an I5 Intel Processor. For each operation, we represent the timely cost of a scalar
multiplication as Tsm, Pairing operation as Tbp, and point addition operation as Tpa. A total
of 100 executions of each operation were run, and the total results were averaged. The cost
of scalar multiplication (Tsm) is 0.093 s, pairing operation (Tbp) is 4.054 s, and the cost of
point addition (Tpa) is 0.014 s. For evaluation purposes we compare the the computational
costs and the running times of the proposed scheme with existing schemes namely SecAuth-
SaaS [22], CABV-MHCS [23], CASS-HMSN [24], and HACA-ADS-B [17]. We also compare
the efficiency of the proposed schemes with the existing schemes. In computing the batch
processing, we assume the number of users owning wearable devices to be 100 (n = 100)
and perform the batch processing as the total of aggregate sign and aggregate verify.

According to Tables 3 and 4, scheme SecAuth-SaaS [22] generates a signature of
4Tpa + 3Tsm ≈ 0.335 s and takes 6Tbp ≈ 24.324 s in verifying the signature. In performing
batch processing, the signer executes 2nTbp + 4Tsm + (n + 1)Tpa to sign n generated data
from n users. It verifies the generated signature by requiring 2Tsm + (n + 2)Tpa to verify
the signed n group of data. It takes a total time of 40.819 s to complete both signing and
verification processes of a single message. In performing the batch process of 100 users, it
requires 3nTbp + 6Tsm + 2Tbp + (n + 1)Tpa to complete the batch operation in 1226 s.

Likewise, CABV-MHCS [23] scheme takes 1Tsm + 2Tpa ≈ 0.121 s and 3Tbp + 1Tpa +
1Tsm ≈ 12.269 s to finish signing and verifying a single message, respectively. In requires
a total of 12.627 s. The signer takes nTsm to generate n data whilst the verifier execute
3nTbp in verifying n aggregated data. Moreover, it executes nTsm + 3nTbp to perform
both aggregation signature and verification process requiring a total time of 1225.5 s on n
given data.

Similarly, to compute an individual signature in CASS-HMSN [24] scheme requires
4Tsm + 2Tpa ≈ 0.4 s and 1Tpa + 2Tsm + 3Tbp ≈ 12.362 s to complete a verification process. It
requires a total time of 12.762 s to complete a signing and verification process of a single
message. Additionally, to perform a batch processing of n messages, CASS-HMSN [24]
requires 6nTsm + 2nTpa + 3nTbP to complete a batch operation with a finishing time of
1274.8 s. To complete a signing process in HACA-ADS-B [17]’s scheme, the signer requires
2Tpa + 1Tsm ≈ 0.121 s to sign an individual message and needs 1Tpa + 3Tbp ≈ 12.176 s
to verify the individual signature. It takes 12.534 s to complete the whole signing and
verification process of an individual data. Furthermore, nTsm + 2Tpa is needed to sign n
aggregated messages and 3nTpa to complete a verification process of n aggregated messages.
In total it spends 1225.5 s to compute nTsm + 3nTbp + 2Tpa.

Comparatively, the proposed scheme requires 2Tsm + 1Tpa ≈ 0.2 s for the user to
sign a single wearable sensor data and requires 1Tpa + 2Tsm + 2Tbp ≈ 8.308 s for the

Cryptography 2022, 6, 33 20 of 26

medical cloud server to verify the single wearable message. The proposed scheme needs
a total of 8.694 s to complete the signing and verification of a single wearable message.
Moreover, in performing a batch process of n generated data from n users, it needs to
execute nTsm + 2nTbp requiring a total finishing time of 820.1 s, assuming the number of
users is 10. In computing the batch processing, it executes nTsm for aggregate signing and
2nTbp for aggregate verification.

Table 4 shows that the proposed scheme achieved a better computing cost than the
existing schemes. In Figure 4, it is evident that the signing process of all schemes takes
less time than the verifying process. However, the signing cost of the proposed scheme is
higher than CABV-MHCS [23] and HACA-ADS-B [17] since the algorithm generation in
the signing phase is high. However, the proposed scheme achieved a lower verification
time than all the existing schemes, which shows that the medical cloud server does not
require extra time to complete the verification of a single data.

Table 3. Computational Complexity.

Scheme Sign Verify Aggregate Sign Aggregate Verify

SecAuth-SaaS [22] 4Tpa + 3Tsm 6Tbp 2nTbp + 4Tsm + (n + 1)Tpa 2Tsm + (n + 2)Tpa
CABV-MHCS [23] 1Tsm + 2Tpa 3Tbp + 1Tpa + 1Tsm nTsm 3nTbp
CASS-HMSN [24] 4Tsm+ 2Tpa 1Tpa+ 2Tsm + 3Tbp 4nTsm + 2nTpa 3nTbp + 2nTsm
HACA-ADS-B [17] 2Tpa + 1Tsm 1Tpa + 3Tbp nTsm + 2Tpa 3nTbp

Proposed 2Tsm + 1Tpa 2Tbp + 1Tpa + 2Tsm nTsm 2nTbp

Table 4. Analysis of computational cost.

Scheme Sign Cost Verify Cost Total (Sign + Verify) Batch Processing
(n = 100)

SecAuth-SaaS [22] 0.335 24.324 40.819 1226.28
CABV-MHCS [23] 0.121 12.269 12.627 1225.5
CASS-HMSN [24] 0.4 12.362 12.762 1274.8
HACA-ADS-B [17] 0.121 12.176 12.534 1225.5

Proposed 0.2 8.308 8.694 820.1

We test the efficiency of the proposed scheme with the existing schemes by using the
formulae in [25], which is computed as follows:

(
Existing scheme−Proposed scheme

Existing scheme

)
× 100% (5)

The improvement of the proposed scheme with respect to the total signing and verifi-
cation costs of a single message with reference to scheme is SecAuth-SaaS [22]

(
40.819− 8.694

40.819

)
× 100% = 78.70% (6)

The suggested technique is 78.7% more efficient than SecAuthSaas [22] for single
message sign and verify and 33% better for batch processing. Similarly, the proposed
scheme outperformed the CABV-MHCS [23] scheme by 31.14% in signing and verifying a
single message and 33% better in performing aggregation sign and aggregation verification
together. The proposed scheme is 31.88% more efficient than CASS-HMSN [24] in signing
and verifying a single message, at the same time 33% efficient in performing batch process-
ing. Similar to HACA-ADS-B [17], the proposed achieved better efficiency of 30.64% in
single sign and verify, and 33% in batch processing.

Cryptography 2022, 6, 33 21 of 26

SecAuth-SaaS CABV-MHCS CASS-HMSN HACA-ADS-B Proposed
0

5

10

15

20

25

schemes

C
om

pu
ta

ti
on

co
st

(i
n

se
co

nd
s)

Sign cost
Verify Cost

Total (Sign+Verify)

Figure 4. Computational Cost.

The graph in Figure 5 illustrates that the proposed approach has the least batch
processing time for an increased number of users. By this reasoning, the proposed batch
processing approach fits WHCS in bandwidth situations.

10 20 30 40 50

100

200

300

400

500

600

Number of users (n)

Ba
tc

h
pr

oc
es

si
ng

ti
m

e
(i

n
se

co
nd

s)

SecAuth-SaaS
CABV-MHCS
CASS-HMSN
HACA-ADS-B

Proposed scheme

Figure 5. Batch processing cost of n users.

6.4. Communication and Overhead Cost

We analyze the communication cost of the related schemes [17,22–24] and the proposed
scheme. We apply a bilinear pairing of Type A curve of y2 = x3 + x over the field Fq
for some prime p = 3 mod 4. At 80 bit security level, the length of a group element
G1 = 1024 bits = 128 bytes where G1 is an additive group. The size of a field element
|Z∗q | = 512 bits equivalent to 64 bytes.

By applying the stated parameters, we determine the signature size of a single message
and the aggregated messages of the existing schemes and compare them with the proposed
scheme. From Table 5, the proposed scheme consists of 2|Z∗q | with a communication cost
of 128 bytes. The proposed scheme achieved the lowest communication cost compared to
the existing schemes. It costs 128n bytes to send an aggregate signature and 128 bytes to
send a single signature. Identically, the CABV-MHCS scheme [23] and CASS-HMSN [24]
scheme incurred a communication cost of 320 bytes in generating single-size signature
2|G1|+ |Z∗q | and 320n bytes in sending n signatures. Finally, the HACA-ADS-B [17] scheme
incurred a communication cost of 256 bytes 2|G1|+ |Z∗q | in generating a single message

Cryptography 2022, 6, 33 22 of 26

and 256n bytes for signing n messages. According to Figure 6, increasing the number of
participants to 100, showed a reduction in communication cost for all scheme with the
proposed scheme achieving the least communication cost.

Table 5. Comparison of Communication cost.

Scheme Sig. Size on
Single Message

Sig Size for n
Messages

Comm. Cost for
Single Message

Comm. Cost for n
Messages Storage Overhead

SecAuth-SaaS [22] 5|G1|+ |Z∗q | 5n|G1|+ |Z∗q | 704 bytes 704n bytes 385 bytes
CABV-MHCS [23] 2|G1|+ |Z∗q |+ 2n|G1|+ |Z∗q | 320 bytes 320n bytes 233 bytes
CASS-HMSN [24] 2|G1|+ |Z∗q | 2n|G1|+ |Z∗q | 320 bytes 320n bytes 245 bytes
HACA-ADS-B [17] 2|Z∗q |+ |G1| 2n|Z∗q |+ |G1| 256 bytes 256n bytes 135 bytes

Proposed 2|Z∗q | 2n|Z∗q | 128 bytes 128n bytes 98 bytes

Sig. Size-Signature Size; Comm. Cost-Communication Cost.

In determining the efficiency of the proposed scheme with respect to (w.r.t) communi-
cation cost, we apply the efficiency methodology in Equation (5), and presented the results
as follows: the proposed scheme achieved better efficiency by surpassing SecAUth-SaaS [22]
by 81.8%, and also outperformed HACA-ADS-B [17] by 50%. Similarly, the proposed
scheme is 60% more efficient than CABV-MHCS [23] and CASS-HMSN [24], respectively.

In the WHCS system, when the medical cloud server (MCS) receives the tuple within
the valid time, it stores the received tuple from different users. The storage overhead of
the proposed scheme considers the size of the signature σi = 〈Wi, Vi〉, the timestamp ti,
the identity of the user Idi, the message m and the anonymity value BlPMCS . The MCS
keeps the whole tuple in the cloud storage as

{
Vi, Wi, m, Idi, ti, BlPMCS

}
. At 80 bit security

level, we assume |m| = 160 bits, |Idi| = 80 bits, ti = 64 bits, the size of |G1| = 1024 bits,
|Z∗q | = 160 bits and assume BlPMCS = 160 bits. Applying the standard compression
technique in [15,26], the size of |G1| is reduced to 65 bytes. The storage overhead for the
tuple in the proposed scheme results in Wi + Vi + |m| + |Idi| + ti + BlPMCS = 98 bytes.
The storage overhead for the rest of the schemes are as follows:

(a) The storage overhead of SecAuth-SaaS [22] is 2σi + Y + |mi|+ |si| = 385 bytes.
(b) The storage overhead of CABV-MHCS [23] is σi + |Idi|+ |Wi|+ |mi|+ |ti| = 233 bytes.
(c) The storage overhead of CASS-HMSN [24] is σi + |Idi|+ |mi|+ |pki| = 245 bytes.
(d) The storage overhead of HACA-ADS-B [17] is σi + |Idi|+ |mi| = 135 bytes.

Cryptography 2022, 1, 0 22 of 27

and 256n bytes for signing n messages. According to Figure 6, increasing the number of
participants to 100, showed a reduction in communication cost for all scheme with the
proposed scheme achieving the least communication cost.

Table 5. Comparison of Communication cost.

Scheme Sig. Size on
single message

Sig Size for n
Messages

Comm. Cost for
Single Message

Comm. Cost for n
Messages Storage overhead

SecAuth-SaaS [22] 5|G1|+ |Z∗q | 5n|G1|+ |Z∗q | 704 bytes 704n bytes 385 bytes
CABV-MHCS [23] 2|G1|+ |Z∗q |+ 2n|G1|+ |Z∗q | 320 bytes 320n bytes 233 bytes
CASS-HMSN [24] 2|G1|+ |Z∗q | 2n|G1|+ |Z∗q | 320 bytes 320n bytes 245 bytes
HACA-ADS-B [17] 2|Z∗q |+ |G1| 2n|Z∗q |+ |G1| 256 bytes 256n bytes 135 bytes

Proposed 2|Z∗q | 2n|Z∗q | 128 bytes 128n bytes 98 bytes

1 Sig. Size-Signature Size; Comm. Cost-Communication Cost.

In determining the efficiency of the proposed scheme with respect to (w.r.t) communi-
cation cost, we apply the efficiency methodology in Equation (5), and presented the results
as follows: the proposed scheme achieved better efficiency by surpassing SecAUth-SaaS [22]
by 81.8%, and also outperformed HACA-ADS-B [17] by 50%. Similarly, the proposed
scheme is 60% more efficient than CABV-MHCS [23] and CASS-HMSN [24], respectively.

In the WHCS system, when the medical cloud server (MCS) receives the tuple within
the valid time, it stores the received tuple from different users. The storage overhead of
the proposed scheme considers the size of the signature σi = 〈Wi, Vi〉, the timestamp ti,
the identity of the user Idi, the message m and the anonymity value BlPMCS . The MCS
keeps the whole tuple in the cloud storage as

{
Vi, Wi, m, Idi, ti, BlPMCS

}
. At 80 bit security

level, we assume |m| = 160 bits, |Idi| = 80 bits, ti = 64 bits, the size of |G1| = 1024 bits,
|Z∗q | = 160 bits and assume BlPMCS = 160 bits. Applying the standard compression
technique in [15,26], the size of |G1| is reduced to 65 bytes. The storage overhead for the
tuple in the proposed scheme results in Wi + Vi + |m| + |Idi| + ti + BlPMCS = 98 bytes.
The storage overhead for the rest of the schemes are as follows:

(a) The storage overhead of SecAuth-SaaS [22] is 2σi + Y + |mi|+ |si| = 385 bytes.
(b) The storage overhead of CABV-MHCS [23] is σi + |Idi|+ |Wi|+ |mi|+ |ti| = 233 bytes.
(c) The storage overhead of CASS-HMSN [24] is σi + |Idi|+ |mi|+ |pki| = 245 bytes.
(d) The storage overhead of HACA-ADS-B [17] is σi + |Idi|+ |mi| = 135 bytes.

Proposed
0
SecAuth-SaaS CABV-MHCS CASS-HMSN HACA-ADS-B

100

200

300

400

500

600

700

schemes

co
m

m
un

ic
at

io
n

an
d

st
or

ag
e

co
st

(i
n

by
te

s) communication cost (in bytes)
storage cost (in bytes)

Figure 6. Communication and overhead cost.

6.5. Energy Consumption

This subsection determines the energy efficiency of schemes in terms of energy con-
sumption. Energy consumption is computed as the Ecomp = Putil × Tsec, where P represents
utilization power and Tsec represents scheme execution time. To measure the energy, we
connected an M4 fitness band to the Raspberry Pi, and a measurement of 1293 mW (1.293 W)

Figure 6. Communication and overhead cost.

6.5. Energy Consumption

This subsection determines the energy efficiency of schemes in terms of energy con-
sumption. Energy consumption is computed as the Ecomp = Putil × Tsec, where P represents
utilization power and Tsec represents scheme execution time. To measure the energy, we

Cryptography 2022, 6, 33 23 of 26

connected an M4 fitness band to the Raspberry Pi, and a measurement of 1293 mW (1.293 W)
was recorded. Using the measurement, the energy for sign, verify and batch processing
operations are evaluated all the schemes and the results are presented in Table 6.

Table 6. Comparison of Energy Consumption (in mJ).

Scheme Sign (in mJ) Verify (in mJ) Batch Processing (in
mJ)

SecAuth-SaaS [22] 0.43 32.45 12.176n + 8.68
CABV-MHCS [23] 0.16 15.86 15.85n
CASS-HMSN [24] 0.52 15.98 15.85n + 0.04
HACA-ADS-B [17] 0.16 15.74 16.48n

Proposed 0.26 10.74 10.60n

SecAuth-SaaS CABV-MHCS CASS-HMSN HACA-ADS-B Proposed
0

5

10

15

20

25

30

schemes

En
er

gy
co

ns
um

pt
io

n
(i

n
m

J)

sign cost (in mJ)
verify cost (in mJ

Figure 7. Energy Consumption of schemes.

From the graph in Figure 7, the energy consumption results are lower in the single sign-
ing phase across all schemes. By contrast, the energy consumption in the verification phase
is higher for single-message verification. Figure 7 also shows that the proposed scheme
has the least energy consumption in both signing and verification phases. Considerably,
in Figure 8, the amount of energy consumed by an increasing number of wearable users
lowers in the proposed scheme. By reasoning, energy is more optimized in the proposed
method than in the rest of the schemes. Therefore, the proposed method is suitable for
deployment in WHCS.

Cryptography 2022, 6, 33 24 of 26

10 20 30 40 50

200

400

600

800

Number of users (n)

Ba
tc

h
pr

oc
es

si
ng

En
er

gy
co

ns
um

pt
io

n
(i

n
m

J)

SecAuth-SaaS
CABV-MHCS
CASS-HMSN
HACA-ADS-B

Proposed scheme

Figure 8. Batch processing energy consumption (in mJ).

7. Discussion

The inception of cloud-based wearable health crowd-sensing (WHCS) has immensely
impacted decision analytics through the collection of wearable sensor data. Owing to
the batch processing for WHCS applications, the proposed method is shown to be a
good fit for WHCS. The computational cost resulting from the intensive programming
task and high computational processing is significantly reduced in the proposed method.
In terms of signing and verifying an individual message, the proposed scheme outperforms
SecAuthSaas [22] by 78.7%, 31.14% better than CABV-MHCS [23], 31.88% efficient than
CASS-HMSN [24], and 30.64% better than HACA-ADS-B [17]. Comparatively, in terms of
computational cost for batch processing, the proposed scheme is 33% efficient than all the
existing schemes in [17,22–24].

With reference to communication cost comparison, results from the analysis shows
that the proposed scheme achieves the least communication cost of 128 bytes with a lower
storage overhead of 98 bytes compared to the existing schemes. As power consumption
is essential in WHCS, energy is optimised in the proposed scheme with the increasing
number of participants (users) from 10 users to 50 users; hence, the proposed scheme incurs
less energy cost.

8. Conclusions

This paper introduced a batch processing scheme for the wearable health crowd-
sensing system (WHCS). We discussed the issues existing in the WHCS system. In batch
processing, we perform aggregation and aggregation verification to resolve the bandwidth
situations in WHCS. More so, the scheme allows entities such as wearable devices and
aggregation units to perform anonymity to obscure the identity of a user before sending
the collected data to the cloud. Security analysis has shown the scheme to be secure
against replay and forgery attacks and on-path attacks (such as man-in-the-mobile attacks)
during large data transfers. Results from performance analysis have shown to achieve
lower computation and communication costs with less storage overhead. To conclude,
the performance analysis has shown the proposed scheme to be energy efficient and fit for
the wearable health crowd-sensing (WHCS) system.

Author Contributions: Conceptualization, A.A.A. and Q.L.; methodology, A.A.A. and I.O.A; soft-
ware, A.A.A.; validation, A.A.A., Q.L. and J.H.; formal analysis, A.A.A; resources, Q.L.; writ-
ing—original draft preparation, A.A.A. and I.O.A.; writing—review and editing, A.A.A. and I.O.A.;

Cryptography 2022, 6, 33 25 of 26

visualization, J.H. and Q.L.; supervision, Q.L.; funding acquisition, Q.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the 4th project “Research on the Key Technology of
Endogenous Security Switches” (2020YFB1804604) of the National Key R&D Program “New Network
Equipment Based on Independent Programmable Chips” (2020YFB1804600), the 2020 Industrial
Internet Innovation and Development Project from Ministry of Industry and Information Technology
of China, 2018 Jiangsu Province Major Technical Research Project “Information Security Simulation
System”, the Fundamental Research Fund for the Central Universities (30918012204, 30920041112),
the 2019 Industrial Internet Innovation and Development Project from Ministry of Industry and
Information Technology of China, Jiangsu Province Modern Education Technology Research Project
(84365); National Vocational Education Teacher Enterprise Practice Base “Integration of Industry and
Education” Special Project (Study on Evaluation Standard of Artificial Intelligence Vocational Skilled
Level).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The library used in the simulation of the computational cost was based
on the charm crypto library https://github.com/blynn/pbc accessed on 15 February 2022.

Conflicts of Interest: The authors have all agreed to the publication of this manuscript and therefore
have declared no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AP Application Provider
AU Aggregation Unit
C Client
CLC Certificateless Cryptography
CDH Computational Diffie-Hellman
CL-PKC Certificateless Public Key Cryptography
COVID-19 Coronavirus Disease 2019
HACA Hierarchical Anonymous Certificateless Authentication
HWSN Healthcare wireless sensor networks
IBC Identity based Cryptography
IoT Internet of Things
KGS Key Generation Server
MCS Medical Cloud Server
MITM Man-in-the-middle attack
MITMO Man-in-the-mobile attack
params Public System parameters
PKG Public Key Generator
PKI Public Key Infrastructure
U User
WBAN Wireless Body Area Networks
WD Wearable Device
WHCS Wearable Health Crowd-Sensing

References
1. Cecilia, J.M.; Cano, J.C.; Hernández-Orallo, E.; Calafate, C.T.; Manzoni, P. Mobile crowdsensing approaches to address the

COVID-19 pandemic in Spain. IET Smart Cities 2020, 2, 58–63. [CrossRef]
2. He, D.; Chan, S.; Guizani, M. User privacy and data trustworthiness in mobile crowd sensing. IEEE Wirel. Commun. 2015,

22, 28–34. [CrossRef]
3. Gutmann, P. PKI: It’s not dead, just resting. Computer 2002, 35, 41–49. [CrossRef]
4. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. In Proceedings of the Annual International Cryptology

Conference, Santa Barbara, CA, USA, 19–23 August 2001; Springer: Berlin, Heidelberg/Germany, 2001; pp. 213–229.

https://github.com/blynn/pbc
http://doi.org/10.1049/iet-smc.2020.0037
http://dx.doi.org/10.1109/MWC.2015.7054716
http://dx.doi.org/10.1109/MC.2002.1023787

Cryptography 2022, 6, 33 26 of 26

5. Al-Riyami, S.S.; Paterson, K.G. Certificateless public key cryptography. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 3 November–4 December 2003; Springer: Berlin,
Heidelberg/Germany, 2003; pp. 452–473.

6. Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14.
[CrossRef]

7. Channa, A.; Popescu, N.; Skibinska, J.; Burget, R. The rise of wearable devices during the COVID-19 pandemic: A systematic
review. Sensors 2021, 21, 5787. [CrossRef]

8. Liu, J.; Shen, H.; Narman, H.S.; Chung, W.; Lin, Z. A survey of mobile crowdsensing techniques: A critical component for the
internet of things. ACM Trans. Cyber-Phys. Syst. 2018, 2, 1–26. [CrossRef]

9. Owoh, N.P.; Singh, M.M. Security analysis of mobile crowd sensing applications. Appl. Comput. Inform. 2020, 18, 2–21. [CrossRef]
10. Kamil, I.A.; Ogundoyin, S.O. A lightweight CLAS scheme with complete aggregation for healthcare mobile crowdsensing.

Comput. Commun. 2019, 147, 209–224. [CrossRef]
11. Pius Owoh, N.; Mahinderjit Singh, M. SenseCrypt: A security framework for mobile crowd sensing applications. Sensors 2020,

20, 3280. [CrossRef]
12. Li, J.; Su, Z.; Guo, D.; Choo, K.K.R.; Ji, Y.; Pu, H. Secure data deduplication protocol for edge-assisted mobile crowdsensing

services. IEEE Trans. Veh. Technol. 2020, 70, 742–753. [CrossRef]
13. Ni, J.; Zhang, K.; Xia, Q.; Lin, X.; Shen, X.S. Enabling strong privacy preservation and accurate task allocation for mobile

crowdsensing. IEEE Trans. Mob. Comput. 2019, 19, 1317–1331. [CrossRef]
14. Zhang, Y.; Deng, R.H.; Zheng, D.; Li, J.; Wu, P.; Cao, J. Efficient and robust certificateless signature for data crowdsensing in

cloud-assisted industrial IoT. IEEE Trans. Ind. Inform. 2019, 15, 5099–5108. [CrossRef]
15. Shim, K.A.; Lee, Y.R.; Park, C.M. EIBAS: An efficient identity-based broadcast authentication scheme in wireless sensor networks.

Ad Hoc Netw. 2013, 11, 182–189. [CrossRef]
16. Kumar, P.; Kumari, S.; Sharma, V.; Sangaiah, A.K.; Wei, J.; Li, X. A certificateless aggregate signature scheme for healthcare

wireless sensor network. Sustain. Comput. Inform. Syst. 2018, 18, 80–89. [CrossRef]
17. Asari, A.; Alagheband, M.R.; Bayat, M.; Asaar, M.R. A new provable hierarchical anonymous certificateless authentication

protocol with aggregate verification in ADS-B systems. Comput. Netw. 2021, 185, 107599. [CrossRef]
18. Joux, A. A one round protocol for tripartite Diffie–Hellman. J. Cryptol. 2004, 17, 263–276. [CrossRef]
19. Karantaidou, I.; Halkidis, S.T.; Petridou, S.; Mamatas, L.; Stephanides, G. Pairing-based cryptography on the Internet of Things:

A feasibility study. In Proceedings of the International Conference on Wired/Wireless Internet Communication, Boston, MA,
USA, 18–20 June 2018; Springer: Berlin, Heidelberg/Germany, 2018; pp. 219–230.

20. Miller, V.S. The Weil pairing, and its efficient calculation. J. Cryptol. 2004, 17, 235–261. [CrossRef]
21. Tso, R.; Huang, X.; Susilo, W. Strongly secure certificateless short signatures. J. Syst. Softw. 2012, 85, 1409–1417. [CrossRef]
22. Tiwari, D.; Gangadharan, G. SecAuth-SaaS: A hierarchical certificateless aggregate signature for secure collaborative SaaS

authentication in cloud computing. J. Ambient Intell. Humaniz. Comput. 2021, 12, 10539–10563. [CrossRef]
23. Wang, W.; Huang, H.; Wu, Y.; Huang, Q. Cryptanalysis and improvement of an anonymous batch verification scheme for mobile

healthcare crowd sensing. IEEE Access 2019, 7, 165842–165851. [CrossRef]
24. Wu, L.; Xu, Z.; He, D.; Wang, X. New certificateless aggregate signature scheme for healthcare multimedia social network on

cloud environment. Secur. Commun. Netw. 2018, 2018, 2595273. [CrossRef]
25. Ullah, I.; Amin, N.U.; Khan, M.A.; Khattak, H.; Kumari, S. An efficient and provable secure certificate-based combined signature,

encryption and signcryption scheme for internet of things (IoT) in mobile health (M-health) system. J. Med. Syst. 2021, 45, 1–14.
[CrossRef]

26. Li, F.; Hong, J. Efficient certificateless access control for wireless body area networks. IEEE Sens. J. 2016, 16, 5389–5396. [CrossRef]

http://dx.doi.org/10.1038/s41928-020-00533-1
http://dx.doi.org/10.3390/s21175787
http://dx.doi.org/10.1145/3185504
http://dx.doi.org/10.1016/j.aci.2018.10.002
http://dx.doi.org/10.1016/j.comcom.2019.08.027
http://dx.doi.org/10.3390/s20113280
http://dx.doi.org/10.1109/TVT.2020.3035588
http://dx.doi.org/10.1109/TMC.2019.2908638
http://dx.doi.org/10.1109/TII.2019.2894108
http://dx.doi.org/10.1016/j.adhoc.2012.04.015
http://dx.doi.org/10.1016/j.suscom.2017.09.002
http://dx.doi.org/10.1016/j.comnet.2020.107599
http://dx.doi.org/10.1007/s00145-004-0312-y
http://dx.doi.org/10.1007/s00145-004-0315-8
http://dx.doi.org/10.1016/j.jss.2012.01.016
http://dx.doi.org/10.1007/s12652-020-02864-5
http://dx.doi.org/10.1109/ACCESS.2019.2953042
http://dx.doi.org/10.1155/2018/2595273
http://dx.doi.org/10.1007/s10916-020-01658-8
http://dx.doi.org/10.1109/JSEN.2016.2554625

	Introduction
	Summary of Existing Research
	Preliminaries
	Bilinear Pairings
	Hardness Assumption
	Formal Definition of a Certificateless Signature Scheme (CLS)
	Security Model
	Game 1
	Game 2

	System Requirements

	System Architecture
	Entity Roles
	Scheme Construction

	Security Proofs and Analysis
	Security Proofs
	Analysis
	Security Requirements Analysis

	Performance Evaluation
	Background of Comparative Schemes
	Functionality Analysis
	Computational Cost
	Communication and Overhead Cost
	Energy Consumption

	Discussion
	Conclusions
	References

