
Citation: Dee, T.; Richardson, I.;

Tyagi, A. Continuous Nonintrusive

Mobile Device Soft Keyboard

Biometric Authentication.

Cryptography 2022, 6, 14.

https://doi.org/10.3390/

cryptography6020014

Academic Editors: Seyit A. Camtepe

and Josef Pieprzyk

Received: 25 February 2022

Accepted: 21 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Continuous Nonintrusive Mobile Device Soft Keyboard
Biometric Authentication
Timothy Dee, Ian Richardson and Akhilesh Tyagi *

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA;
timdee@iastate.edu (T.D.); ian.t.rich@gmail.com (I.R.)
* Correspondence: tyagi@iastate.edu; Tel.: +1-515294-4396

Abstract: Mobile banking, shopping, and in-app purchases utilize persistent authentication states for
access to sensitive data. One-shot authentication permits access for a fixed time period. For instance, a
username/password-based authentication allows a user access to all the shopping and payments data
in the Amazon shopping app. Traditional user passwords and lock screens are easily compromised.
Snooping attacks—observing an unsuspecting user entering passwords—and smudge attacks—
examining touchscreen finger oil residue—enable compromised user authentication. Mobile device
interactions provide robust human and device identity data. Such biometrics enhance authentication.
In this paper, behavioral attributes during user input constitute the password. Adversary password
reproduction difficulty increases since pure observation is insufficient. Current mobile continuous
authentication schemes use, among others, touchscreen–swipe interactions or keyboard input timing.
Many of these methods require cumbersome training or intrusive authentication. Software keyboard
interactions provide a consistent biometric data stream. We develop biometric profiles using touch
pressure, location, and timing. New interactions authenticate against a profile using a divergence
measure. In our limited user–device data sets, the classification achieves virtually perfect accuracy.

Keywords: PUF; biometric; authentication; mobile; Android; soft keyboard

1. Introduction

Mobile devices serve as a repository for large chunks of private information such
as wallets, identities for shopping and financial domains, and private correspondences,
among many others. It is important to limit access to this trove of information. One-shot
authentications using textual passwords or fingerprint scanners provide device and data
access for a fixed period of time. Inauthentic users acquiring the device during this time
period gain access to sensitive data. Applications in an authenticated state are exposed to
misuse. Continuous authentication based on natural behavioral interactions of the user
with the device offer a way out of this situation.

Modern UIs engage the user through the touchscreen, voice, or device movement.
Sensor-rich mobile devices capture unique user behavior. How a user touches specific soft
keyboard keys, speaks commands, or moves physically are learned behaviors.

In this paper, we characterize a soft-keyboard-based biometric profile—a user behavior
identity. A profile is constructed from past soft keyboard interactions. It is dynamically
updated using the most recent soft keyboard interactions. Validating the most recent soft
keyboard interactions against this profile results in continuation or denial of device access.

Touch interactions produce electrical current flow change in a sensor grid. Capacitive
or resistive touchscreens use an array/grid of electronics capable of measuring capacitive
or resistive change induced by touch. These CMOS transistors exhibit the same variability
that has been exploited in the traditional silicon physical unclonable functions (PUFs). In
addition, there is sensing circuitry that detects the row and column number where the
touch-induced capacitance or resistance change occurs. The sensing logic is replicated into a

Cryptography 2022, 6, 14. https://doi.org/10.3390/cryptography6020014 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6020014
https://doi.org/10.3390/cryptography6020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography6020014
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6020014?type=check_update&version=1

Cryptography 2022, 6, 14 2 of 24

grid of touchscreen regions so that the events in multiple regions can be detected in parallel.
The size of this grid keeps increasing to support fine-grained multiple gestures. This sensing
logic is another source of variability in the touch-screen-based PUF. It is plausible that the
same silicon fabrication processes that lead to variability in the traditional silicon PUF will
induce similar variability in the measured current and voltages resulting from touch actions
on touchscreens. Walker [1] provided a survey of various touchscreen technologies.

The current change magnitude depends on learned user behavior—users apply vary-
ing pressure at specific grid points. Current change magnitude also varies between devices
due to silicon manufacturing variations. Touch current sensors report pressure values in
the range [0, 1]. This value is a composite signature of user behavior and device silicon
variation. We develop a user profile from these pressure token streams over a period
of time.

These pressure token stream profiles are surprisingly robust. Even a profile derived
from about 4000 pressure tokens results in over 70% user identification accuracy. In our
experiments based on 13 user–device data sets, a 10,000 token profile provides up to 93%
accuracy, whereas a 12,800 token profile provides almost 100% accuracy in user and device
identification. Clearly, this observation does not guarantee user and device identification
accuracy levels with an order of 4000–12,800 touch events. It only points to the fact that a
good level of accuracy is achievable within an order of 10,000 touch interactions. In other
words, it is unlikely that a good touch-based model requires of the order of 100,000 or a
million touch interactions.

Most available user-behavior-based authentication/identification methods use only
the behavioral attributes, limiting themselves to user-based identities. The proposed
method, as alluded to earlier, also identifies a device, generating a more robust combined
user–device identity. Adversaries cannot trivially separate the user identity from the device
identity. User–device association is persistent for typical mobile applications, such as
Google Wallet, making a combined user–device identity more meaningful than a user
identity alone.

There are two broad user authentication methods. One-shot authentication, such as a
user password, establishes the user identity periodically; an authentication token persists
for some time period, such as 24 h. One could argue that one-shot authentication persists
only in between device sleep events which result in intervening lock screen authentications.
Reliance on lock screen authentications is unreliable. Snooping and smudge attacks render
these protections impotent [2–4]. Most users neglect the lock screen entirely [5]. Continuous
authentication verifies the user identity periodically, such as every 5 min. This alleviates
the shortcomings of one-shot and lock screen authentications.

One-shot biometric schemes also enhance authentication. Facial recognition, finger-
print scanners, and swipe-based biometric authentications are available. Facial recognition
succeeds erroneously on legitimate user pictures [6] and videos [7]. It also fails on database
attacks, presenting a large number of images [8]. Fingerprint scanners can fail on printed
fingerprints [9]. Lifting an authentic fingerprint from touchscreen oil residue enables finger-
print reproduction from the mobile device alone [10]. Swipe-based authentications require
explicit and cumbersome enrollment.

Physical unclonable functions (PUFs) further enhance biometric schemes. A PUF
is a challenge response function. Providing a challenge produces a response. Unique
reproducible chip identities result from response variability between chips. A typical
PUF is a distinct system component having no functional purpose, unlike the proposed
touchscreen PUF as a side-effect of the touchscreen interactions. Touchscreen current
sensors exhibit PUF properties [11,12]. Their data are therefore unique to a user–device
combination [12]. Responses generated on one device are invalid on another.

A continuous biometric authentication scheme is proposed. Software–keyboard–
touchscreen interactions provide biometric data. Data PUF properties—variability and
reliability—enhance authentication security. User profiles are n-gram approximations to
model nth-order Markov processes. This simplifies profile authentication computations

Cryptography 2022, 6, 14 3 of 24

using a divergence measure. The profile data structure is optimized using a prefix tree to
reduce the profile size and to accelerate profile authentication computations.

1.1. User Profiles

A sequence of curated pressure tokens is parsed into n-grams: a sequence of (n− 1)
tokens followed by the probability of the nth token over the entire alphabet. Each n-gram
occurs with a frequency in a user profile. This collection of (n-grams, frequency) tuples
from a sequence of touchscreen interactions is a user profile. This profile depends both
on the user context and app dictionary— what kind of words over the app alphabet are
used in the soft keyboard interactions. For example, a user might be more excited playing a
game with a virtual XBOX controller instead of using a shopping app.

Admittedly, per-app profiles derived from the soft keyboard interactions within the
dictionary and context of a single app will be more accurate. However, modern mobile
apps tend to have persistent app authentication given the device-level authentication
for user convenience. Given this, a device-level unified profile over the user–keyboard
interactions over multiple apps also makes sense as a reinforcement for device-level single-
shot authentication. This is what we have chosen to implement and evaluate. Note that the
authentication accuracy of a unified dictionary and context profile is likely to be a lower
bound on the authentication accuracy of a per-app dictionary and context profile. Hence,
our work should be treated as a floor in this direction.

1.2. Contributions

Identity Mapping—Universally and naturally generated input pressure token streams are
mapped to a profile. Profiles are a set of n-grams. These n-grams contain an n− 1 token
window prefix of the pressure token sequences with the outgoing transition probability
of each token in the alphabet as the nth token. Tokens are a function of soft keyboard key
location and sensor current magnitude (user pressure); they capture unique user and device
characteristics.
Divergence Measure—Authentication utilizes a profile divergence measure defined be-
tween profile n-gram sets.

1.3. Paper Organization

Section 2 elaborates existing mobile biometric authentication approaches. Section 4
describes the two key data structures used in this paper: n-gram and prefix tree. Section 5
gives algorithms for raw pressure value tokenization, profile generation, reduction of a
pressure token sequence to an n-gram set, divergence computation between two n-gram
sets, and the authentication of an input activity n-gram set against a user profile. Section 6
provides accuracy and computation time efficiency results. Section 7 contextualizes results.

2. Related Work

The National Information Assurance Partnership (NIAP) common criteria report [13]
outlines mobile device security requirements. It outlines the security goals and standardizes
the terminology. Our intent is alignment with authentication security goals from this report.

Ratha et al. [14] proposed sensor biometrics for authentication. Examples include
interkeystroke timing [15], accelerometer-based signatures [16], MEMS sensors [17], gait
sensors [18], touchscreen–swipe interactions [19–21], and broader sensor sets [22]. These
works extract a user identity. We use touchscreen current sensor measurements resulting
from soft keyboard interactions to create user–device identities. Tying identities to both user
and device characteristics is suitable for many common applications, such as Google Wallet.
A keystroke dynamics survey [23] cites mobile device typing behavior as an interesting
research direction, suggesting the novelty of our approach.

Touchscreen sensors exhibit PUF properties. Rosenfeld et al. [11] integrated hardware-
level PUF into sensors. Sensed values become challenges. Responses authenticate sensed
values. Thus, PUF properties—variability and reproducibility—must exist in sensed values.

Cryptography 2022, 6, 14 4 of 24

Scheel and Tyagi [12] proposed a so-called User–Device PUF (UD-PUF): Challenges are
polylines presented to the user; the user traces this line. Data undergo statistical concentra-
tion forming a response. Response PUF properties are tested at length. Near perfect (same
user, same device) reproducibility was shown with variability sufficient to detect user or
device changes. Hence the name UD-PUF—an identity tied to both user and device with
PUF properties. Our work utilizes the combined user–device identity idea. We apply it to
continuous, as opposed to one-shot, authentication. These contributions confirm the PUF
properties of touchscreen current sensors.

Patel et al. [24] surveyed continuous mobile user authentication schemes to reveal open
research challenges. Touch dynamics—approaches using touchscreen data—are most com-
monly employed. Most touch dynamics use touchscreen–swipe interactions as a data source.
All cited touchscreen/soft-keyboard-based methods employ machine learning classification.
Ours is a key-based approach utilizing n-grams. Such models are generative, as opposed
to discriminative, allowing training without known classifications. This approach is more
applicable to single-user mobile devices producing continuous input streams.

Mondal and Bours [25] also surveyed key-and-mouse-dynamics-based continuous
authentication (CA) techniques. They also argued that for CA systems that are not periodic,
the performance metrics more meaningful than false positive rate (FPR), false negative rate
(FNR), and equal error rate (EER) could be average number of imposter actions (ANIA)
and average number of genuine actions (AGIA). Their CA system assesses every keyboard
and mouse action. Our CA system is periodic in the touchscreen motion event space. An
authentication assessment is performed for every N such events, and the recommended
period is 2400 events. We believe that the traditional FPR, FNR, and EER are reasonable
performance indicators for our system.

SenSec [26] utilized accelerometers, gyroscopes, and magnetometers. A textual state
representation depends on all sensor values. An n-gram Markov language model profiles
user behavior as a token sequence. User identification achieved 75% accuracy. Online
anomaly detection achieved 71.3% accuracy with 13.1% false positive rate. We employ
a similar n-gram model. Higher accuracy and lower false positive rate are achieved.
Our system necessitates only touchscreen sensors. These have guaranteed availability,
whereas accelerometers, gyroscopes, and magnetometers can fail without compromising
device usability.

Feng et al. [20] developed touchscreen-interaction-based authentication. A user profile
combines two data streams: (1) touchscreen current sensors and (2) a glove containing
accelerometers and gyroscopes. This leads to an accuracy higher than 95%. However, the
necessity of glove use is cumbersome. We show touchscreen current sensors alone are
sufficient and achieve higher accuracy.

Frank et al. [27] used two machine learning classifiers, k-nearest-neighbors and a
support-vector machine with an rbf-kernel. 30 features were extracted from touchscreen
interactions. A median equal error rate of 0% was achieved; this dropped to 4% a week
after enrollment. Implementation complexity is high. Extracting 30 touchscreen interaction
features and applying machine learning are computationally expensive. Our scheme is
comparatively simple, computationally less expensive, and achieves comparable accuracy.

Xu et al. [28] described touch biometrics as a promising continuous authentication
method. Strong biometric properties of touchscreen interactions were shown. A continuous
authentication system was implemented. However, its high error rate makes it impractical.
We show almost 0% error with as few as 12,800 touch interactions.

Dey et al. [22] used an accelerometer as the device fingerprint. The challenge is a
certain-level signal applied to the vibrator, which activates the accelerometer to generate
a response signature. Aysu et al. [17] used MEMS as a fingerprint PUF for a low-cost
embedded solution in place of relatively more expensive ring oscillators or arbiters. Boneh’s
crypto group was also in news [29] for developing fingerprinting techniques for mobile
devices. Zhang et al. [30] developed a device fingerprinting technique based on multiple
sensors that bypasses Android and iOS privacy guards.

Cryptography 2022, 6, 14 5 of 24

Ouadjer et al. [31] identified a most relevant machine learning feature set from
touch gestures using extreme gradient boosting. Ackerson et al. [32] used recurrent
neural networks for biometric authentication and anomaly detection. Ryu et al. [33] gave
a survey of continuous multimodal biometric authentication systems. Another recent
development [34] proposed a zero-knowledge proof protocol for biometric authentication.

Another interesting direction of research is in natural language processing (NLP) or
forensic NLP [35], particularly aided by deep learning [36]. A recent success story [37]
in this context is possible identification of “Q” from QAnon through forensic NLP. A
combination of techniques proposed in this paper along with the forensic NLP techniques
may offer even a more robust user-level identification.

A PUF provides a physical security basis useful for biometric systems. Current
solutions neglect the device characteristics in favor of user features. We provide an identity
inseparable from user or device in contrast to only the user-based variability-induced
identities deployed in other approaches.

Our authentication approach is unique. Most current solutions use machine learning.
We employ an n-gram model; this contributes to available solution diversity. Further,
we use soft keyboard interactions–a single existing data stream requiring no additional
generative effort. Other works require many sensors which may or may not be available on
a given device.

Key-based continuous mobile authentication has heretofore received little attention.
We advance this research area by providing a continuous authentication system utilizing
touchscreen pressure data. Touchscreen pressure values have been shown to have strong
PUF and biometric properties.

3. Big Picture

Capacitive or resistive changes induced by touch are captured in a capacitive/re-
sistive grid by the current change sensors along the edges of the grid. Silicon foundry
statistical variability induces device-level variability in the sensed current change. Users
also have unique biometric variability in interacting with a touchscreen. When a user
interacts with a mobile app through a soft keyboard, Android framework captures it as a
MotionEvent object consisting of its (x,y) coordinates, a pressure value [0, 1] proportional
to the sensed current change, and a time stamp. A long touch can create multiple such
MotionEvent objects.

A user profile is created from a history of user keyboard interactions within an app on
a mobile device. A profile consists of a set of n-gram transition vectors. A 3-gram transition
vector can look like (ab, ((0.5, a), (0.2, b), (0.3, c))). This transition says that a sequence of
tokens ab is followed by the token a with probability 0.5, by token b with probability 0.2,
and by token c with probability 0.3 for this user on this device. These 3-gram transition
vectors are derived from a history of 2400–12,800 user–keyboard interactions.

The profile is the model a given user is authenticated against. When a long enough
sequence of user interactions is gathered, typically 2400 MotionEvent objects, it is also
reduced to a set of 3-gram transition vectors. This interaction set is compared to the stored
user profile through a profile divergence measure. If divergence is low, the user is authenti-
cated. The user profile can also be incrementally updated with the latest 2400 interactions
and their corresponding 3-gram transition vectors.

This authentication is continuous since it is performed every 2400 or so interaction
touch events.

4. n-Grams and Prefix Trees

An n-gram is defined over an alphabet Σ. In natural language processing, for an
alphabet Σ = {a, b, c}, a 2-gram is any sequence of two symbols from Σ. aa, ac, bb
are 2-gram examples. Figure 1a shows such an example of a 2-gram. An n-gram is
similarly a sequence of n symbols. For our work, we enhance this definition of an
n-gram slightly. Let the cardinality of alphabet Σ, |Σ|, be m. We add a probability vector

Cryptography 2022, 6, 14 6 of 24

v = [p0, p1, . . . , pm−1] to the (n − 1)-token sequence window W = Ti0 Ti1 . . . Tin−2 as an
n-gram NG = (W = Ti0 Ti1 . . . Tin−2 , v = [p0, p1, . . . , pm−1]). Let Σ = {σ0, σ1, . . . , σm−1}. pi
captures the probability of word Ti0 Ti1 . . . Tin−2 σi given Ti0 Ti1 . . . Tin−2 . Figure 1b shows this
version of a 3-gram. Given the frequency of aaa being double that of aab, with frequency
of aac equal to 0, the probability vector is [2/3, 1/3, 0] with window W = aa giving the
n-gram NG = (aa, [2/3, 1/3, 0]). We use a set of n-grams as a user-profile-based identity
to capture the soft keyboard interaction of a user.

2-gram

(a)

a a b

c

2/3
a

Enhanced 3-gram

(b)

1/3

0

𝝨𝝨 ={a,b,c}

a a

Figure 1. (a) A generic 2-gram. (b) Our enhanced 3-gram with transition probabilities to each alphabet
element as the third token.

In this work, soft keyboard input is processed as n-grams. The raw pressure value, p,
and key location, (x, y), are mapped to a unique token σi ∈ Σ. Tokenization of continuous
attributes (p, (x, y)) into a small number of discrete tokens in Σ reduces the complexity of
user profiles. An n-gram predicts the next token probability given (n− 1) previous tokens.

In order to authenticate a user, a stored user profile needs to be matched against a
computed profile. This is conducted through a user profile divergence computation. A
divergence measure utilizes differences between next token probabilities for matching
n-token prefixes to compare profiles. Storing n-grams in a prefix tree (1) accelerates this
divergence computation and (2) reduces n-gram memory size requirements.

Note that an n-gram approximates an (n− 1)st-order Markov process to predict the
last element in a string of n tokens. n-gram advantages are relative simplicity and gener-
ative modeling. Simplicity improves computation speed and implementation difficulty.
A discriminative model as in machine learning, as opposed to a generative model as in
n-grams, requires training samples from all classes. Generative modeling enables clas-
sification using exclusively positive training samples. A discriminative model requires
keyboard interaction data from multiple users, whereas a generative model can function
with the keyboard interaction data only from one user. Hence, generative models are more
applicable to typical single-user mobile devices.

Prefix Tree

A user’s keyboard interaction can be viewed as a string on the alphabet Σ. A user
profile breaks up this interaction data string into a set of n-grams. A prefix tree data
structure stores these n-gram strings as a tree path, see Figure 2. A node’s string value is
the concatenation of edge values along the path from the root node. n-grams are stored
as prefix tree strings. In Figure 2, we show the string represented at a node—the node at
bottom left encodes the string “at”. In reality, the node does not maintain the string encoded
by it explicitly, unlike what is shown in Figure 2. Each node maintains the number of
times that string occurs in the set and a successor count vector from which the probability
vector is derived. The successor count vector counts the number of times each token
succeeds an n-gram. In Figure 2, the count of n-gram “at” is shown to be 2 with two
successors—“ata” with count 1 and “ate” with count 1—resulting in successor count vector
{c(a) = 1; c(e) = 1}. The count vector of each node ought to be the sum of count vectors of

Cryptography 2022, 6, 14 7 of 24

all its successor edges. Note that successor count vector over the English alphabet would
have 26 components giving a count for each symbol.

pa t

tate

a

at

t

pt

pa

a

pat

t

e a

tep

p

tap

p

ate ata

e a

“at” Successor Count Vector
[a==1, 0, ..., e==1, 0, ..., 0]

“at” Probability Vector
[0.5, 0, ..., 0.5, 0, ..., 0]

2

1 1

2 2 1

1

1

5

1

1

1

1

Figure 2. A node’s value concatenates edge values along the path from the root node. Storing n-gram
windows in a prefix tree reduces profile size and accelerates computation. The successor count vector
and corresponding probability vector for “at” are given. The italicized number on each node indicates
the number of times it is traversed in prefix tree generation.

Algorithm 1 function GEN_TREE generates a prefix tree with root node pre f ix_tree
from an input token sequence token. Consecutive token windows of length ngram_size
are inserted into the prefix tree if they create a valid window. A valid window does not
have “time breaks” or “pressure breaks” as described in Section 5. Inserting an n-gram
requires traversing the prefix tree. For instance, in Figure 2, inserting the 2-gram “at” will
traverse the prefix tree with a path labeled “a” “t”. Beginning at the root node, the first
n-gram token determines the successor edge taken. The subsequent token indicates the
edge to be taken from the first successor node. This continues until there are no tokens
remaining in the n-gram. At each traversed node, the occurrence count stored on that node
is incremented. This is shown in italics in Figure 2.

Algorithm 1 Prefix tree generation from input token sequence.
const int time_threshold;
typedef struct{

int occurrence;
node_t *successor[|Σ|];

} node_t;
function GEN_TREE(Token[] token, int ngram_size, node_t *pre f ix_tree)

for (i = 0; i < token.len− ngram_size; i ++) do
if (!valid_window(token, ngram_size, i)) then

continue; . valid_window has no “time breaks” or “pressure breaks” (Section 5)
end if
node_t **node_p;
node = &pre f ix_tree;
for (j = 0; j < ngram_size; j ++) do

(**node).occurrence+ = 1;
node = &(**node).successor[token[i + j]]);
if (∗node == nullptr) then . Create new node
∗node = new node_t;

end if
end for

end for
end function

Cryptography 2022, 6, 14 8 of 24

An example prefix tree node appears in Algorithm 1 as struct node_t. It holds the
number of occurrences and an array of pointers to successor node_t nodes. Initially, the
prefix tree consists of only a root node. When inserting an n-gram, a token may indicate an
edge be taken to a successor which does not exist. In this case, a new node is created and a
pointer to this node is inserted into the successor vector.

Comparing profiles utilizes next token probabilities. Computing next token proba-
bilities requires only the information contained in prefix tree nodes. Information retrieval
requires (1) navigation to node and (2) reading the successor vector. Navigation requires
n lookup steps within the prefix tree for an n-gram. This is constant in the size of the
profile—the number of n-grams within the profile set. Reading a successor vector of size
m for |Σ| = m may require time proportional to m, which is also independent of profile
size. Absence of a prefix tree path corresponding to an n-gram denotes its absence in the
profile. This is a frequent case when comparing profiles. Path or n-gram absence can be
determined in n steps.

5. Implementation

Section 4 describes the key data structures of n-grams and prefix trees. This section
describes algorithms that utilize them for profile generation and profile matching. Software
keyboard interactions generate data. Data tokenization converts it into an interaction
token sequence. An n-gram model predicts next token probabilities given this sequence.
Authentication uses a divergence metric to classify an unknown user interaction profile
against a known user profile, where profiles constitute a set of n-grams.

5.1. Data

Software keyboard interactions result in data derived from user–application inter-
actions. Each interaction creates a MotionEvent object in the Android framework. A
MotionEvent object contains a variety of information about the touch event—pressure,
(x, y) location of touch, and time—a subset of which is used in model generation.

MotionEvent touch pressure fidelity is device-dependent. Pressure value range and
resolution vary. This variation might result from physical sensors or hardware drivers.
Nexus 7 tablets, used in this work, provide high fidelity pressure measurements. Pressure
ranges from 0.0 to 1.0 in steps of 0.096.

We modified a software keyboard application to collect MotionEvent objects. Four
users completed at least 5000 interactions on three Nexus 7 tablets. This gives us 12 distinct
(user, device) (Ui, Dj) data sets. One additional user generated a similar data set on only
one device, leading to an overall count of 13 distinct (Ui, Dj) data sets. Users played two
typing games. One game from Google Play Store, Typeracer, provides random quotes from
books and poems. It is designed for typing practice. In our context, this provides a diverse
set of dictionaries for user profile generation, modeling multiple app experiences. A similar
second game, Typing Champ, from Google Play Store was also used. However, it presents
only single words from a dictionary rather than phrases as in Typeracer.

5.2. Profile Generation
5.2.1. Input Tokenization

The raw pressure values are more or less continuous, creating a large, sparse space of
pressure tokens. It is unlikely that user behavior will repeat in this token space, generating
exactly the same pressure value multiple times. Bucketing of pressure values into ranges
makes it more likely that the user behavior will be repeatable. Moreover, it reduces the
resource needs for a token-based model.

Tokens contain (x, y) location ranges to identify the spatial span of an individual
key in the soft keyboard—Figure 3. Pressure ranges divide the pressure value associated
with each location into a number of pressure intervals/ranges—each of these intervals
results in a unique token Ti. The set of pressure values associated with a location is
captured as a probability distribution to identify pressure ranges for tokenization. TN

Cryptography 2022, 6, 14 9 of 24

tokens are created for pressure values at a specific key location (x, y) as follows. Only
the pressure values in the range µ± 2σ are tokenized into valid tokens, where µ is the
mean and σ is the standard deviation of the pressure values associated with this location.
Ignoring pressure values below µ − 2σ and above µ + 2σ excludes outliers, increasing
reproducibility. Note that µ ± 2σ contains 95.45% of profile pressure values [38]. The
tokenization intervals are chosen with a step size sσ where scales s = 0.5, 1, 1.5, 2.0 have
been explored. For a given scale s, intervals [µ− sσ, µ), [µ, µ + sσ), [µ− 2sσ, µ− sσ), [µ +
sσ, µ + 2sσ), . . . are used for tokenization. For µ = 0.5 with σ = 0.1 and s = 1, TN = 4
ranges [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), and [0.6, 0.7] are used to generate 4 possible token values
T0, T1, T2, and T3. Figure 4 shows these tokenization ranges.

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

123 .

0987654321

12:00

token_0 token_1 token_2

token_3 token_4 token_5

token_6 token_7 token_8

Low Medium High

Pressure

Figure 3. Tokenization utilizes location and pressure. Key positions are (x, y) location ranges.
Location pressure distributions determine pressure ranges. This example depicts three pressure
ranges per location.

Figure 4. Profile pressure distributions determine pressure ranges. Tokens are created for pressure
range µ ± 2σ. Touches with pressure values p > µ + 2σ and p < µ − 2σ are thrown out. This
eliminates outliers, increasing reproducibility.

Tokenization maps raw MotionEvents to these model tokens.

5.2.2. n-Grams Are Token Sequences

Soft keyboard input tokenization produces a token sequence; n-grams are constructed
from this. An (n− 1)-sized window slides along the input token sequence. The beginning
and end indices increment for each n-gram. The first n-gram begins at token 1. For example,
in Figure 5, for 3-gram generation, the 2-sized window spans the left-most two tokens “at”.
This step will add 3-gram “at” to the prefix tree, as described in Figure 2 with a successor
vector probability entry for transition to “e” assumed to be 0.5. The second n-gram begins
at token 2, which results in 3-gram “te” with a successor edge to “p”. Figure 5 demonstrates
such n-gram generation.

Cryptography 2022, 6, 14 10 of 24

a

Raw Input

t e p a t a p

a t e

t e p

e p a

p a t

a t a

t a p

3-grams

Figure 5. A sliding window transforms raw input into 3-grams. This input sequence produces the
prefix tree shown in Figure 2. This example uses English alphabet as a token set. Our model uses
tokens which are a tuple of user interaction location and pressure values.

When a pressure value outside the range µ± 2σ is encountered, we call it a “pressure
break”. The assumption is that the same user is continuing to interact with the same app
(context), but through some environmental disturbance, an unusual pressure value was
input. In this case, only the abnormal token is dropped. Starting with the following token,
a new token sequence belonging to the same context is assumed, which is parsed for new
n-grams as in Figure 5.

We also consider the time stamp of each keyboard MotionEvent in a token sequence to
decide if a “break” is needed. If the difference in the time stamps of two successive tokens
exceeds a Time Threshold, we consider it a “time break”. Time Threshold is the maximum
allowable time in between tokens belonging to the same context session. When a user takes
a break from an app interaction, say, Gmail, and resumes the same app after some time
exceeding Time Threshold, we start the token sequence parsing for n-grams as in Figure 5
anew. On the other hand, if the user resumes keyboard interaction with a different app, say,
Chrome, after a time period larger than Time Threshold, we can associate the following token
sequence with the new context (Chrome). Android contains APIs to extract the active task
or activity ID to assign to the contexts. Note that we have not implemented multicontextual
profiles, but it is feasible to do so. It may improve authentication accuracy.

5.2.3. Next Token Probabilities

In an n-gram, a token, Ti+n−1, succeeds the first (n− 1) token window Wi,i+n−2 =
Ti Ti+1 . . . Ti+n−2. Token sequence Ti Ti+1 . . . Ti+n−2 occurs OCC(Ti Ti+1 . . . Ti+n−2) times.
Next token probability for Ti+n−1 occurring after Wi,i+n−2 is P(Ti+n−1|Wi,i+n−2); this is
the number of occurrences of Ti+n−1 after Wi,i+n−2 is divided by OCC(Wi,i+n−2). Figure 2
computes the probability vector from the successor count vector using Equation (1).

P(Ti+n−1|Wi,i+n−2) =
OCC(Wi,i+n−2‖Ti+n−1)

OCC(Wi,i+n−2)
=

OCC(Ti Ti+1 . . . Ti+n−2 Ti+n−1)

OCC(Ti Ti+1 . . . Ti+n−2)
. (1)

5.3. Comparing Profiles—Divergence

User profiles are sets of n-grams with frequency vectors. An n-gram NG consists of a
window of (n− 1) token sequence W along with a successor frequency vector v represented
as NG(W, v). The successor frequency vector captures the transition frequency from W
to all possible tokens in the token alphabet Σ—the result of tokenization described earlier.
NG.W (NG.v) refers to the window (vector) component of the n-gram NG. An n-gram NGP

i .W
occurs with frequency f P

i in a user profile P = {(NGP
0 , f P

0), (NGP
1 , f P

1), . . . , (NGP
k , f P

k)}

Cryptography 2022, 6, 14 11 of 24

computed as OCC(NGP
i .W)/|P|. Equation (2) defines a profile divergence; it is a weighted

sum of next token probability differences.
Dpro f ile(B, P) is the divergence between profiles B and P, or more accurately, diver-

gence of B from P.
Dn−gram(NG1, NG2) is the divergence between n-grams NG1 = (W1, v1) and

NG2 = (W2, v2).
We define a search function NG(P, W) to denote the n-gram with window W in profile

P. If an n-gram with window W does not exist in profile P, this function returns a null
n-gram with vector v = [0, 0, . . . , 0].

Interaction profile B is authenticated against user profile P. An interaction profile B
is generated from a set of recent keyboard transaction touch events. A user profile P is a
model of a user’s touch keyboard interactions. For each n-gram NGB

i in B, Dpro f ile takes
the divergence between NGB

i and its twin n-gram in profile P given by NG(P, NGB
i .W).

This divergence between n-grams, Dn−gram(NGB
i , NG(P, NGB

i .W)), is further weighted by
the frequency of NGB

i .W in B. Note that this weight selection from profile B makes this
divergence metric asymmetric.

Dn−gram(NG1, NG2) computes the divergence over all transitions or entries in the
vector NG1.v, which is computed as absolute value |(NG1.v[i]−NG2.v[i])|which is further
weighted by the frequency of the transition on token Ti leading to |(NG1.v[i]−NG2.v[i])| ∗
NG1.v[i]. This expression is summed up over each token Ti ∈ Σ.

Dpro f ile(B, P) =

Σ|B|−1
i=0

(
Dn−gram(NGB

i , NG(P, NGB
i .W)) ∗ f B

i

)
Dn−gram(NG1, NG2) =

Σ|Σ|−1
i=0

(∣∣NG1.v[i]− NG2.v[i]
∣∣ ∗ NG1.v[i]

)
.

(2)

The divergence ranges from 0.0 to 1.0; it describes how much the interaction profile B
deviates or diverges from user profile P. Dpro f ile = 0.0 is maximally close.

Order matters—Dpro f ile(P, B) 6= Dpro f ile(B, P). The former compares n-grams in a
user profile P to equivalent n-grams in an interaction profile B, whereas the latter compares
an interaction profile B against a user profile P. Note that each summand in the divergence
computation is multiplied by the frequency of that NG in the first argument profile of D.
If a given n-gram NG is not in the first argument profile, its frequency is zero. Hence,
regardless of the frequency of that NG in the second argument profile, it will be suppressed,
not counted, in the divergence computation. A side-effect of this usually is that many
n-grams in a user profile do not contribute to the divergence for the following reason.
Usually the user profile would contain many more n-grams than an interaction profile,
since a user profile is built over multiple contexts and sessions, whereas an interaction
profile is typically from a single session.

Note that our divergence definition is based on the notion of statistical divergence
between two probability distributions on the same probability space X . Kullback–Leibler
divergence [39] is a good example of this concept. For two discrete probability distributions
P(x), Q(x), Kullback–Leibler divergence is defined as DKL(P, Q) = ∑x∈X p(x) log

(
P(x)
Q(x)

)
.

There is a similar definition with an integral for continuous probability distributions. Note
that since this is a weighted sum with p(x); it is asymmetric. This also motivates our use of
f B
i weight in Equation (2). In addition, note that in computing P’s divergence from Q, if

p(x) is zero for some probability space element x, the corresponding element x in Q(x),
even with q(x) > 0, is not counted. This is akin to not counting the n-grams in user profile
P if the corresponding n-gram does not exist in the interaction profile B.

Figure 6 computes Dpro f ile(B, P). The left side of the figure shows 3-grams in a user
profile P. The right side shows 3-grams from an interaction profile B. For this example,
Σ = {t0, t1, t2}. The top left 3-gram NGP

0 in user profile P has a window NGP
0 .W = t0t1

with a successor vector NGP
0 .v[]. Similarly, the 3-gram NGB

0 in the top right of the figure
from the interaction profile B has the same window NGB

0 .W = t0t1 and a successor vector

Cryptography 2022, 6, 14 12 of 24

NGB
0 .v[]. Hence, in the divergence computation for Dpro f ile(B, P), there will be a term for

Dn−gram(NGB
0 , NGP

0). That term expands into difference terms by each successor token, re-
sulting in Axis-0 difference term |(NGP

0 .v[0]− NGB
0 .v[0])|. However, this difference is further

weighted by the probability of Axis-0 in the interaction profile B’s successor vector captured
by NGB

0 .v[0]. This leads to the weighted Axis-0 difference term (|(NGP
0 .v[0]− NGB

0 .v[0])|) ∗
NGB

0 .v[0]. This results in the weighted average difference of (|(NGP
0 .v[0]− NGB

0 .v[0])|) ∗
NGB

0 .v[0] + (|(NGP
0 .v[1]−NGB

0 .v[1])|) ∗NGB
0 .v[1] + (|(NGP

0 .v[2]−NGB
0 .v[2])|) ∗NGB

0 .v[2].
However, this term is further weighted by the frequency of window t0t1 in the interaction
profile B. If t0 follows t0t1 in the interaction strings for B c0 times, t1 follows t0t1 in the
interaction strings for B c1 times, and t2 follows t0t1 in the interaction strings for B c2 times,
the total count of W = t0t1 occurrences is OCC(t0t1) = c0 + c1 + c2. The relative fre-
quency of NGB

0 .t0t1 in B is f B
0 = OCC(t0t1)/(OCC(t0t1) + OCC(t1t2). This will lead to

the term [(|(NGP
0 .v[0]− NGB

0 .v[0])|) ∗ NGB
0 .v[0] + (|(NGP

0 .v[1]− NGB
0 .v[1])|) ∗ NGB

0 .v[1] +
(|(NGP

0 .v[2]− NGB
0 .v[2])|) ∗ NGB

0 .v[2]] ∗ f B
0 .

Dprofile(B,P)

P B

𝝨𝝨={to,t1,t2}

t1 t2

t0

t1

t2

t1t2

t0

t1

t2

t0t1

t0

t1

t2

t0 t2

t0

t1

t2

t0 t1

t0

t1

t2

NG0

P

NG1

NG2

NG0

B

NG1

B

|NG P.v[0] 0
- NG B.v[0]|*NG B.v[0] 0 0

P
|NG0 .v[1] -

B B
NG0 .v[1]|*NG0 .v[1]

|NG P.v[2] 0
- NG B.v[2]|*NG B.v[2] 0 0

|NG P.v[0] 2
- NG B.v[0]|*NG B.v[0] 1 1

P
|NG2 .v[1] -

B B
NG1 .v[1]|*NG1 .v[1]

|NG P.v[2] 2
- NG B.v[2]|*NG B.v[2] 1 1

B
* OCC(NG1 .W)/|B|

B
* OCC(NG0 .W)/|B|

=Dprofile(B,P)P

P

Figure 6. Computes Dpro f ile(B, P) comparing n-grams in B to equivalent n-grams in P. The computa-
tion excludes NGP

1 , demonstrating its asymmetry.

The computation excludes the 3-gram NGP
1 in P from this divergence computation

since the corresponding 3-gram window t0t2 does not exist in the interaction profile B. This
demonstrates profile divergence computation asymmetry.

Authentication, AUTH(B, P), compares an interaction profile B against a user profile
P. Authentication compares Dpro f ile(B, P) against a threshold profile divergence value.

AUTH(B, P) =
(
1− Dpro f ile(B, P)

)
> threshold. (3)

5.4. Authentication Model Parameters

Our authentication model consists of user and interaction profiles, which contain
n-grams, and n-grams depend on token sequences, whose lengths depend on various
parameters. The token sequences themselves are affected by tokenization parameters such
as number of pressure steps within µ± 2σ. The profile divergences are compared against a
threshold. This illustrates the richness of the parametrization space. Table 1 enumerates
these parameters. Section 6 discusses parameter tuning. Authentication accuracy and
computation overhead depend strongly on parameter tuning.

Cryptography 2022, 6, 14 13 of 24

Table 1. Consider AUTH(B, P); it compares input sequence B against user profile P.

Parameter Description

Base Model Size Tokens in P.

Auth Model Size Tokens in B.

Total Model Size Sum of tokens in P and B.

Authentication Threshold
Value above which B authenticates in P. Increasing Authentication
Threshold increases required closeness. Equation (3) provides the
relationship to AUTH(B, P).

TN Location pressure distributions determine token pressure ranges. TN
is the number of pressure ranges. Ranges have equal numerical size.

Time Threshold

Soft keyboard input is tokenized into a token sequence. n-grams are
n-sized token sequences. Consecutive n-gram tokens must occur
within Time Threshold. Consecutive tokens exceeding Time Threshold
are excluded from all n-grams. No n-grams cross this
temporal divide.

Window Size The (n− 1) in n-gram, which captures the window size. Number of
tokens predicting next token probabilities.

5.5. Comparing Profiles—Machine Learning

Machine learning provides an alternative profile comparison method to the divergence
measure. It uses a set of features to predict a class. Training a machine learning classifier
involves providing a set of feature vectors with known classes for supervised learning.
Unsupervised learning techniques do not use class labels. Instead, they create clusters of
associated feature vectors. We use supervised machine learning classification schemes.

Raw (location, pressure) data are mapped to machine learning features using a
z-sequence scheme. Raw input sequences are parsed into all z-sized subsequences—similar
to the n-gram sliding window. Zi is the ith raw data sequence element having location (Zi.l)
and pressure (Zi.p) values. A 1-sequence provides the machine learning classifier with
features (Zi.l, Zi.p) and a class that is the combined user–device identity similar to user
profile P. The 2-sequence features are (Z0.l, Z0.p, Z1.l, Z1.p). Likewise, z-sequence features
are (Z0.l, Z0.p, Z1.l, Z1.p, . . . , Zz−1.l, Zz−1.p). Providing a z-sequence allows machine
learning classifiers to make predictions based on input token sequences.

Our divergence measure utilizes statistical techniques to map pressure values to
tokens. Following this, probabilities for each n-gram and each token succeeding that n-
gram window are computed. Analogous tokenized data are provided to machine learning
classifiers for a fair comparison against our divergence metric. We employ a second z-
sequence scheme with raw pressure values transformed into token indexes. These token
indexes correspond to the µ± 2σ range containing the pressure value. These ranges are
discussed in Section 5. In another scheme, we provide the machine learning classifier with
n-gram frequency and successor vector as well. Table 2 summarizes these schemes.

Table 2. Schemes to map raw data to machine learning features with class corresponding to the
combined user–device identity, user profile P. An n-gram NGP

i .W occurs with frequency f P
i in a user

profile P. NGP
i .v is the successor frequency vector. Ti is a token as utilized in our divergence metric.

Scheme Features

Raw z-sequence Z0.l, Z0.p, Z1.l, Z1.p, . . . ,Zz−1.l, Zz−1.p

Token z-sequence Z0.l, T0, Z1.l, T1, . . . , Zz−1.l, Tz−1

Successor Vector
NGP

i .W, f P
i , NGP

i .v[0], NGP
i .v[1], . . . ,

NGP
i .v[|Σ| − 1]

Cryptography 2022, 6, 14 14 of 24

5.6. Android Incorporation

In an Android implementation, a background service collects the soft keyboard
MotionEvent object stream. A profile is established over time. New input is compared to
the existing profile; this happens periodically. An interaction profile that successfully au-
thenticates is set aside for later incorporation into the corresponding user profile. A rejected
interaction profile is discarded. Such incremental profile updates converge towards a more
robust user profile. Unsuccessful authentications lead to more intrusive authentication
methods such as password entry.

Initially, when this continuous authentication framework is adopted, the size of profile-
building data is small. This leads to low authentication accuracy in the beginning, which
does not add much to the system security. In this mode, the system frequently falls back to
password authentication. The authentication accuracy and derived security increase over
time, given more interaction data.

6. Results

A user profile is generated from touchscreen pressure token sequences. The size of this
token sequence and the value of n in n-grams used in the profile have a significant bearing
on the authentication accuracy. Parametrized profile space exploration is performed to
maximize the authentication accuracy from the resulting profiles. An interaction input
token sequence is also reduced to an n-gram set for authentication against a user profile. A
parametrization space, similar to the user profile generation parametrization space, exists
for this step as well.

Authentication accuracy is quantified as false negative rate (FNR) and false positive
rate (FPR). FPR is the number of interaction profiles incorrectly classified as the targeted user
divided by the the number of attempted nonuser interaction profiles. FPR quantifies illegitimate
user access frequency. FNR is the number of interaction profiles incorrectly classified as not the
targeted user divided by the the number of attempted user interaction profiles. FNR quantifies
legitimate user access denial. Authentication computation times on Nexus 7 tablets are
provided. Authentication accuracy and computation time are positively correlated. Reduc-
ing computation time reduces accuracy. Our parametric space is rich enough to allow an
exploration of a broad range of values for (authentication accuracy, computation time).

6.1. Parameter Tuning

Parameter tuning maximizes authentication accuracy. Note, however, that increased
accuracy comes at a cost of increased computation overhead. Varying one parameter while
holding others constant generates locally optimal values. Figure 7 provides locally opti-
mal values to maximize authentication accuracy, which minimizes FPR + FNR. Testing
all parameter combinations in a range around locally optimal values generates globally
optimal values. Globally optimal values, shown in Table 3, occur when all ε-neighborhood
perturbations around a local optimum provide a negligible increase to authentication accu-
racy. Total Model Size is most strongly correlated with authentication accuracy; Figure 10
provides this relationship; 100% accuracy is achieved at 12,800 interactions. Note that all of
the points in Figure 10 are above the line y = x, establishing a monotonically increasing
dependence of accuracy on Total Model Size as long as relative ratio of base model size and
auth model size is maintained constant. Accuracy does not always increase with Total Model
Size, particularly with varying base model size to auth model size ratios. Lower accuracies
also occur when User Model Size or Auth Model Size is small, 400 to 800 interactions. At
least 1600 profile interactions and 1600 observed input interactions provide consistent
accuracies. Authentication accuracy declines at Time Threshold ≤ 1000; no change exists
at Time Threshold ≥ 1000. Note that an inactivity period longer than Time Threshold results
in a time break. TN = 2 maximizes authentication accuracy. The pressure range µ± 2σ is
divided into TN tokens.

Cryptography 2022, 6, 14 15 of 24

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parameters vs. FNR

Parameters

F
N

R

●

●

●

●

●

●

●

●

●

●

FPR = 0.1 Parameter

window_size
token_size
threshold
user_model_size
auth_model_size

Figure 7. FPR is held constant. Modifying parameters affects FNR. Tested parameter values are
normalized to range [0, 1]. Minimum achieved FNR is plotted. User model size and auth model size
point values are 400, 800, and 1600 (left to right). Threshold values are 100, 500, and 1000. Token size
values are 1, 2, 3, and 4. Window size values are 1, 2, 3, and 4.

Table 3. Varying one parameter while holding others constant generates locally optimal val-
ues. Testing all parameter combinations near locally optimal values generates globally optimal
parameter values.

Parameter Locally Optimal Value Globally Optimal Value

Base Model Size 1600 6400

Auth Model Size 800 6400

Total Model Size 2400 12,800

Authentication Threshold varies 0.88

TN 2 2

Time Threshold 1000 ms 1000 ms

Window Size 1 1

Ideal Authentication Threshold varies based on system constraints. Adjusting Authen-
tication Threshold determines FNR and FPR. FNR = FPR at Authentication Threshold 0.88,
which determines the equal error rate (EER) point for authentication accuracy. This provides
a balance between rejecting authentic users and accepting inauthentic users. Decreasing
Authentication Threshold increases false accepts (FPR) and decreases false rejects (FNR).
Increasing Authentication Threshold increases false rejects (FNR) and decreases false accepts
(FPR). Figure 8 shows the FPR vs. FNR tradeoff.

Globally optimal Window Size for n-grams is 1. The previous interaction most accu-
rately predicts the next interaction. This seems to indicate that the transition probability
vector is a better user–device indicator than the context given by the n-gram. Multiple

Cryptography 2022, 6, 14 16 of 24

mobile applications create varying input contexts. Users may adopt different language
use patterns in each context. This may increase same-user variability of n-grams for n > 1.
Alternatively, 3-grams may become more predictive given more data. The set of possible
3-grams is larger than the set of possible 2-grams. Perhaps user input and profile have
insufficient overlapping 3-grams for reliable comparison.

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

ROC Curve

FPR

F
N

R

Configuration

same user | same device
same user | different device
different user | same device
different user | different device

●
89.04%

●
87.14%

●
84.92%

●
92.82%

Figure 8. FNR vs. FPR for four configurations: (same user, same device), (same user, diff device), (diff
user, same device), and (diff user, diff device). Total Model Size is fixed at 4800. Authentication Threshold
is varied to achieve variable authentication accuracy. Aggregate accuracy across all configurations is
89.04%. Points closest to the bottom left represent lowest error.

Globally optimal TN is 2. The µ± 2σ pressure range for each location is divided in half,
dividing each location into two distinct tokens. This is more predictive than each location
mapping to one token—making it relatively independent of pressure. Thus, pressure
sensitivity increases accuracy.

6.2. Authentication

For authentication purposes, the goal of an adversary is to obtain a specific, falsely
authenticated (Ui, Dj) profile. There are three attack vectors to accomplish this: (1) (same
user, different device) configuration: an adversary is able to obtain the targeted user’s
profile from a different device and wishes to pass it off as a (Ui, Dj) profile on device Dj.
(2) (different user, same device) configuration: an adversary has access to the targeted device
Dj but wishes to pass off a (U′i , Dj) profile as a (Ui, Dj) profile on device Dj. (3) (different
user, different device) configuration: the adversary has access to only a different device D′j
to be able to generate a (U′i , D′j) profile and then pass it off as a (Ui, Dj) profile on device Dj.

Collectively, these three attack vectors define the attack surface for our adversary
model, which we call (same user, same device) configuration. The goal of the adversary
in this configuration is to misrepresent itself as a (Ui, Dj) profile through any of the three
attack vectors. The (different user, same device) attack vector occurs more naturally in
practice where the adversary shares access to the same device as the targeted user, and

Cryptography 2022, 6, 14 17 of 24

hence, it may have greatest practical significance. A thief attempting access to a stolen
device exemplifies this scenario.

6.2.1. ROC: FPR, FNR, and Authentication Threshold Trade-Offs

False positive error rates can be traded for false negative error rates, which defines
the operating characteristics of the authentication framework. For example, FPR indicates
illegitimate user access frequency. Receiver Operating Characteristic (ROC) curves relate FPR
and FNR error rates; these relations are interpreted as trade-offs in system behavior. Varying
Authentication Threshold value provides a new (FPR, FNR) point along the ROC curve.

For each attack vector, the following describes the (FPR, FNR) point computation.
Consider the (different user, same device) attack vector.

1. We start with multiple touch/token sequences for a user–device pair of length 30,000+,
typically. These sequences are parsed into multiple user–device profiles of 2400 tokens
each. Note that the raw data set of 30,000+ for (Ui, Dj) results in multiple 2400 token
profiles for (Ui, Dj). The total model size of 2400 was chosen for local optimality, as
described later.

2. At this point, we have created many different profiles pl(Ui, Dj) for 0 ≤ l ≤ L. We
compute pairwise profile divergences between these profiles as (pl , pm, Dpro f ile(pl , pm))
tuples for all profile pairs (pl , pm).

3. Given an Authentication Threshold, say 0.1, to determine FPR we look for those tuples
(pl , pm, Dpro f ile(pl , pm)), where Dpro f ile(pl , pm) ≤ 0.1, the Authentication Threshold,
pl .user 6= pm.user, and pl .device == pm.device, where p.user and p.device indicate the
user or device parameter of a profile p. Note that (Dpro f ile(pl , pm) ≤ 0.1) ∧ (pl .user 6=
pm.user) ∧ (pl .device == pm.device) equals 1 if all the three Boolean conditions are
satisfied and 0 otherwise. With this, FPR = ∑l,m((Dpro f ile(pl , pm) ≤ 0.1) ∧ (pl .user 6=
pm.user) ∧ (pl .device == pm.device))/ ∑l,m((pl .user 6= pm.user) ∧ (pl .device ==
pm.device)).

4. Similarly, to define FNR, we look for tuples (pl , pm, Dpro f ile(pl , pm)) with matching
user and device that have profile divergence greater than the Authentication Threshold
and hence are falsely rejected. FNR = ∑l,m((Dpro f ile(pl , pm) > 0.1) ∧ (pl .user ==
pm.user) ∧ (pl .device == pm.device))/ ∑l,m((pl .user 6= pm.user) ∧ (pl .device ==
pm.device)).

Authentication Threshold is varied in the range [0, 1] to generate the four ROC curves
in Figure 8. The curves represent the error rate FPR + FNR as Authentication Thresh-
old is varied. The conditions to capture each attack vector change. For (different user,
different device), we use ((pl .user 6= pm.user) ∧ (pl .device 6= pm.device)). (same user, dif-
ferent device) is captured with ((pl .user == pm.user) ∧ (pl .device 6= pm.device)). Note
that the attack surface (same user, same device) configuration curve can be derived with
((pl .user == pm.user) ∧ (pl .device == pm.device)). Dpro f ile should be lowest for the (same
user, same device) configuration among all four configurations. This implies that the (same
user, same device) configuration Dpro f ile forms a lower bound on Authentication Threshold
to differentiate a (same user, same device) profile from another user or another device
configuration. The (same user, same device) configuration curve compares the (same user,
same device) configuration against all other configurations.

FNR and FPR error rates are quantified in Figure 8. It provides four configuration ROC
curves, one for each configuration. The Total Model Size, sum of interaction and user profile
sizes, is fixed at 4800. A relatively small Total Model Size is chosen to illustrate differing
performance across configurations. At larger Total Model Size values, all curves approach
0% error. In Figure 8, a curve closer to the origin minimizes the error rate FPR + FNR
and hence maximizes the authentication accuracy. The (different user, different device)
configuration has the highest accuracy. It indicates the profile difference metric is a function
of both user and device uniqueness. This confirms that user and device characteristics
both contribute to the profile divergence computation. The (different user, same device)
configuration has lowest error rate. The (same user, same device) configuration curve

Cryptography 2022, 6, 14 18 of 24

illustrates the ability to differentiate a (same user, same device) profile from interactions
arising from any other configuration. Aggregate accuracy across all configurations is
89.04%, as indicated in Figure 8 by the labeled point on the (same user, same device)
configuration curve. All the other curves also show the point that maximizes accuracy for
that configuration.

6.2.2. Machine Learning

Recall that we perform machine learning with (1) raw (location, pressure) data (2) raw
(location, tokenized pressure) data, and (3) n-grams including the n-gram frequency and
successor vector data.

Raw (location, pressure) input sequences of length 1000 are taken from 13 user–device
configurations. This provides 13,000 total interactions on which to perform classification.
The same machine learning accuracy values are displayed in both Table 4 and Figure 9.
These values are estimated using k-fold cross validation. We use k = 10 folds, splitting
the data into 10 subsets. Each subset is held out in turn while a classifier is trained with
the remaining subsets. Each classification is equally represented in each fold. Accuracy
estimates are derived by predicting the classifications of the data in the held-out subset.
The accuracy estimates for each subset are averaged to produce the values in Table 4.
We are using 10-fold cross validation on a data set of 13,000 interactions. This results in
11,700 interactions in the training set and 1300 held out for classification.

Table 4. Classifier accuracy estimated using k-fold cross validation with varying z-sequence size.

z SVM Linear SVM Radial SVM Poly

Raw z-sequence

1 16.76% 20.33% 14.04%

2 21.01% 25.95% 15.84%

3 23.54% 27.32% 17.54%

9 31.10% 35.27% 28.32%

27 40.01% 44.01% 38.90%

81 50.34% 57.47% 54.95%

243 68.53% 76.14% 75.54%

496 91.96% 86.94% 88.99%

750 88.86% 87.39% 88.66%

1000 99.80% 92.57% 97.40%

Token z-sequence

1 13.85% 14.12% 13.84%

9 21.25% 22.29% 20.32%

Successor Vector

- 2.49% 0.18% 2.25%

Cryptography 2022, 6, 14 19 of 24

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

20
40

60
80

10
0

z

A
cc

ur
ac

y

Machine Learning Accuracy

● SVMLinear
SVMRadial
SVMPoly

Figure 9. Classification accuracy using raw z-sequence feature vectors.

Raw z-sequence, token z-sequence, and successor vector schemes are evaluated for
a Support Vector Machine (SVM) with linear, radial, and polynomial kernels. Token
z-sequence data use TN = 2 as a model parameter. Successor vector data use model
parameter values: n = 1, TN = 2, User Model Size = 3200, and Auth Model Size = 3200.
Note that accuracy increases with increasing z values with significant improvements at
z ≥ 496. The token z-sequence accuracies are worse than that of the raw z-sequence for
comparable z across all classifiers. Hence, we do not consider token z-sequence dependence
on large z values. We experiment with large z values only for raw z-sequence data. Raw
z-sequence accuracies reach 100% at z = 1000. Increasing z beyond this point can yield
minimal further increase in accuracy. Therefore, we do not evaluate larger z values. The
accuracy of token z-sequence and successor vector approaches is, in general, poor, perhaps
because machine learning is unable to distill differentiating features from these data sets.

6.3. Computation Time

An Android program evaluates authentication time on a Nexus 7 tablet. Computation
time increases with Total Model Size according to Equation (4). Figure 10 provides authen-
tication accuracy given Total Model Size. Together they elucidate the trade-off between
Total Model Size and computation time. Computations require 1 second per 3333.33 touch
interactions for our data sets, on average. Accuracy of 80% is achievable in under 2 s of
authentication time, 90% in under 3 s, and 100% in under 4 s. This implies that model
learning is very quick and deployable almost in real time.

milliseconds = (0.3)(Total Model Size) +
1
3

(4)

Cryptography 2022, 6, 14 20 of 24

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total Interactions vs. Authentication Accuracy

Total Model Size

A
ut

he
nt

ic
at

io
n

A
cc

ur
ac

y

Figure 10. Authentication accuracy depends on the number of touchscreen interactions. Total Model
Size is base model size + auth model size.

Machine learning requires time for training and classification. Training time is how
long it takes to train a classifier. There are 11,700 touch interactions in the training set.
Classification time is how long it takes to classify one feature vector. The classification times
given in Table 5 are derived by averaging classification time for a single feature vector over
20 classifications.

Machine learning performs poorly in computation time relative to our divergence
metric. The SVM with a linear kernel requires 2563.369 s for training and 2.132 s for
classification on a desktop to achieve 100% classification accuracy. However, our divergence
metric requires < 4 s to perform both training and classification on a Nexus 7 tablet.
Machine learning is especially infeasible when online training of the biometric model
is desirable to keep up with recent user interactions. Note that there are other machine
learning techniques that will have lower training time than SVM. However, more often
than not, lower training time is traded for lower classification accuracy. Data set complexity
makes organizing raw data into feature sets computationally expensive, and without the
additional features identified by us, classifications are expensive and difficult.

Machine learning classification uses a feature vector. The relative input token ordering
is a robust user characteristic which is difficult to capture using this data representation. In
light of this, the value of our divergence computation is further highlighted. It provides an
approach for a problem without an easy machine-learning-based solution.

Cryptography 2022, 6, 14 21 of 24

Table 5. Classifier training
∣∣classification time with varying z-sequence size. All values are given in

milliseconds (ms).

z SVM Linear (ms) SVM Radial (ms) SVM Poly (ms)

Raw z-sequence

1 24,919 19 92,268 140 72,489 106

2 30,196 22 83,669 116 77,414 120

3 29,622 22 77,080 122 77,823 117

9 52,518 36 88,239 154 116,545 172

27 111,544 76 130,380 221 183,437 280

81 213,256 166 225,028 480 276,101 493

243 395,521 388 439,057 1223 384,258 836

496 371,013 536 769,695 2398 504,918 1228

750 1,841,810 1485 3,159,560 7466 2,404,062 4426

1000 2,563,369 2132 5,053,844 11,471 2,868,653 5083

Token z-sequence

1 27,430 21 102,497 142 74,115 103

9 62,728 38 135,000 212 116,696 177

Successor Vector

- 1954 12 9429 339 7887 201

6.4. Some Observations

Summary observations on the results include the following.

1. Given the simplicity of the profile divergence method and fairly similar accuracy levels
of the profile divergence threshold and machine learning, we recommend the profile
divergence method.

2. We recommend a model size of 2400 tokens. Note that the period of authentication is
elongated for larger model sizes since the authentication system has to wait for that
many tokens to accumulate followed by an authentication step. Larger models may
lead to marginally better accuracy. We believe a size of 2400 tokens provides a good
balance. Assuming an average interaction rate of 100 interactions per minute for a
game-like environment, it will take 24 minutes to collect sufficiently many tokens to
authenticate. This is in contrast to [25], where continuous authentication was per-
formed with each keyboard and mouse interaction. A 24-minute authentication period
is continuous authentication in the context of single-shot authentication models.

3. Raw touch event data have user- and device-level variability for PUF-like charac-
teristics. In order to retain the raw variability, the touch pressure data should be
discretized into small granularity tokens. This increases the model and profile size. A
larger model is needed to observe repeatable user behavior at this granularity. Profile
size increases due to increased alphabet size. This work evaluated 3-step tokenization.
Given that our evaluation of 13 user–device data sets broken down into hundreds
of user–device interaction sets could be differentiated both on user and device axes,
we do believe that some elements of PUF properties have persisted. However, a
demonstration of PUF characteristics is not conclusive.

7. Conclusions

Protecting the authenticated mobile device state requires continuous security measures.
Inauthentic users on an authenticated device should have restricted access. A continuous
biometric mobile device authentication scheme is proposed to achieve this access control.

Cryptography 2022, 6, 14 22 of 24

Soft keyboard interactions provide biometric data. Profiles are n-gram sets that are stored
as a prefix tree. A prefix tree reduces profile size and accelerates computation.

A mobile device environment provides additional challenges. Energy and computation
are limited; minimal security overhead is valuable. Our n-gram and prefix tree data
structures decrease overhead. User convenience is paramount; requiring explicit user action
for authentication sharply degrades the user experience. Continuously authenticating in
the background maximizes convenience for a transparent authentication.

Recent user input interactions are compared against existing profiles. Classification
achieves 100% accuracy in 2132 milliseconds on Nexus 7 tablets.

Future enhancements to this framework could exploit available machine learning
accelerators on modern mobile devices to explore deep-learning-based authentication.
Another interesting direction could be to establish orthogonality of various biometric
features, such as gait, touchscreen pressure, or facial feature set. Do they collectively
enhance the authentication accuracy, either due to disjoint use cases or disjoint feature sets,
or are they extremely correlated?

Author Contributions: Project is overseen by A.T. Manuscript Writing: T.D. and A.T.; Data Collection:
T.D. and I.R.; Approach Evaluation Scripts: T.D. and I.R.; Data Analysis Scripts: T.D.; Markov Chain
Library: T.D.; Android Applications: T.D. and I.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was supported by the Dept. of Homeland Security, Science and Technology
Directorate under Contract # Dl 5PC00158 and by NSF Grant CNS 1441640. Study design, data
collection, data analysis, interpretation of data, and manuscript writing occurred independent of the
funding agency.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EER Equal Error Rate
FNR False Negative Rate
FPR False Positive Rate
PUF Physical Unclonable Function
ROC Receiver Operating Characteristic
SVM Support Vector Machine
UD-PUF User–Device Physical Unclonable Function

References
1. Walker, G. A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp. 2012, 20, 413–440.

[CrossRef]
2. Schaub, F.; Deyhle, R.; Weber, M. Password entry usability and shoulder surfing susceptibility on different smartphone platforms.

In Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, Ulm, Germany, 4–6 December
2012; p. 13.

3. Hafiz, M.D.; Abdullah, A.H.; Ithnin, N.; Mammi, H.K. Towards identifying usability and security features of graphical password
in knowledge based authentication technique. In Proceedings of the 2008 Second Asia International Conference on Modelling &
Simulation (AMS), Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 396–403.

4. Aviv, A.J.; Gibson, K.; Mossop, E.; Blaze, M.; Smith, J.M. Smudge Attacks on Smartphone Touch Screens. WOOT 2010, 10, 1–7.
5. Harbach, M.; von Zezschwitz, E.; Fichtner, A.; De Luca, A.; Smith, M. It’sa hard lock life: A field study of smartphone (un) locking

behavior and risk perception. In Proceedings of the Symposium On Usable Privacy and Security (SOUPS 14), Menlo Park, CA,
USA, 9–11 July 2014; pp. 213–230.

6. de Freitas Pereira, T.; Anjos, A.; De Martino, J.M.; Marcel, S. Can face anti-spoofing countermeasures work in a real world
scenario? In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013; pp. 1–8.

7. Hadid, A. Face biometrics under spoofing attacks: Vulnerabilities, countermeasures, open issues, and research directions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June
2014; pp. 113–118.

http://doi.org/10.1002/jsid.100

Cryptography 2022, 6, 14 23 of 24

8. McCool, C.; Marcel, S. Parts-based face verification using local frequency bands. In Advances in Biometrics; Springer: Berlin/Hei-
delberg, Germany, 2009; pp. 259–268.

9. Cao, K.; Jain, A.K. Hacking Mobile Phones Using 2D Printed Fingerprints; Technical Report; Computer Science and Engineering,
MSU-CSE-16-2; Michigan State University: East Lansing, MI, USA, 2016.

10. Chaos Computer Club. Instructions Detailing How to Create Fake Finger Prints Capable of Passing Finger Print Scanner
Authentication, October 2004, Chaos Computer Club. Available online: http://dasalte.ccc.de/biometrie/fingerabdruck_kopieren.
en (accessed on 9 April 2016).

11. Rosenfeld, K.; Gavas, E.; Karri, R. Sensor physical unclonable functions. In Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2010; pp. 112–117.

12. Scheel, R.; Tyagi, A. Characterizing Composite User-Device Touchscreen Physical Unclonable Functions (PUFs) for Mobile Device
Authentication. In Proceedings of the ACM International Workshop in Trusted Embedded Devices, TRUSTED 15, Denver, CO,
USA, 16 October 2015.

13. (NIAP), N.I.A.P. Protection Profile for Mobile Device Fundamentals, v3.1, 2017-04-05. Available online: https://www.niap-ccevs.
org/MMO/PP/-417-/ (accessed on 12 June 2018).

14. Ratha, N.K.; Connell, J.H.; Bolle, R.M. Enhancing Security and Privacy in Biometrics-based Authentication Systems. IBM Syst. J.
2001, 40, 614–634. [CrossRef]

15. Syed, Z.; Banerjee, S.; Cukic, B. Leveraging Variations in Event Sequences in Keystroke-Dynamics Authentication Systems. In
Proceedings of the Ninth IEEE International Symposium on High-Assurance Systems Engineering (HASE’05), Miami Beach, FL,
USA, 9–11 January 2014; pp. 9–16. [CrossRef]

16. Liu, J.; Zhong, L.; Wickramasuriya, J.; Vasudevan, V. uWave: Accelerometer-based Personalized Gesture Recognition and Its
Applications. Pervasive Mob. Comput. 2009, 5, 657–675. [CrossRef]

17. Aysu, A.; Ghalaty, N.F.; Franklin, Z.; Yali, M.P.; Schaumont, P. Digital Fingerprints for Low-cost Platforms Using MEMS Sensors.
In Proceedings of the Workshop on Embedded Systems Security; WESS’13; ACM: New York, NY, USA, 2013; pp. 1–6. [CrossRef]

18. Choi, S.; Youn, I.H.; LeMay, R.; Burns, S.; Youn, J.H. Biometric gait recognition based on wireless acceleration sensor using k-
nearest neighbor classification. In Proceedings of the International Conference on Computing, Networking and Communications
(ICNC), Honolulu, HI, USA, 3–6 February 2014; pp. 1091–1095. [CrossRef]

19. Feng, T.; Yang, J.; Yan, Z.; Tapia, E.M.; Shi, W. Tips: Context-aware implicit user identification using touch screen in uncontrolled
environments. In Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, Santa Barbara, CA, USA,
26–27 February 2014; p. 9.

20. Feng, T.; Liu, Z.; Kwon, K.A.; Shi, W.; Carbunar, B.; Jiang, Y.; Nguyen, N. Continuous mobile authentication using touchscreen
gestures. In Proceedings of the IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15
November 2012; pp. 451–456. [CrossRef]

21. Sae-Bae, N.; Memon, N.; Isbister, K.; Ahmed, K. Multitouch Gesture-Based Authentication. Inf. Forensics Secur. IEEE Trans. 2014,
9, 568–582. [CrossRef]

22. Dey, S.; Roy, N.; Xu, W.; Nelakuditi, S. ACM HotMobile 2013 Poster: Leveraging Imperfections of Sensors for Fingerprinting
Smartphones. SIGMOBILE Mob. Comput. Commun. Rev. 2013, 17, 21–22. [CrossRef]

23. Banerjee, S.P.; Woodard, D.L. Biometric authentication and identification using keystroke dynamics: A survey. J. Pattern Recognit.
Res. 2012, 7, 116–139. [CrossRef]

24. Patel, V.M.; Chellappa, R.; Chandra, D.; Barbello, B. Continuous user authentication on mobile devices: Recent progress and
remaining challenges. IEEE Signal Process. Mag. 2016, 33, 49–61. [CrossRef]

25. Mondal, S.; Bours, P. A study on continuous authentication using a combination of keystroke and mouse biometrics. Neurocom-
puting 2017, 230, 1–22. [CrossRef]

26. Zhang, J.; Wang, X.; Wu, P.; Zhu, J. SenSec: Mobile security through passive sensing. In Proceedings of the International
Conference on Computing, Networking and Communications (ICNC), San Diego, CA, USA, 28–31 January 2013; pp. 1128–1133.
[CrossRef]

27. Frank, M.; Biedert, R.; Ma, E.D.; Martinovic, I.; Song, D. Touchalytics: On the applicability of touchscreen input as a behavioral
biometric for continuous authentication. Inf. Forensics Secur. IEEE Trans. 2013, 8, 136–148. [CrossRef]

28. Xu, H.; Zhou, Y.; Lyu, M.R. Towards continuous and passive authentication via touch biometrics: An experimental study on
smartphones. Symp. Usable Priv. Secur. SOUPS 2014, 14, 187–198.

29. Bojinov, H.; Michalevsky, Y.; Nakibly, G.; Boneh, D. Mobile Device Identification via Sensor Fingerprinting. arXiv 2014,
arXiv:cs.CR/1408.1416.

30. Zhang, J.; Beresford, A.R.; Sheret, I. SensorID: Sensor Calibration Fingerprinting for Smartphones. In Proceedings of the IEEE
Symposium on Security and Privacy, San Francisco, CA, USA, 19–23 May 2019; pp. 638–655. [CrossRef]

31. Ouadjer, Y.; Adnane, M.; Bouadjenek, N. Feature Importance Evaluation of Smartphone Touch Gestures for Biometric Authentica-
tion. In Proceedings of the 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being
(IHSH), Boumerdes, Algeria, 9–10 February 2021; pp. 103–107. [CrossRef]

32. Ackerson, J.M.; Dave, R.; Seliya, N. Applications of Recurrent Neural Network for Biometric Authentication and Anomaly
Detection. Information 2021, 12, 272. [CrossRef]

http://dasalte.ccc.de/biometrie/fingerabdruck_kopieren.en
http://dasalte.ccc.de/biometrie/fingerabdruck_kopieren.en
https://www.niap-ccevs.org/MMO/PP/-417-/
https://www.niap-ccevs.org/MMO/PP/-417-/
http://dx.doi.org/10.1147/sj.403.0614
http://dx.doi.org/10.1109/HASE.2014.11
http://dx.doi.org/10.1016/j.pmcj.2009.07.007
http://dx.doi.org/10.1145/2527317.2527319
http://dx.doi.org/10.1109/ICCNC.2014.6785491
http://dx.doi.org/10.1109/THS.2012.6459891
http://dx.doi.org/10.1109/TIFS.2014.2302582
http://dx.doi.org/10.1145/2542095.2542107
http://dx.doi.org/10.13176/11.427
http://dx.doi.org/10.1109/MSP.2016.2555335
http://dx.doi.org/10.1016/j.neucom.2016.11.031
http://dx.doi.org/10.1109/ICCNC.2013.6504251
http://dx.doi.org/10.1109/TIFS.2012.2225048
http://dx.doi.org/10.1109/SP.2019.00072
http://dx.doi.org/10.1109/IHSH51661.2021.9378750
http://dx.doi.org/10.3390/info12070272

Cryptography 2022, 6, 14 24 of 24

33. Ryu, R.; Yeom, S.; Kim, S.H.; Herbert, D. Continuous Multimodal Biometric Authentication Schemes: A Systematic Review. IEEE
Access 2021, 9, 34541–34557. [CrossRef]

34. Tran, Q.; Turnbull, B.; Wang, M.; Hu, J. A Privacy-Preserving Biometric Authentication System With Binary Classification in a
Zero Knowledge Proof Protocol. IEEE Open J. Comput. Soc. 2022, 3, 1–10. [CrossRef]

35. Ainsworth, J.; Juola, P. Who Wrote This?: Modern Forensic Authorship Analysis as a Model for Valid Forensic Science. Wash.
Univ. Law Rev. 2019, 96, 1159.

36. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75 [CrossRef]

37. Kirkpatrick, D.D. Who Is Behind QAnon? Linguistic Detectives Find Fingerprints. The New York Times. Available online:
https://www.nytimes.com/2022/02/19/technology/qanon-messages-authors.html (accessed on 20 March 2022).

38. Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [CrossRef]
39. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3061589
http://dx.doi.org/10.1109/OJCS.2021.3138332
http://dx.doi.org/10.1109/MCI.2018.2840738
https://www.nytimes.com/2022/02/19/technology/qanon-messages-authors.html
http://dx.doi.org/10.1080/00031305.1994.10476030
http://dx.doi.org/10.1214/aoms/1177729694

	Introduction
	User Profiles
	Contributions
	Paper Organization

	Related Work
	Big Picture
	n-Grams and Prefix Trees
	Implementation
	Data
	Profile Generation
	Input Tokenization
	n-Grams Are Token Sequences
	Next Token Probabilities

	Comparing Profiles—Divergence
	Authentication Model Parameters
	Comparing Profiles—Machine Learning
	Android Incorporation

	Results
	Parameter Tuning
	Authentication
	ROC: FPR, FNR, and Authentication Threshold Trade-Offs
	Machine Learning

	Computation Time
	Some Observations

	Conclusions
	References

