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Abstract: In recent years, several new notions of security have begun receiving consideration for
public-key cryptosystems, beyond the standard of security against adaptive chosen ciphertext attack
(CCA2). Among these are security against randomness reset attacks, in which the randomness used
in encryption is forcibly set to some previous value, and against constant secret-key leakage attacks,
wherein the constant factor of a secret key’s bits is leaked. In terms of formal security definitions,
cast as attack games between a challenger and an adversary, a joint combination of these attacks
means that the adversary has access to additional encryption queries under a randomness of his
own choosing along with secret-key leakage queries. This implies that both the encryption and
decryption processes of a cryptosystem are being tampered under this security notion. In this paper,
we attempt to address this problem of a joint combination of randomness and secret-key leakage
attacks through two cryptosystems that incorporate hash proof system and randomness extractor
primitives. The first cryptosystem relies on the random oracle model and is secure against a class of
adversaries, called non-reversing adversaries. We remove the random oracle oracle assumption and
the non-reversing adversary requirement in our second cryptosystem, which is a standard model
that relies on a proposed primitive called LM lossy functions. These functions allow up to M lossy
branches in the collection to substantially lose information, allowing the cryptosystem to use this
loss of information for several encryption and challenge queries. For each cryptosystem, we present
detailed security proofs using the game-hopping procedure. In addition, we present a concrete
instantation of LM lossy functions in the end of the paper—which relies on the DDH assumption.

Keywords: cryptography; public-key encryption; chosen ciphertext attack; randomness attack; secret-
key leakage attack

1. Introduction

Adaptive Chosen ciphertext attack (CCA2) secure cryptosystems. Since the invention of the
Diffie–Helman key exchange and the RSA primitive, public-key cryptography has become
one of the most well-studied areas in cryptography research [1]. Currently, the security no-
tion required of any public-key cryptosystem is security against adaptive chosen ciphertext
attacks [2,3], or CCA2 security. Security against adaptive chosen ciphertext attacks guaran-
tees that ciphertexts are not malleable, which implies that ciphertexts cannot be modified
in transit by some efficient adversarial algorithm. Initially, encryption schemes provided
CCA2 security under the random oracle model [4]. Random oracle-based models are
heuristic in approach and are randomness-recovering, i.e., they allow a scheme to recover
its randomness during an encryption. However, they rely on very strong assumptions, for
example, that some functions, i.e., hash functions, are indistinguishable from truly random
functions. A more practical CCA2-secure public-key encryption scheme is presented in [3],
which relies on the decisional Diffie–Helman (DDH) assumption. The scheme of [3] uses
hash-proof systems, which involve projective hash functions that perform function dele-
gation through auxiliary information. Without this auxiliary information, however, the
function’s behaviour is close to uniform and it is hard to distinguish as non-random. The
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design of several practical public-key encryption schemes essentially use this hash proof
system by [5] or some variants of it [6,7].

Following the hash proof system of [3], several other CCA2 secure cryptosystems
have been proposed. Among these is the CCA2 secure cryptosystem of [8] that relies on
a lossy function primitive. The lossy function primitive is a collection of functions, such
that some functions in the collection, i.e., the lossy functions, substantially lose significant
information from the input. It is difficult, however, to determine if a function is lossy or
not. By exploiting the loss of information in the function, along with the computational
difficulty in determining the type of a function, several CCA2 secure cryptosystems can
be developed under the standard model, thereby presenting an alternative to the practical
CCA2 cryptosystem of [3].

Yet, while more practical and efficient CCA2 cryptosystems are being developed,
recently, a number of cryptography papers have called into question the security guarantees
provided by CCA2 security [9–14], due to newer types of attacks. Among the common
categories of these newer attacks are (i) randomness attacks and (ii) secret-key leakage
attacks. Both of these attack categories have been shown to be strong enough to trivially
break CCA2 security. These attacks are briefly described as follows.

Randomness Attacks. The first category, i.e., randomness attacks, considers the case
where the randomness used in cryptosystems fails to be truly random. These attacks tamper
with the encryption process of a cryptosystem. Randomness failures can be due to a faulty,
pseudorandom generator design and implementation [15], or due to simple attacks, such as
virtual machine resets [16]. In a virtual machine reset—called randomness reset attack—a
computer is forced to restart to some previous state stored in memory and random number
variables are reset to some previous value. This applies, especially, to virtual machine
systems that use virtual machine monitors (or hypervisors) to manage several operating
systems. Given the increased use of cloud computing, such as with Amazon’s servers,
several systems have become reliant on virtual machines. A feature of a virtual machine
monitor is the taking of snapshots [16] of the system’s state, where the snapshot includes
all items of the system in memory, at a certain point in time, for backup and fault tolerance.
Included in this snapshot are the random numbers used by the operating system for its
encryptions. A hacker, however, may force a virtual machine to be reset to a prior snapshot
and re-use the randomness therefrom. For instance, a hacker may perform a denial-of-
service attack against a virtual machine, whereupon the virtual machine is forced to be reset
to some previous state. In particular [17] point out that snapshots of virtual machines may
impair security due to the reuse of security-critical states. Ref. [18] exhibits virtual machine
reset vulnerabilities in TLS clients and servers, wherein the attacker takes advantage of
snapshots to expose a server’s DSA signing key. Given these actual examples, ref. [16]
considered the effect of virtual machine resets on existing CCA2 secure cryptosystems. The
results were not positive, as [16] showed a scenario wherein an adversary can trivially
break CCA2 security by exploiting such vulnerabilities.

We demonstrate such vulnerabilities on a simpler cryptosystem in Section 3, wherein
we present a concrete example of a randomness reset attack in the context of the ElGamal
cryptosystem, along with the effect of a randomness reset attack on the formal definition
of CCA2 security as done in [16]. Briefly, CCA2 security is formally defined in terms of
an attack game between a challenger and an adversary [19], where the adversary may
perform challenge queries and decryption queries. The adversary’s task is to correctly
guess the underlying message of a challenge ciphertext, given that the challenge ciphertext
cannot serve as input to a decryption query. An attack game with a randomness reset
attack will incorporate additional encryption queries, in which random numbers can be
set, by the adversary, to some previous value. These may present difficulties to some
existing cryptosystems, since, unlike challenge ciphertexts, ciphertexts from encryption
queries may validly serve as input for decryption queries. In fact, randomness reset attacks
are so strong that [11,16,20] have been forced to rule-out situations wherein adversaries
can perform arbitrary queries. Instead, adversaries are assumed to satisfy the equality



Cryptography 2022, 6, 2 3 of 29

pattern, respecting constraint. The cryptosystem of [16] provides a generic transformation
to render a CCA2 public-key cryptosystem secure against randomness reset attacks. The
transformation involves feeding a random number and an associated plaintext message
to a pseudorandom function. If the joint entropy of the random number and the plaintext
message is high enough, the security properties of the pseudorandom function can fix any
faulty randomness in the cryptosystem. In Section 4, we present a list of schemes that
consider various other types of randomness reset attacks.

Secret Key Leakage Attacks. The second category, i.e., secret-key leakage attacks, consid-
ers the case where an adversary learns bits of the secret key [9]. These attacks tamper with
the decryption process of a cryptosystem. Leakage of secret keys may, perhaps, be due to
some devious means, such as side-channel attacks. For instance [21] have reported that
practical implementations of cryptosystems in software are often vulnerable to side-channel
attacks. For example, the power traces of 8000 encryptions are sufficient to extract the secret
key of ASIC AES, which is substantially faster than a brute-force search for the secret key.
It follows that, given enough bits of the secret key, a simple exhaustive search over the set
of candidate keys can break any cryptosystem’s security. A formal definition of this attack
is first considered in [9]. Several articles have provided cryptosystems that are provably
secure against secret-key leakage attacks, on top of CCA2 security [12,13]. In particular, the
scheme of [13] provides a cryptosystem that is secure against a constant factor of secret key
bits leaked to the adversary, where the factor can be as high as 1/2− o(1) bits of the secret
key. The scheme of [13] is composed of an ensemble of various cryptographic primitives,
such hash proof systems [5], lossy functions [8], and randomness extractors [22,23]. In par-
ticular, ref. [13] proposed the one-time lossy filter, which is a special type of lossy function
that does not implement a trapdoor. Unlike the cryptosystem of [3], the scheme of [13] is
randomness-recovering and can tolerate a higher degree of secret-key leakage. The paper
of [12] showed that the cryptosystem of [13] is also secure against arbitrary functions of
secret-key leakage. In Section 3, we illustrate how secret-key leakage attacks would affect
the formal definition of CCA2 security (expressed as an attack game between a challenger
and an adversary). Briefly, secret-key leakage attacks would provide additional leakage
queries for the adversary, where he gets to learn a constant factor of bits of the secret key. In
Section 4, we present a list of various other types of secret-key leakage attacks along with
the primitives that they use.

Our contributions. As noted in [11], given these new types of attacks, an interesting
problem is the construction of a public-key cryptosystem that is both resistant to ran-
domness attacks and secret-key leakage attacks. Attacks that jointly involve both types
effectively tamper with both the encryption and decryption processes of a cryptosystem,
and the cryptosystem has to deal with attacks from both sides. On the one hand, in a
randomness attack, the randomness involved in encryption is tampered to some value
dictated by the adversary. On the other hand, in a secret-key leakage attack, the adversary
learns information about the secret key involved in decryption. In terms of attack games
between a challenger and an adversary, this implies that the adversary has access to addi-
tional encryption queries and secret-key leakage queries, aside from the usual decryption
and challenge queries in a CCA2 attack game. To address these challenges, we propose
two cryptosystems; the first is a random oracle model, and the second is a standard model
that relies on a proposed primitive, called LM lossy functions. A collection of LM lossy
functions provides multiple lossy branches and is simple to construct from existing ABO
lossy functions [8]. Having multiple lossy branches is crucial for our cryptosystem, given
that the adversary may query multiple encryption and challenge queries, and, unlike
challenge ciphertexts, encrypted ciphertexts can validly serve as input for decryption. By
having several lossy branches, the cryptosystem is able to exploit the loss of information
given by the lossy branch even under multiple encryption and challenge queries. We
can say that the LM lossy function forms the core primitive of our second cryptosystem
since, without this primitive, the hash proof systems would be insufficient for security (at
least in the context of constructions). The presentation of our cryptosystems follows [2,10],
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which begins from random oracle models and is followed by standard models. This is
because, while the random oracle model from [4] is useful for simplifying security proofs, it
relies on the strong assumption that some hash functions are truly random, which may not
necessarily be true, in practice [2]. For this reason, standard models usually follow initial
random models, albeit with some added complexity in their schemes. Both of our pro-
posed cryptosystems apply several primitives, such as hash proof systems, pseudorandom
functions, and randomness extractors.

To put our contributions into context, the problem mentioned in [11] considers general
classes of related randomness and related secret-key leakage attacks. For this paper, how-
ever, we approach the problem under a more limited class of randomness reset attacks [16],
in which random numbers are reset to previous values, and under constant-bit secret-key
leakage attacks [13], where a constant number of bits of the secret key are leaked. At the
end of the paper, we present concrete instances of LM collections that rely on the decisional
Diffie–Helman assumption, and on ElGamal matrix encryptions. We present security proofs
for our proposed cryptosystems using the well-known game-hopping proving scheme, as
described in [2,19].

2. Preliminaries
2.1. Notations

Given the set of natural numbers N, let [a] denote the set {1, 2, . . . , a} for any a ∈ N.
Let κ ∈ N denote a security parameter following standard cryptography literature [2]. A
function f (κ) is negligible in κ if f (κ) = o(κ−c) for every fixed constant c. A function f (κ) is
superpolynomial in κ if 1/ f (κ) is negligible. Throughout the paper, the notation x ← X refers
to x being randomly drawn from the probability distribution of a random variable, X. Let
A be any probabilistic polynomial-time algorithm. The advantage of A is defined to be its
capacity to distinguish between the probability distributions of two collections of random
variables. For instance, let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be two collections of random
variables indexed by κ. The advantage of A, in this instance, is |Pr (A(1κ , x) = 1) −
Pr (A(1κ , y) = 1)| for x ← Xκ and y← Yκ . Two collections of random variables X and Y
are computationally indistinguishable if the advantage of any polynomial-time algorithm is
negligible in κ. The statistical distance between two random variables X and Y with the
same domain D is denoted as ∆(X, Y) = (1/2)∑z∈D |Pr(X = z)− Pr(Y = z)| [22]. The
min-entropy of X is denoted as Γ∞(X) = − log(maxz Pr(X = z)). If X is conditioned on Y,
the average min-entropy of X conditioned on Y is Γ̃∞(X|Y) = − log(Ey←Y2−Γ∞(X|Y=y)).

2.2. Hashing and Randomness Extractors

Given the security parameter κ ∈ N, let l(κ) and l′(κ) be values of polynomials in κ.
A hash function maps inputs of length l(κ) to outputs of length l′(κ), where l′(κ) < l(κ).
A family of hash functions H = {hi : X → Y}i∈N with domain X and range Y is pairwise
independent if, for every distinct pair x, x′ ← X and y, y′ ← Y, the probability that hi(x) = y
and hi(x′) = y′ is equal to 1/|Y|2 for any hi ∈ H. On the other hand, if, for every
distinct pair x, x′ ← X, we have Prhi←H(hi(x) = hi(x′)) = 1/|Y| for any hi ∈ H, the
familyH is a universal family of hash functions, which is a strictly weaker property than
pairwise independence [13]. A family of hash functions is collision resistant if no polynomial
time algorithm can compute a distinct pair x, x′ ← X such that hi(x) = hi(x′) for any
hi ∈ H. The following useful result regarding average min-entropy will be used in several
security proofs.

Lemma 1 ([24]). Given the random variables X, Y, and Z, suppose that Y has 2r possible values;
then, Γ∞(X|Y, Z) ≥ Γ∞(X|Z)− r

Definition 1. Randomness Extractor. Let X and Z be random variables such that X ∈ {0, 1}a and
Z ∈ {0, 1}b with a, b ∈ N and b < a. Let Y any random variable such that Γ̃∞(X|Y) ≥ ν for some
ν ≥ 0 ∈ R. Let R be any random variable. An efficiently computable function, E : X× R→ Z is
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an average case (ν, ε) strong extractor if ∆((Y, r, E(X, r)), (Y, r, Uz)) ≤ ε, where r ← R, Uz is
the uniform distribution over Z, and ε > 0 ∈ R.

Concrete instantiations of strong randomness extractors involve a family of universal
hash functions. This leads to the following lemma.

Lemma 2 ([25]). A universal family of hash functionsH can be used as average-case (Γ̃∞(X|Y), ε)
strong extractors whenever Γ̃∞(X|Y) ≥ log |Z|+ 2 log(1/ε).

2.3. Public Key Cryptosystems and CCA2 Security

A public-key cryptosystem consists of three probabilistic algorithms, (G, E ,D), de-
scribed as follows.

1. G(1κ) is an initialization algorithm that outputs a public/secret key pair (pk, sk) given
security parameter κ ∈ N.

2. E(pk, m; r) is an encryption algorithm that outputs a ciphertext, c, given pk, a plaintext
message, m, and a sampled random number, r, during computation.

3. D(sk, c) is a decryption algorithm that outputs m such that m = D(sk, E(pk, m; r)).

We now describe security against adaptive chosen ciphertext attacks or CCA2 security
using attack games, following [4].

Security Notion of Adaptive Chosen Ciphertext Attack (CCA2 Security)

This security notion is defined in terms of an attack game between a challenger and
an adversary, A, in which both are polynomial-time algorithms. On input κ, the challenger
draws a ∈ {0, 1} then generates the public/secret key pair (pk, sk)← G(1κ). It forwards pk
to A. A can perform decryption queries by providing a ciphertext, c, to the challenger, and
the challenger returns D(sk, c). A performs a challenge query by giving a message pair
(m0, m1) to the challenger, and the challenger returns the challenge ciphertext, c∗ = E(pk, ma).
To prevent trivial wins, any ciphertext input for decryption should not equal c∗. The game
ends when A outputs a guess a′ ∈ {0, 1}, who wins the game if a = a′. The advantage of A
is |Pr (a′ = a)− 1/2|. If the advantage of any polynomial-time adversary for this game is
negligible in κ, the public-key cryptosystem is CCA2 secure.

2.4. Hash Proof Systems

A hash proof system is an encapsulation system that uses a projective hash [5]. The
domain of a projective hash consists of two disjoint sets, the valid set and the invalid set.
Each projective hash function is associated with a projection function whose role is to provide
auxiliary information. Without this auxiliary information, it is computationally difficult
to evaluate the projective hash over the valid set in its domain, and its behaviour is close
to uniform. In more detail, let ΛskH denote a projective hash with ciphertext domain C.
Let V ⊆ C denote the set of valid ciphertexts and C \V denote the set of invalid ciphertexts.
Let K denote a set of encapsulated ciphertexts. A hash proof system, H, consists of three
polynomial time algorithms (Hg, Hpub, Hpriv) that are as follows.

1. Hg(1κ) is a parameter generation algorithm that generates a secret key skH and
projective hash ΛskH : C → K, with the associated projection function µ. It computes
public key pkH = µ(skH), representing auxiliary information.

2. Hpub(pkH , cH , ω) is a public evaluation algorithm that, given pkH , ciphertext cH ∈ C,
and witness, ω, of the fact that cH ∈ V, outputs k ∈ K.

3. Hpriv(skH , c) is a private evaluation algorithm that, given skH , ciphertext cH ∈ C,
outputs k ∈ K, without requiring witness, ω, of the fact that cH ∈ V.

A key property required of H is the subset membership hardness property, whereby V is
computationally difficult to distinguish from C \V. Formally, letA be any polynomial-time
algorithm. The advantage ofAwith respect to the subset membership problem over {C, V}
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is defined as |Pr (A(c0) = 1|c0 ← V) − Pr (A(c1) = 1|c1 ← C \V)|. If this advantage is
negligible for any A, the subset membership problem over {C, V} is computationally hard.

Definition 2. Given ε ≥ 0, a projective hash function, ΛskH , with corresponding projection
function, µ, is ε-universal if, for all pkH , c ∈ C \V, we have Pr (ΛskH (c) = k|(pk, c)) ≤ ε, where
the probability is computed over all skH and pkH = µ(skH).

The following lemma and definition will be used in the security proofs.

Lemma 3 ([13]). Let ΛskH be an ε-universal projective hash function with the associated projection
function, µ. For all pkH and invalid ciphertexts cH ∈ C \V, we have Γ∞(ΛskH (cH)|(pkH , cH)) ≥
log(1/ε), where skH is a randomly drawn secret key, and pkH = µ(skH).

Definition 3. A hash proof system, H, is ε-universal if the underlying projective hash function is
ε-universal and the underlying subset membership problem is computationally hard.

2.5. Lossy Functions
2.5.1. Lossy Functions

A lossy function is a function that loses information from its input. A collection of lossy
functions (lossy collection) consists of a set of injective functions, along with a set of lossy
functions [8]. Let n(κ) and p(κ) be values of polynomials in κ ∈ N. Given κ, the input
length of any function in the collection is n(κ), and the size of the domain is 2n(κ). A lossy
function in the collection has an image size of, at most, 2log p(κ) = p(κ), where p(κ) < 2n(κ).
For convenience, the dependence of n and p on κ is omitted hereafter. The functions in
the collection are indexed by the set S. A collection of (n, p) lossy functions is given by the
polynomial-time algorithms (Lg, Le):

1. Lg(1κ , i) for i ∈ {0, 1} is a function index sampling algorithm. If i = 1, it outputs
s = Lg(1κ , 1) ∈ S, where s is the index of an injective function. If i = 0, its output is
s = Lg(1κ , 0) ∈ S, where s is the index of a lossy function.

2. Le(s, k) is an evaluation algorithm that, on input s ∈ S and k ∈ {0, 1}n, outputs an
element in {0, 1}n. If s refers to an injective function, Le is injective. If s refers to a
lossy function, the image size of Le is, at most, p.

Definition 4. Required properties of a collection of lossy functions: (i) the index of an injective or
lossy function can be efficiently sampled, (ii) the distribution of Lg(1κ , 0) is computationally hard to
distinguish from the distribution of Lg(1κ , 1).

2.5.2. ABO Lossy Functions

A collection of all-but-one (ABO) lossy functions (ABO collection) consists of functions
that are each equipped with a set of branches [8]. One branch corresponds to a lossy branch,
while the rest are injective branches. Let B = {Bκ}κ∈N denote the collection of branches
indexed by κ. Given κ, define B := Bκ with lossy branch b◦ ∈ B. The functions in the ABO
collection are indexed by the set S. A (n, p) collection of ABO lossy functions is given by
polynomial-time algorithms (Lgabo , Leabo ), which are as follows.

1. Lgabo (1κ , b◦) is a function index sampling algorithm that, given lossy branch b◦ ∈ B,
outputs function index s = Lgabo (1κ , b◦) ∈ S.

2. Leabo (s, b, k) is an evaluation algorithm that, on input s ∈ S, branch b ∈ B and
k ∈ {0, 1}n, outputs an element in {0, 1}n. If b = b◦, its image has size at most
p. Otherwise, it is injective.

Definition 5. Required properties of a collection of ABO lossy functions: (i) given κ, a lossy
branch b◦ ∈ B can be efficiently sampled; (ii) Lgabo can efficiently sample s given b◦; (iii) it is
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computationally difficult to distinguish the distributions of Lgabo (1κ , b◦0) from Lgabo (1κ , b◦1) for any
b◦0 6= b◦1 ; and (iv) given s, it is computationally difficult to determine b◦.

2.5.3. LM Lossy Functions

A collection of LM lossy functions (or LM collection for short) generalizes the ABO
collection. Each function in the LM collection is equipped with a set of branches, but there
are several possible lossy branches. LM collections are similar to ABN lossy functions in [26]
and ABM lossy functions in [27]. However, they are simpler and can be constructed
from a set of ABO collections using Cartesian products. Let B = {Bκ}κ∈N denote the
collection of branches indexed by κ. Define B := Bκ , with lossy branch set B◦ ⊆ B of size
M = |B◦| and with elements b◦ ∈ B◦. Define q to be an ordered tuple that corresponds to
B◦, i.e., q = (b◦1 , b◦2 , . . . , b◦M) and b◦i ∈ B◦ for i ∈ [M]. The functions in the LM collection are
indexed by the set S. A (n, p) collection of LM lossy functions is given by the polynomial-
time algorithms (LgM , LeM ), which are as follows.

1. LgM (1κ , q) is a function index sampling algorithm that takes as input q corresponding
to B◦ and outputs s ∈ S.

2. LeM (s, b, k) is an evaluation algorithm that, on input s ∈ S, branch b ∈ B, and
k ∈ {0, 1}n, outputs an element in {0, 1}nM. If b ∈ B◦, the image size is at most
2n(M−1)+log (p).

Definition 6. Required properties of a collection of LM lossy functions: (i) given κ, a lossy branch
set B◦ ⊆ B can be efficiently sampled; (ii) LgM can efficiently sample s, given q corresponding to B◦;
(iii) it is computationally difficult to distinguish the distributions of LgM (1κ , q0) from Lgabo (1κ , q1)
for q0 6= q1; and (iv) given s, it is computationally difficult to generate an element of B◦.

2.6. Pseudorandom Functions

A pseudorandom function P : R×M → Y, where R is a key space and M is an input
data block, is a deterministic algorithm that behaves like a truly random function [2].

Security Notion of a Pseudorandom Function

The security of a pseudorandom function, P, is defined in terms of an attack game
between a challenger and an adversary. Given κ, at the start of the game the challenger
draws a ∈ {0, 1} and selects a random function, f , from M to Y. The adversary submits
a sequence of queries to the challenger, where each query consists of an element m ∈ M.
If a = 0, the challenger draws r ← R and submits P(r, m) to the adversary. If a = 1, the
challenger submits f (m) to the adversary. The game ends once the adversary submits a
guess a′ ∈ {0, 1}who wins if a′ = b. The advantage of the adversary in this game is defined
as |Pr(a′ = a)− 1/2|. The pseudorandom function, P, is a secure PRF if the advantage of
any polynomial time adversary in this game is negligible in κ.

2.7. Strongly Unforgeable One-Time Signatures

A strongly unforgeable one-time signature scheme has the strong one-time unforgeability
property [8] and is given by the algorithms below.

Key Generation. Fg(1κ). On input κ, Fg outputs the verification/signing key pair (vkσ, skσ).

Signing. Fs(skσ, x): given skσ and a plaintext x, outputs a signature σ.

Verification. Fv(vkσ, x, σ): given vkσ, x, and σ, it outputs 0 if σ 6= Fs(skσ, x) and 1 otherwise.

Security Notion of a Strongly Unforgeable One-Time Signature Scheme

The security of a strongly unforgeable one-time signature scheme is defined in terms
of an attack game consisting of a challenger and an adversary, A. Given κ, at the start of
the game, the challenger generates (vkσ, skσ) and gives vkσ to adversary A. A queries a
plaintext message, x, to the challenger and the challenger returns σ← Fs(skσ, x). A wins
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the game if it outputs a distinct message signature pair (x′, σ′) such that Fv(vkσ, x′, σ′) = 1.
A signature scheme is strongly unforgeable one-time secure if no probabilistic polynomial time
adversary can win the attack game described with non-negligible probability.

3. Security Notions

For illustration, we first describe randomness reset attacks and secret-key leakage
attacks in the context of the ElGamal public-key cryptosystem. Recall that given a group,
G, of prime order p, with generator g, the ElGamal cryptosystem draws a secret key,
sk = z← Zp, and defines the public key as pk = h = gz. A message, m ∈ Zp, is encrypted
as c = (gr, hrgm) for a randomly chosen r ← Zp.

Randomness Reset Attack Example. In a randomness reset attack [16], an adversary
can force the cryptosystem to re-use a previous random number. In terms of the ElGamal
cryptosystem above, suppose that Alice draws a secret key, sk = z, and gives the public key,
pk = h = gz, to Bob. Bob now encrypts a message, m, by drawing a random number, r0, and
sends the ciphertext c0 = (gr0 , hr0 gm) to Alice. In a normal setting, without randomness
reset attacks, suppose that Bob wants to send another message, ma ∈ {m0, m1}, for m 6=
m0 6= m1, to Alice. To do this in the normal setting Bob draws a fresh random number,
r1, and sends the new ciphertext c′1 = (gr1 , hr1 gma) to Alice. Given that c′1 and c0 involve
different random numbers, they are computationally indistinguishable for any efficient
adversary. In a setting with randomness reset attacks, however, an adversary forces Bob
to re-use r0 in encrypting m, i.e., c1 = (gr0 , hr0 gm). This arbitrarily breaks the security
of the ElGamal cryptosystem. To see this, suppose that some adversary obtained c0 and
c1, and let the adversary know, as well, m, m0, and m1. The adversary can compute
c0/c1 = hr0 gm/hr0 gm1 = gm−ma . It follows that if ma = m0, we have c0/c1 = gm−m0 , but if
ma = m1, we have c0/c1 = gm−m1 . The adversary can compute gm−m0 and gm−m1 on its
own, given that it knows g, m0, and m1. It follows that, with randomness reset attacks, the
ElGamal cryptosystem is not even semantically secure. Relating this scenario to a CCA2
attack game between a challenger and an adversary, a randomness reset attack allows the
adversary to perform encryption queries apart from challenge queries. In the example
above, the adversary can ask the challenger to encrypt m (encryption query) followed by
the encryption of ma ∈ {m0, m1}. The adversary can also force the challenger to re-use a
previous random number in both encryption and challenge queries. For more details on
the power of randomness attacks, in [16], it has been shown that randomness reset attacks
may break arbitrary CCA2 cryptosystems that are more complicated than the ElGamal
crypstosystem if no additional primitives are applied to secure the randomness.

Constant secret-key leakage attack example. In a secret-key leakage attack, the ad-
versary can obtain bits of the secret key. The secret-key leakage attack in [13] considers the
leakage of a constant factor of bits of the secret key, where it should be a percentage of the
secret key’s length. The percentage for any public-key cryptosystem should obviously not
equal one. Otherwise, the entire secret key is leaked. In terms of the ElGamal cryptosystem,
this implies that sk = z is leaked to the adversary, which arbitrarily breaks the cryptosystem.
However, in some cryptosystems, such as the Cramer and Shoup CCA2 cryptosystem [3],
the allowable amount leakage is even lower—by a factor of 1/2− o(1). This is because
the security of the Cramer and Shoup cryptosystem involves jointly using two secret
keys, and, if either is leaked, the entire cryptosystem is insecure. Relating this scenario
to a CCA2 attack game between a challenger and an adversary, a constant secret-key
leakage attack involves leaking some constant number of bits to the adversary through a
leakage query.

We now present the attack game corresponding to the security notion of a public-key
cryptosystem that is secure against (i) adapative chosen ciphertext attacks, (ii) randomness
reset attacks, and (iii) constant secret-key leakage attacks. Table 1 presents the attack game.
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The attack game is initialized by the challenger through Initialize, where he generates
the public/secret key pair (pk, sk), and forwards pk to the adversary. The adversary has
access to (i) decryption queries Dec, (ii) secret-key leakage queries Leak, (iii) challenge
query Challenge, and (iv) encryption queries Enc, which are all described in Table 1. In
Table 1, the adversary has access to a set of indices that are mapped to prior random
numbers generated during encryption or challenge queries. In any subsequent encryption
query or challenge query, the adversary can use any of these indices at will, representing
a randomness reset attack. The adversary can ask the challenger in an encryption query
to use any public key—this follows [16]. In a leakage query, Leak, the adversary may
request up to λ(κ) bits of the secret key sk. The game ends once the adversary outputs a
bit, a′, through Finalize, who wins if a′ = a. The advantage of the adversary, in this case, is
defined as |Pr(a′ = a)− 1/2|, and a cryptosystem is secure with respect to the attack game
of Table 1 if no polynomial-time adversary has non-negligible advantage.

Table 1. Attack game with adaptive chosen ciphertext attack, randomness reset, and constant secret-
key leakage, where r(κ) is the value of a polynomial in κ that represents the combined length of the
random numbers used during encryption. The adversary in this game is allowed to perform multiple
encryption and challenge queries under different randomness indices. The notation coins[j] and
ciphers[j], for j ≥ 1, refers to the jth element of coins and ciphers, respectively.

proc.Initialize(κ)
a← {0, 1}
(pk, sk)← G(1κ)
coins← ∅
ciphers← ∅
return pk

proc.Challenge(j, m0, m1)
if |m0| 6= |m1| return ⊥
if coins[j] =⊥ then coins← {0, 1}r(κ)

rj ← coins[j]
c← E(pk, m, rj)
ciphers← ciphers∪ c
return c

proc.Dec(c)
if c ∈ ciphers then return ⊥
else return D(sk, c)

proc.Enc(pk′, j, m)
if coins[j] =⊥ then coins← {0, 1}r(κ)

rj ← coins[j]
c← E(pk′, m, rj) return c

proc.Leak(λ(κ))
return random λ(κ) bits of sk

proc.Finalize(a′)
return (a = a′)

3.1. Attack Game with Random Oracles

In certain situations, the random oracle heuristic [4] is convenient for simplifying
security proofs. A random oracle Φ captures a truly random function and can be incorporated
in cryptosystems. Suppose that a random oracle Φ : X → Y is part of a cryptosystem.
The corresponding attack game incorporates additional random oracle queries, whereby, on
input x ∈ X from the adversary, the challenger returns y ∈ Y such that Φ(x) = y.

3.2. Adversary Constraints

As stated in [11,16], if the adversary can perform a randomness reset attack and has
no constraints on encryption/challenge queries, it can trivially win. To prevent this, the
adversary is assumed to be equality-pattern-respecting. We provide the definition of an
equality-pattern-respecting adversary below, along with the corresponding notion of a
non-reversing adversary that will be used in cryptosystem 1.

Definition 7. LetA be an adversary in Table 1’s attack game. Let I represent the set of randomness
indices mapped to random numbers generated by the challenger duringA’s challenge and encryption
queries. LetA performQe encryption queries. LetA performQc,i challenge queries using index i ∈
I. Let MI represent the set of input messages, m, in the encryption queries done byA using the public
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key, pk∗, and randomness index, i ∈ I, i.e., Enc(pk∗, i, m). Let (mi,1
0 , mi,1

1 ) . . . (mi,Qc,i
0 , mi,Qc,i

1 )
represent the set of message pairs given in challenge queries using randomness index i ∈ I. For
Table 1’s attack-game, we say that A is equality-pattern-respecting: (1) if we have, for all i ∈ I and
for all j 6= k ∈ [Qc,i], mi,j

0 = mi,k
0 if mi,j

1 = mi,k
1 , and (2) if, for all i ∈ [Qe] and j ∈ [Qc,i], we have

mi,j
0 6∈ MI and mi,j

1 6∈ MI.

Definition 8. Let A be an adversary in Table 1 attack game that performs Qe encryption queries
and Qd decryption queries. Let {ci}i∈[Qe ] denote the set of ciphertext outputs ci received by A from
the challenger in its encryption queries. Let {cj}j∈[Qd ]

denote the set of ciphertexts cj submitted by
A for its decryption queries. We say that A is non-reversing if, for any c′i ∈ {ci}i∈[Qe ], we have
c′i 6∈ {cj}j∈[Qd ]

at any point in the game.

4. Comparison of Cryptosystems/Lossy Functions

Given the security notion presented in the previous section, for context, we present a
list of various cryptosystems in Table 2 that deal with the related notions of randomness
attacks and secret-key leakage attacks. From Table 2, the types of randomness attacks
considered in the literature involve linear and polynomial functions of random numbers
involved in the encryption process. The same holds for secret-key leakage attacks, where
leakage may consist of affine or polynomial functions of bits of the secret key, along with
bounded degrees of secret-key tampering. Our proposed cryptosystems are listed in the
last two lines of Table 2 and consider joint attacks involving randomness reset and constant
secret-key leakage. Similar to the other constructions in Table 2, we propose both a random
oracle and standard model of our cryptosystems.

In Table 3, we list several lossy function constructions from the literature. From Table 3,
the first lossy function collection is from [8] which uses the DDH assumption. The next
lossy function constructions present improvements in terms of the number of lossy function
branches or tags that can be sampled efficiently while retaining their amounts of lossiness.
In particular, the construction of [27] provides an efficient lossy function that can sample a
superpolynomially large number of lossy tags. The construction of [27], however, is quite
complicated, since it involves Waters signatures along with chameleon hashing. For the
purposes of our cryptosystems, our proposed lossy function collection (the last line of
Table 3) is able to sample up to M lossy branches per function index but is compromised
by a rather high amount of lossiness, i.e., 2n(M−1)+log (p). Yet, despite this amount of
lossiness, the security proof is still held intact, given that the factor 2n(M−1)+log (p)/2n is
still superpolynomial in κ. In addition, our proposed lossy function collection is simpler
to construct—involving only the DDH assumption, along with the Cartesian product
operation. In terms of size complexity, we show, in the FIS and LBS columns, the size of the
function index and the lossy branch index, respectively, where size is measured in terms of
matrix representations. For instance, the function index size of the lossy functions in [8] is
n2, which means that the index is a square matrix consisting of n rows and n columns. Our
proposed LM collection has a larger function index size, of n2M, and a larger branch size, of
nM. This is because it relies on the M Cartesian product operation. A concrete instantation
of an LM collection is presented in Section 6.
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Table 2. List of CCA2 secure PKE schemes that incorporate either randomness attack or secret-key leakage attack along with their primitives. Scheme models are
classified according to random oracle or standard, where standard refers to schemes that do not use random oracles. Our proposed schemes are in the last two lines
of the table and incorporate joint randomness reset attack and constant-bit secret-key leakage attack.

Reference Randomness Attack Secret-Key Leakage Attack Model Primitives/Assumptions

Canetti and Goldwasser [28] − − random oracle random oracle assumption
Cramer and Shoup [3] − − standard hash proof system/DDH
Yilek [16] randomness reset − standard pseudorandom function
Peikert and Waters [8] − − standard lossy functions/DDH/DCR
Wee [29] − linear leakage standard BDDH/LWE
Qin and Liu [13] − constant leakage standard hash proof system + lossy filter/DDH
Bellare et al. [10] chosen distribution attack − random oracle random oracle assumption
Bellare et al. [10] chosen distribution attack − standard lossy functions
Paterson et al. [11] linear/polynomial − random oracle random oracle assumption
Paterson et al. [11] linear functions − standard pseudorandom function
Paterson et al. [11] polynomial functions − standard CIS hash functions
Paterson et al. [30] vector of functions − standard Goldreich-Levin extractor
Boneh et al. [31] − affine leakage random oracle random oracle assumption
Boneh et al. [31] − polynomial leakage standard EDBDH
Faonio and Venturi [12] − leakage + bounded tampering standard hash proof system + lossy filter/RSI

ours randomness reset constant leakage random oracle random oracle assumption
ours randomness reset constant leakage standard hash proof system + LM lossy functions

Table 3. List of lossy function constructions found in the literature. Our proposed LM construction is shown in the last line of the table, where up to M lossy
branches are given for each function index. While the lossiness of our construction is higher than the other schemes, it is simpler to construct and uses only the DDH
assumption. ABO: all-but-one lossy functions; ABN: all-but-N lossy functions; ABM: all-but-many lossy functions; LF: lossy function; LB: lossy branch; LT: lossy tag;
DS: domain size, LS: lossiness size; FIS: function index size (in terms of matrix representation, where n is the number of rows/columns); LBS: lossy branch index size;
DDH: decisional Diffie–Helman; DCR: decisional composite residuousity; QR: quadratic residuousity; CH: chameleon hash.

Reference Primitive No. of LF/LB/LT DS LS FIS LBS Assumptions

Peikert and Waters [8] lossy functions several 2n 2log p n2 n DDH/DCR (lattice)
Peikert and Waters [8] ABO lossy functions 1 LB/function 2n 2log p n2 n DDH
Hemenway et al. [26] ABN lossy functions N LB/function 2n 2log p - - DDH/DCR/QR
Hofheinz [27] ABM lossy functions superpolynomial LT 2n 2log p - - Waters sig./CH
Qin and Liu [13] one-time lossy filter superpolynomial LT 2n 2log p n2 n DDH/CH

ours LM lossy functions M LB/function 2nM 2n(M−1)+log (p) n2 M nM DDH
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5. Proposed Cryptosystems
5.1. Cryptosystem 1

In this section, we present our first cryptosystem that is secure against the attack
game of Table 1. It uses several primitives, such as hash proof systems, randomness
extractors, and pseudorandom functions, along with a random oracle Φ. Using a random
oracle assumption simplifies the security proof and usually serves as the starting point
in cryptosystem design, as done in [10]. However, as mentioned, the random oracle
assumption is rather strong. In addition, this cryptosystem is limited to facing non-reversing
adversaries who cannot submit prior-encrypted ciphertexts for decryption. We overcome
the non-reversing limitation in the next cryptosystem—which also does away with the
random oracle requirement.

5.2. Cryptosystem 1 Requirements

Let Qe, Qd, and Qc denote the bounds in the number of encryption, decryption and
challenge queries respectively. The requirements of cryptosystem 1 are as follows.

1. An ε1-universal hash proof system H for some ε1 > 0 given by (Hg, Hpub, Hpriv).
The ciphertext domain of H is C, with V ⊆ C as its valid subset. SKH and PKH
denote the secret-key space and public-key space of H, with elements skH ∈ SKH
and pkH ∈ PKH . The space W of the witnesses of H is set to R. The encapsulated
key space of H is K, with elements k ∈ K. Hpub is set as Hpub : PKH × C × R → K,
and Hpriv : SKH × C → K. The projective function is ΛskH : C → K, with associated
projection function µ : SKH → PKH .

2. A (n, p) ABO collection given by (Lgabo , Leabo ). The set of branches is B with elements
b ∈ B, and lossy branch b◦ ∈ B. Functions are indexed by S, and Leabo : S× B× K →
{0, 1}n

3. E is a ((ν− λ− (Qc +Qe)(l))/Qc, ε2) average-case strong-randomness extractor
4. A secure pseudorandom function P : R×M→ R
5. A strongly unforgeable one-time signature scheme given by (Fg, Fs, Fv). SKσ and VKσ

denote the spaces of signature and verification keys, with elements skσ ∈ SKσ and
vkσ ∈ VKσ, and where the domain of Fs is C×{0, 1}l , and the domain of VKσ is equal
to B.

6. Elements of K, R, C, SKH , PKH , S, B have length n. Elements of M have length l.
7. The values of ν, l, and λ are such that λ ≤ ν− λ− (Qc +Qe)(l)− α(log κ) for some

α ≥ 0.
8. n and p satisfy p < 2

√
n.

9. The polynomial in κ whose value is n is superpolynomial with respect toQe,Qd, andQc.

5.3. Cryptosystem 1

Key Generation. G(1κ) first runs Hg(1κ) to obtain skH ∈ SKH and ΛskH with µ. It com-
putes pkH = µ(skH) ∈ PKH . The output is a public/secret key pair (pk, sk), where
pk = pkH and sk = skH .

Encryption. E(pk, m): on input pk = pkH and message m ∈ M, let Φ : K → {0, 1}n denote
a random oracle. It performs the following:

1. It samples r′1 ← R then computes r1 = P(r′1, m). It sets ω = r1. Using ω, it
chooses cH ∈ V

2. It samples r′2 ← R, then computes r′′2 = r′2 ⊕ pkH, followed by r2 = P(r′′2 , m) ∈ R.
3. Using r2, it computes k = Hpub(pkH , cH , ω) and Ψ = E(k, r2)⊕m
4. It samples (vkσ, skσ)← Fg(1κ) and computes σ = Fs(skσ, (cH , r2, Ψ))
5. It computes Π = Φ(k)
6. It returns ciphertext c = (σ, cH , r2, vkσ, Ψ, Π)

Decryption. D(sk, c): on input sk = skH and c = (σ, cH , r, vkσ, Ψ, Π), performs the following:
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1. The algorithm checks if Fv(vkσ, (cH , r2, Ψ), σ) = 1. If not, it outputs ⊥.
2. It computes k′ = Hpriv(skH , ch)

3. It computes Π′ = Φ(k′)
4. It checks if Π = Π′. If not, it outputs ⊥
5. It returns the plaintext message m = Ψ⊕ E(k′, r).

For cryptosystem 1, we note that the role of P is to generate fresh random numbers r1
and r2 using the joint entropy of the message m and old random numbers r′1 and r′2 (due to
reset attacks). It follows that r1 and r2 serve as the actual randomness input to Hpub and E,
respectively. To show correctness of the cryptosystem, given m and pk, E first computes
r1 and r2 followed by k ← Hpub(pkH , cH , r1 = ω), Ψ = E(k, r2)⊕m, and Π = Φ(k). Let
c = (σ, CH , r2, vkσ, Ψ, Π) be the corresponding ciphertext where vkσ is jointly sampled with
skσ under Fg, and σ is derived using Fs as shown above. If this c were given to D, it follows
that Fv(vkσ, (cH , r2, Ψ), σ) = 1 given that σ = Fs(skσ, (cH , r2, Ψ)) and the signature scheme
(Fg, Fs, Fv) satisfies the correctness property. Having passed this first check, D computes
k′ = Hpriv(skH , cH) and we have k′ = k, given that Hpriv uses the same cH from encryption
and skH is paired with pkH using Hg. Given that (Hg, Hpub, Hpriv) satisfies the correctness
property, it follows that k′ = k as claimed. Given that k′ = k, we have Π′ = Π under Φ
given that Φ is a function, thereby passing the second check. Finally, with k′ = k, we have
m = Ψ⊕ E(k′, r2) = Ψ⊕ E(k, r2), and the original message m is recovered.

5.4. Security Results for Cryptosystem 1

Theorem 1. Let Φ : K → {0, 1}n be a random oracle and let (G, E ,D) denote cryptosystem 1.
For any non-reversing, equality-respecting, polynomial-time adversary that makes (a) at most Qc
challenge queries under multiple randomness indices, (b) at most Qe encryption queries under
multiple randomness indices, and (c) at most Qd decryption queries, and following the attack game
of Table 1, then cryptosystem 1 is secure against (i) adaptive chosen ciphertext attack, (ii) λ bits of
secret-key leakage, and (iii) randomness reset attacks.

Game 0. This game implements the original cryptosystem with no modifications. The
following attack game incorporates random oracle Φ queries in the attack game
of Table 1. Φ is modelled using an associative array, map, which follows the
faithful/forgetful gnome method [2]. The notation map[j] for j ≥ 1 refers to the jth
element of map.

proc.Initialize(κ)

1. (pk, sk)← G(1κ)
2. initialize empty associative array map : K → {0, 1}n

3. initialize empty arrays coins and ciphers

4. send pk to adversary

proc.Enc(pk′, j, m)

1. if coins[j] =⊥ then randomly sample (r′1, r′2, vkσ, skσ) and set coins[j] =
(r′1, r′2, vkσ, skσ)

2. compute c← E(pk′, m) with line 5 modified as:

- if map[k] =⊥ then ζ ← {0, 1}n and set map[k] = ζ. Set Π = map[k]

3. return c

proc.Challenge(j, m0, m1)

1. if |m0| 6= |m1| return ⊥
2. if coins[j] =⊥ then randomly sample (r′1, r′2, vkσ, skσ) and set coins[j] =

(r′1, r′2, vkσ, skσ)
3. compute c∗ ← E(pk, m) with the line 5 modified as:

- if map[k] =⊥ then ζ ← {0, 1}n and set map[k] = ζ. Set Π = map[k]
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4. ciphers← ciphers∪ c∗

5. return c∗

proc.Dec(c)

1. if c ∈ ciphers, return ⊥
2. compute m = D(sk, c) with line 3 modified as:

- if map(k′) =⊥, then ζ ← {0, 1}n and set map[k′] = ζ. Set Π′ =
map[k′]

3. return m

proc.Leak(λ(κ))

1. return λ(κ) bits of sk

proc.Oracle(k)

1. if map(k) =⊥, then ζ ← {0, 1}n and set map[k] = ζ
2. return map[k]

The adversary can perform any number of encryption queries under different
randomness indices in coins. Prior to making any challenge query, the adversary
can request λ bits of the secret key. At any point in the game, the adversary can
perform a decryption query under the non-reversing condition.

Game 1. This game is similar to Game 0, except that (r1, r2) are drawn randomly, instead of
being computed using the pseudorandom function P in E .

Game 2. This game is similar to Game 1, except that once the adversary submits a ciphertext
c = (σ, cH , r, vkσ, Ψ, Π) for decryption such that vkσ ∈ c′ for some c′ ∈ ciphers,
the challenger returns ⊥.

Game 3. This game is similar to Game 2, except that Π is sampled randomly in E instead of
being queried using Φ.

Game 4. This game is similar to Game 3, except that the challenger computes k = Hpriv(skH , cH)
instead of Hpub in E .

Game 5. This game is similar to Game 4, except that cH is sampled from C \V instead of V
in E .

Game 6. This game is similar to Game 5, except that if the adversary submits a cipher-
text c = (σ, cH , r, vkσ, Ψ, Π) for decryption such that cH ∈ C \ V, the challenger
returns ⊥.

Game 7. This game is similar to Game 6, except that the challenger draws Ψ uniformly at
random from {0, 1}l instead of computing Ψ = E(k, r)⊕m in E

Proposition 1. Game 0 and Game 1 are computationally indistinguishable, given the security of
the pseudorandom function P.

Proof. To prove this claim, we define hybrid experiments, H0, H1, H2, where H0 emulates
the challenger in Game 0, H1 samples r1 randomly, and H2 samples both r1 and r2 randomly.
We have to show show that for any i ∈ {0, 1}, experiments Hi and Hi+1 are computationally
indistinguishable.

Suppose that some adversary can efficiently distinguish between Hi and Hi+1 for
i ∈ {0, 1}. Using this adversary, we construct a simulator that breaks the security of P.
The simulator has access to an oracle that, on input m, returns a number, y, where we
either have y = P(r, m) for some random number r, or y is sampled using a truly random
function. For i ∈ {0, 1, 2}, the simulator emulates the challenger in Game 0 perfectly in
the initialization phase and draws a ∈ {0, 1}. If i = 0, the simulator does not modify
anything from the challenger in Game 0. For H0, H1, H2, the simulator knows sk and it
can answer decryption and secret-key leakage queries. In encryption queries with input
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(pk′, m), if i = 1, the simulator sends m to its oracle and receives y, where we either have
y = P(r′1, m) or y is sampled randomly. It sets r1 = y and proceeds with the rest, as before.
If i = 2, it samples r1 randomly and sends m to its oracle. It receives y where we either
have y = P(r′2 ⊕ pk′H , m) or y is sample randomly. It sets r2 = y.

In challenge queries, the input is a message pair, (m1, m2). If i = 1, the simulator
sends (m1, m2) to its oracle and receives y, where either have y = P(r′1, ma) or y is sampled
randomly. If i = 2, the simulator samples r1 randomly and sends (m1, m2) to its oracle. It
receives y, where we either have y = P(r′2 ⊕ pkH , ma) or y is sample randomly. When the
adversary submits a guess a′ ∈ {0, 1}, the simulator outputs 1 if a = a′ and 0 otherwise.
The probability that the oracle computes y using P and the simulator outputs 1 is equal
to the advantage of the simulator in distinguishing between outputs of P and randomly
sampled numbers. In turn, the simulator’s advantage is equal to the probability that the
adversary outputs a′ such that a′ = a less 1/2. However, due to the pseudo-randomness of
P, no efficient adversary is able to output a′ such that a = a′ with non-negligible probability.
Hence, the simulator’s advantage is likewise negligible. By construction, experiment
H0 perfectly simulates Game 0, while experiment H2 perfectly simulates Game 1. The
proposition thus follows.

Proposition 2. Game 1 and Game 2 are computationally indistinguishable, given the strong
one-time existential unforgeability of the signature scheme.

Proof. Games 1 and 2 behave the same, except when the adversary submits a ciphertext
query c = (σ, cH , r, vkσ, Ψ, Π), such that Fv(vkσ, (cH , Ψ), σ) = 1 and vkσ ∈ c′ for some
c′ ∈ ciphers but c 6= c′. We construct a simulator that attacks the security of the signature
scheme as follows. The simulator emulates Game 2 against an adversary. The simulator
has access to an oracle that provides it with a verification key vkσ upon request. Since
the simulator does not know skσ, it can query the oracle for a signature, where on input
(cH , r, Ψ), the oracle returns σ computed using the hidden skσ associated with the latest
vkσ provided to the simulator. The simulator emulates the challenger in every aspect of the
initialization phase of Game 1, but requests for a preliminary vk0

σ. Since the simulator knows
sk, it can answer any decryption query and secret leakage query. Moreover, prior to any
challenge or encryption query, for any decryption query with input c = (σ, cH , r, vkσ, Ψ, Π),
the simulator checks if vkσ = vk0

σ and if Fv(vkσ, (cH , r, Ψ), σ) = 1. If this condition is met,
the simulator outputs ((cH , r, Ψ), σ) as a forgery and terminates the simulation. If this
event does not occur and the simulator encounters the first challenge or encryption query,
the simulator uses vk0

σ as the verification key and queries the oracle for σ. Subsequent
challenge or encryption queries require the simulator to ask the oracle for a fresh vkσ as
well as for σ. Once it receives another decryption query with input c = (σ, cH , r, vkσ, Ψ, Π),
it checks if vkσ = vk′σ with vk′σ ∈ c′ for some c′ ∈ ciphers. If this is true for some c′, it
checks if σ 6∈ c′ and (cH , r, Ψ) 6∈ c′ and Fv(vkσ, (cH , r, Ψ), σ) = 1. If this is true as well,
the simulator outputs ((cH , r, Ψ), σ) and terminates the simulation. By construction, the
simulator emulates Game 2 perfectly against the adversary, and the advantage of the
simulator in coming up with a forgery is equal to the probability that the adversary queries
a ciphertext that meets the conditions mentioned. However, because the signature scheme
is strongly one-time unforgeable, no efficient adversary can query such a ciphertext with
non-negligible probability. It follows that the probability whereby the simulator outputs
a valid forgery is negligible. Thus, with large probability, the ciphertexts that involve
vkσ = vk′σ with vk′σ ∈ c′ for some c′ ∈ ciphers, and which meet the check requirements
for decryption are not forgeries and are equal to some prior challenge ciphertext. However,
no challenge ciphertexts can be valid for decryption as of Game 0.

Proposition 3. Game 2 and Game 3 are computationally indistinguishable, given that Φ is a
random oracle.
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Proof. We note that due to the non-reversing nature of the adversary, no ciphertext outputs
of prior encryption or challenge queries can be submitted for decryption. It follows that
in Game 3, the adversary cannot use decryption to check if Π is randomly drawn or not.
Thus, the only event where Games 2 and 3 differ is when the adversary performs an oracle
query in Game 3 on some input k, where k is computed under line 3 of E in some prior
encryption or challenge query, and is associated with some randomly drawn Π′ such that
Φ(k) = map[k] 6= Π′ in Game 2. The probability that this event occurs is (Qc +Qe)/|K|.
Since |K| = 2n, this probability is negligible.

Proposition 4. Game 3 and Game 4 are perfectly equivalent.

Proof. The claim readily follows, since the change from computing k using Hpub to com-
puting k using Hpriv and is merely conceptual.

Proposition 5. Game 4 and Game 5 are computationally indistinguishable, given the hardness of
the underlying subset membership problem in the hash proof system.

Proof. To prove this claim, we define two experiments, H0 and H1. H0 and H1 behave
the same, except that H0 samples cH from V, while H1 samples cH from C \ V. Suppose
that some adversary can distinguish H0 and H1 with non-negligible probability. Using
this adversary, we construct a simulator that can break the hardness of the underlying
subset membership problem of hash proof system H. The simulator has access to an oracle
that, on input pkH , provides it with cH , where we either have cH ∈ V, or cH ∈ C \V. At
initialization, the simulator emulates the challenger of Game 4 in all aspects. In encryption
queries with input (pk′, m) the simulator forwards pk′H ∈ pk to its oracle and receives
cH . In challenge queries, the simulator forwards pkH to its oracle and receives c∗H . In
both challenge and encryption queries, it does not compute for cH using Hpub. Since the
simulator knows sk, the simulator can answer any decryption or secret-key leakage queries.
Once the adversary submits a guess a′ ∈ {0, 1}, the simulator outputs 1 if a′ = a. It follows
that the advantage of the simulator in distinguishing cH ∈ V from cH ∈ C \V is equal to the
probability that the adversary outputs a′ such that a′ = a. However, given the underlying
subset membership problem of hash proof system H is hard, the probability that a′ = a is
negligible. It follows that the simulator’s advantage is likewise negligible. Experiment H0
emulates Game 4, while H1 emulates Game 5, thereby proving the proposition.

Proposition 6. Game 5 and Game 6 are computationally indistinguishable, given the ε1-universal
hash proof system.

Proof. Define Z to be the event that some ciphertext c = (σ, cH , r, vkσ, Ψ, Π) with cH ∈
C \V, is accepted for a decryption query in Game 5, but is rejected in Game 6. Games 5
and 6 proceed identically until Z occurs. We claim the following.

Pr(Z) ≤ Qd2λ+(Qc+Qe)(l)

2ν −Qd
(1)

Let c = (σ, cH , r, vkσ, Ψ, Π) be a decryption query input that triggers Z. In encryption,
cH serves as input to ΛskH . From the adversary’s point of view, ΛskH is dependent on the
set of challenge ciphertexts {c∗j }j∈[Qc ] where c∗j = (σ∗j , c∗H,j, r∗j , vk∗σ,j, Ψ∗j , Π∗j ) and on the set
of encryption query outputs {ci}i∈[Qe ], where ci = (σi, cH,i, ri, vkσ,i, Ψi, Πi). For j ∈ [Qc], σ∗j
do not provide additional information on ΛskH since it is a function of (c∗j , Ψ∗j , vk∗σ,j). The
same applies to σi for i ∈ [Qe]. The sets of verification keys {vk∗σ,j}j∈[Qc ] and {vk∗i }i∈[Qe ]

do not provide additional information on ΛskH since they are sampled independently.
Likewise, {Π∗j }j∈[Qc ] and {Πi}i∈[Qe ] do not provide additional information since they are
randomly sampled as of Game 5. It follows that only {c∗H,j, Ψ∗j }j∈[Qc ] and {cH,i, Ψi}i∈[Qe ]
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provide information on ΛskH . Given that for all j ∈ [Qc], Ψ∗j has 2l possible values and for

all i ∈ [Qe], Ψi has 2l possible values, we have the following using Lemma 1.

Γ̃∞(ΛskH (cH)|(pkH , cH , λ, {c∗j }j∈[Qc ], {ci}i∈[Qe ]))

≥ Γ̃∞(ΛskH (cH)|(pkH , cH , λ))−Qe(l)−Qc(l)

Applying Lemma 1 to the secret-key leakage λ, the above reduces to:

Γ̃∞(ΛskH (cH)|(pkH , cH , λ, {c∗j }j∈[Qc ], {ci}i∈[Qe ]))

≥ Γ̃∞(ΛskH (cH)|(pkH , cH))− λ− (Qc +Qe)(l)

Using the fact that H is an ε1-universal hash proof system we have:

Γ∞(ΛskH (cH)|pkH , cH) ≥ ν = log(1/ε1)

In addition, we can assume that k = ΛskH (cH) has not been queried to the oracle, since
the event that k is queried is taken into consideration in Proposition 3. It follows that, from
the adversary’s point of view, the mapping of Π to k is injective. Since injective mappings
preserve average min-entropies, we have:

Γ̃∞(Π|(pkH , cH , λ, {c∗j }j∈[Qc ], {ci}i∈[Qe ])) ≥ ν− λ− (Qc +Qe)(l)

Taking the logarithm of both sides and multiplying by −1, the probability that Z
occurs is at most Qd2λ+(Qc+Qe)(l)/2ν. Assuming that up to Qd decryption queries are
not rejected, the adversary can rule out up to Qd values of k ∈ K (i.e., outputs of ΛskH ).
Combining these, we have Equation (1) which represents an upper bound on the probability
of Z. This probability is negligible given that λ ≤ ν− λ− (Qc +Qe)(l)− α(log κ) under
the assumptions. This proves the proposition.

Proposition 7. Game 6 and Game 7 are computationally indistinguishable, given that E is a
((ν− λ− (Qc +Qe)(l))/Qc, ε2) average case strong randomness extractor.

Proof. By Game 6, all ciphertexts with an invalid cH component are explicitly rejected for
decryption. Given any challenge ciphertext c∗j = (σ∗j , c∗H,j, r∗j , vk∗σ,j, Ψ∗j , Π∗j ) for j ∈ Qc, the
adversary cannot learn any additional information on ΛskH (c

∗
H,j) aside from those provided

by pk, Ψ∗j , the secret-key leakage λ, and outputs of up to Qe encryption queries: {ci}i∈[Qe ]

and Qc challenge queries: {c∗j }j∈[Qc ]. Let Ψi ∈ ci and Ψ∗j ∈ c∗j . Both Ψi and Ψ∗j have 2l

possible values for i ∈ [Qe] and j ∈ [Qc]. Denote by vA the information from the point of
view of the adversary, i.e., vA = (pkH , {Ψ∗j }j∈[Qc ], {Ψi}i∈[Qe ], λ). Under the assumptions
of the cryptosystem, for all pkH and c∗H,j ∈ C \V, we have Γ̃∞(ΛskH (c

∗
H,j)|(pkH , c∗H,j)) ≥ ν.

Combining these, we apply Lemma 1, and have the following result for each j ∈ Qc.

Γ̃∞(ΛskH (c
∗
H,j)|vA) ≥ Γ̃∞(ΛskH (c

∗
H,j)|(pkH , c∗H,j))− λ− (Qc +Qe)(l)

≥ ν− λ− (Qc +Qe)(l)

Given that extractor E is a ((ν− λ− (Qc +Qe)(l))/Qc, ε2) average case strong ran-
domness extractor, the value of E(ΛskH (c

∗
H,j)) is ε2 close to uniform from the point of view

of the adversary. The claim thus follows. Combining all these claims prove the stated
theorem as well.

5.5. Cryptosystem 2

The rationale for constructing cryptosystem 2 over cryptosystem 1 is to do away
with the non-reversing property of the adversary along with the need for random oracles.
Cryptosystem 2 uses an LM collection of lossy functions. The idea behind an LM collection
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is that the system can sample up to M lossy branches. Having several lossy branches
is useful given that, in a cryptosystem that uses lossy function primitives, the branch is
published in the ciphertext.

5.6. Cryptosystem 2 Requirements

Let Qe, Qd, and Qc denote the bounds in the number of encryption, decryption, and
challenge queries, respectively. Define θ := n(M− 1) + log (p). Define M := Qe +Qc. All
requirements of cryptosystem 2 are the same as cryptosystem 1, except for 2, 3, 6, and 7
which are, now, as follows.

2. An (n, p) LM lossy function collection given by (LgM , LeM ) with function index set
S, branch set B, set of lossy branches B◦ ⊆ B, and lossy branch b◦ ∈ B◦, and where
LeM : S× B× K → {0, 1}nM.

3. E is a ((ν−λ− ((Qc +Qe)(θ + l))/Qc), ε2) average-case strong-randomness extractor
6. Elements of K, R, C, SKH , PKH have length n. Elements of M have length l. Elements

of S have length n2M.
7. ν, l, λ, and p are such that λ ≤ ν − λ − ((Qc +Qe)(θ + l)) − α(log (κ)) for some

constant α ≥ 0.

5.7. Cryptosystem 2

Key Generation. G(1κ) first runs Hg(1κ) to obtain skH ∈ SKH , and ΛskH with µ. It
computes pkH = µ(skH) ∈ PKH . It defines q := (0n

1 , 0n
2 , .., 0n

M) and generates
s← Lgabo (1κ , q). The output is a public/secret key pair (pk, sk), where pk = (pkH , s)
and sk = skH along with q.

Encryption. E(pk, m): on input pk = (pkH , s) and message m ∈ M, performs the following:

1. It samples r′1 ← R, then computes r1 = P(r′1, m) and sets ω = r1. Using pkH
and ω, it chooses cH ∈ V.

2. It samples r′2 ← R, then computes r′′2 = r′2⊕ pkH , followed by r2 = P(r′′2 , m) ∈ R.
Using r2, it computes k = Hpub(pkH , cH , ω) and Ψ = E(k, r2)⊕m.

3. It generates (vkσ, skσ) ← Fg(1κ). It defines b = vkσ, and computes σ =
Fs(skσ, (cH , r2, Ψ)).

4. It computes Π = LeM (s, b, k).
5. It returns ciphertext c = (σ, cH , r2, b, Ψ, Π)

Decryption. D(sk, c): on input sk = skH and c = (σ, cH , r, b, Ψ, Π), performs the following:

1. The algorithm checks if Fv(b, (cH , r2, Ψ), σ) = 1. If not, it outputs ⊥
2. It computes k′ = Hpriv(skH , ch) and Π′ = LeM (s, b, k′)
3. It checks if Π = Π′. If not, it outputs ⊥
4. It returns the plaintext message m = Ψ⊕ E(k′, r)

For cryptosystem 2, the role of P is to generate fresh random numbers, r1 and r2, using
the joint entropy of the message m and old random numbers r′1 and r′2 (due to reset attacks).
Similar to cryptosystem 1, r1 and r2 serve as the actual randomness input to Hpub and E,
respectively. To show correctness of the cryptosystem, given m and pk, E first computes
r1 and r2 followed by k ← Hpub(pkH , cH , r1 = ω), Ψ = E(k, r2)⊕m, and Π = LeM (s, b, k),
where s is part of pk and b is equal to vkσ. Let c = (σ, CH , r2, b, Ψ, Π) be the corresponding
ciphertext where b = vkσ is jointly sampled with skσ under Fg and σ is derived using Fs
as shown above. If this c were given to D, it follows that Fv(b, (cH , r2, Ψ), σ) = 1 given
that b = vkσ, σ = Fs(skσ, (cH , r2, Ψ)) and the signature scheme (Fg, Fs, Fv) satisfies the
correctness property. Having passed this first check, D computes k′ = Hpriv(skH , cH) and
we have k′ = k given that Hpriv uses the same cH from encryption and skH is paired with
pkH using Hg. Given that (Hg, Hpub, Hpriv) satisfies the correctness property of a hash proof
system, we have k′ = k as claimed. Given that k′ = k, we have Π′ = Π under LeM , given
that s and b are the same as those is used in E and LeM is a function—thereby passing the
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second check. Finally, with k′ = k, we have m = Ψ ⊕ E(k′, r2) = Ψ ⊕ E(k, r2), and the
original message m is recovered.

5.8. Security Results for Cryptosystem 2 Scheme

Theorem 2. Let (G, E ,D) denote cryptosystem 2. For any equality-respecting, polynomial-time
adversary that makes (a) at most Qc challenge queries under multiple randomness indices, (b) at
most Qe encryption queries under multiple randomness indices, and (c) at most Qd decryption
queries, and following the attack game of Table 1, then cryptosystem 2 is secure against (i) adaptive
chosen ciphertext attack, (ii) λ bits of secret-key leakage, and (iii) randomness reset attacks.

Denote the challenge ciphertext as c∗j = (σ∗j , c∗j,H , r∗j , b∗j , Ψ∗j , Π∗j ) for j ∈ [Qc].

Game 0. This game implements the original cryptosystem with no modifications.

proc.Initialize(κ)

1. (pk, sk, q)← G(1κ)
2. initialize empty arrays coins and ciphers

3. initialize empty associative arrays keyse and keysc
4. for i ∈ [Qe] sample (vkσ,i, skσ,i) ← Fg(1κ , q) and set keyse = keyse ∪

(vkσ,i, skσ,i)
5. for j ∈ [Qc] sample (vk∗σ,j, sk∗σ,j) ← Fg(1κ , q) and set keysc = keysc ∪

(vk∗σ,j, sk∗σ,j)

6. send pk to adversary

proc.Enc(pk′, j, m)

1. if coins[j] =⊥ then randomly sample (r′1, r′2, vkσ, skσ) and set coins[j] =
(r′1, r′2, vkσ, skσ)

2. compute c← E(pk′, m)
3. return c

proc.Challenge(j, m0, m1)

1. if |m0| 6= |m1| return ⊥
2. if coins[j] =⊥ then randomly sample (r′1, r′2, vkσ, skσ) and set coins[j] =

(r′1, r′2, vkσ, skσ)
3. compute c∗ ← E(pk, m)
4. ciphers← ciphers∪ c∗

5. return c∗

proc.Dec(c)

1. if c ∈ ciphers, return ⊥
2. compute m = D(sk, c)
3. return m

proc.Leak(λ(κ))

1. return λ(κ) bits of sk

Game 1. This game is similar to Game 0, except that in E , the challenger samples r1, r2 randomly.

Game 2. This game is similar to Game 1, except that once the adversary submits a ciphertext
c = (σ, cH , r, b, Ψ, Π) for decryption such that b = vk∗σ and vk∗σ ∈ c′ for some
c′ ∈ ciphers, the challenger automatically returns ⊥.

Game 3. This game is similar to Game 2, except in encryption query i for i ∈ [Qe], on input
(pk′, j, m) from the adversary such that coins[j] =⊥, instead of sampling a fresh
verification/signing key pair (vkσ, skσ)← Fg(1κ , q), it sets the verification/signing
key pair as (vkσ,i, skσ,i) ∈ keyse from the initialization phase.
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Game 4. This game is similar to Game 3, except in challenge query j for all j ∈ [Qc], on input
(j′, m0, m1) from the adversary such that coins[j′] =⊥, instead of sampling a fresh
verification/signing key pair (vk∗σ, sk∗σ)← Fg(1κ , q), it sets the verification/signing
key pair as (vk∗σ,j, sk∗σ,j) ∈ keyse from the initialization phase.

Game 5. This game is similar to Game 4, except that during initialization, it defines q :=
(vkσ,1, vkσ,2, . . . , vkσ,Qe , vk∗σ,1, vk∗σ,2, . . . , vk∗σ,Qc

) instead of q := (0n
1 , 0n

2 , . . . , 0n
M).

Game 6. This game is similar to Game 5, except that in E , the challenger computes k =
Hpriv(skH , cH) instead of using Hpub.

Game 7. This game is similar to Game 6, except that in encryption queries or challenge
queries, cH is sampled from C \V instead of V.

Game 8. This game is similar to Game 7, except that if the adversary submits a ciphertext
c = (σ, cH , r, b, Ψ, Π) for decryption such that cH ∈ C \V, the challenger returns⊥.

Game 9. This game is similar to Game 8, except that in E , the challenger draws Ψ uniformly
at random from {0, 1}l instead of computing Ψ = E(k, r)⊕m.

Proposition 8. Game 0 and Game 1 are computationally indistinguishable, given the security of
the pseudorandom function P.

Proof. The proof for this proposition is similar to the proof for Proposition 1.

Proposition 9. Game 1 and Game 2 are computationally indistinguishable, given the strong
one-time existential unforgeability of the signature scheme.

Proof. The proof for this proposition is similar to the proof for Proposition 2 since b = vkσ

in E .

Proposition 10. Games 2 and 3 are perfectly equivalent.

Proof. We note that the only difference in Games 2 and 3 is that, in Game 3, the verifica-
tion/signature keys used in encryption queries are drawn from the initialization phase instead
of being sampled on the fly. This does not affect any other part of the computation.

Proposition 11. Games 3 and 4 are perfectly equivalent.

Proof. We note that the only difference in Games 3 and 4 is that, in Game 4, the verifica-
tion/signature keys used in challenge queries are drawn from the initialization phase instead
of being sampled on the fly. This does not affect any other part of the computation.

Proposition 12. Game 4 and 5 are indistinguishable given that two candidate lossy branch sets of
the LM collection are computationally indistinguishable.

Proof. To prove this proposition, we two experiments A and B. Experiment A is a se-
quence of sub-experiments H1, . . . , HQe+1. Experiment B is a sequence of sub-experiments
H′1, . . . , HQc+1. For all sub-experiments in A and B, assume a fixed keyse and keysc.

For experiment A, sub-experiment H1 emulates the challenger of Game 4 perfectly.
Given i′ ∈ [Qe + 1], sub-experiment Hi′ defines q as q := (vkσ,1, vkσ,2, . . . , vkσ,i′−1, 0n

i′ , . . . , 0n
M)

in the initialization phase and computes s ← Lg(1κ , q) ,where for i ∈ [Qe], we have
vkσ,i ∈ (vkσ,i, skσ,i) such that (vkσ,i, skσ,i) ∈ keyse. Suppose that there exists an efficient
adversary that can distinguish between Hi′ and Hi′+1. Using this adversary, we construct
a simulator that can distinguish between two candidate lossy branch sets of the LM col-
lection. The simulator has access to an oracle that, on input (q0, q1), provides it with the
function index s, where s can either be s ← Lg(1κ , q0) or s ← Lg(1κ , q1). At initializa-
tion, given i′ ∈ [Qe], the simulator constructs q0 = (vkσ,1, vkσ,2, . . . , vkσ,i′−1, 0n

i′ , . . . , 0n
M)
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and q1 = (vkσ,1, vkσ,2, . . . , vkσ,i′−1, vkσ,i′ , 0n
i′+1..., 0n

M). It forwards (q0, q1) to its oracle and
receives function index s. Using s, it constructs pk and sk, draws a ∈ {0, 1}, then for-
wards pk to the adversary. Since the simulator knows pk, it can answer encryption and
challenge queries. Since it knows sk, it can answer decryption and secret-key leakage
queries. Once the adversary outputs a guess a′, the simulator outputs 1 if a′ = a. The
advantage of the simulator in distinguishing between two candidate lossy branch sets of
the LM collection is equivalent to the probability that the adversary outputs a′ such that
a′ = a less 1/2. However, given that it is computationally difficult to distinguish between
two lossy branch sets in an LM collection, no efficient adversary can output a′ such that
a′ = a with non-negligible probability. It follows that the advantage of the simulator is
likewise negligible. By construction, if the oracle computes s← Lg(1κ , q0), the simulator
is performing sub-experiment Hi′ . If the oracle computes s← Lg(1κ , q1), the simulator is
performing sub-experiment Hi′+1 for any i′ ∈ [Qe].

For experiment B, sub-experiment H′1 emulates sub-experiment HQe+1 of experiment
A perfectly. Given j′ ∈ [Qc], sub-experiment Hj′ defines q as:

q = (vkσ,1, vkσ,2, . . . , vkQe , vk∗σ,1, vk∗σ,2, . . . , vk∗σ,i′+j′−1, 0n
i′+j′ , . . . , 0n

M)

in the initialization phase and computes s ← Lg(1κ , q) ,where for j ∈ [Qc], we have
vk∗σ,j ∈ (vk∗σ,j, sk∗σ,j) such that (vk∗σ,j, sk∗σ,j) ∈ keysc, and where for i ∈ [Qe], we have
vkσ,i ∈ (vkσ,i, skσ,i) such that (vkσ,i, skσ,i) ∈ keyse. Suppose that there exists an efficient
adversary that can distinguish between Hj′ and Hj′+1. Using this adversary, we construct a
simulator that can distinguish between two candidate lossy branch sets of the LM collection.
The simulator has access to an oracle that, on input (q0, q1), provides it with function index
s, where s can either be s← Lg(1κ , q0) or s← Lg(1κ , q0). At initialization, given j′ ∈ [Qc],
the simulator constructs (q0, q1) as follows

q0 = (vkσ,1, vkσ,2, . . . , vkQe , vk∗σ,1, vk∗σ,2, . . . , vk∗σ,Qe+j′−1, 0n
Qe+j′ , . . . , 0n

M)

q1 = (vkσ,1, vkσ,2, . . . , vkQe , vk∗σ,1, vk∗σ,2, . . . , vk∗σ,Qe+j′−1, vk∗σ,Qe+j′ , 0n
Qe+j′+1..., 0n

M)

It forwards (q0, q1) to its oracle and receives function index s. Using s, it constructs
pk and sk, draws a ∈ {0, 1}, then forwards pk to the adversary. Since the simulator knows
pk, it can answer encryption and challenge queries. Since it knows sk, it can answer
decryption and secret-key leakage queries. Once the adversary outputs a guess a′, the
simulator outputs 1 if a′ = a. The advantage of the simulator in distinguishing between
two candidate lossy branch sets of the LM collection is equivalent to the probability that the
adversary outputs a′ such that a′ = a less 1/2. However, given that it is computationally
difficult to distinguish between two lossy branch sets in an LM collection, no efficient
adversary can output a′ such that a′ = a with non-negligible probability. It follows that the
advantage of the simulator is likewise negligible. By construction, if the oracle computes
s ← Lg(1κ , q0), the simulator is performing sub-experiment Hj′ . If the oracle computes
s← Lg(1κ , q1), the simulator is performing sub-experiment Hj′+1 for any j′ ∈ [Qc].

Combining the above, we have that sub-experiment H1 of experiment A perfectly
simulates Game 4. Sub-experiment H′1 of experiment B perfectly simulates sub-experiment
HQe+1 of experiment A. Sub-experiment H′Qc+1 of experiment B perfectly simulates Game 5.
Since all sub-experiments in A and B are pairwise indistinguishable, the proposition
thus follows.

Proposition 13. Games 5 and 6 are perfectly equivalent.

Proof. The proof for this proposition is similar to the proof for Proposition 4.

Proposition 14. Games 6 and 7 are indistinguishable given the hardness of the underlying subset
membership problem in H.
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Proof. The proof for this proposition is similar to the proof for Proposition 5.

Proposition 15. Game 7 and Game 8 are computationally indistinguishable, given (i) the lossy
property of the LM collection, (ii) the computational hardness of determining lossy branches for the
LM collection, and (iii) the ε1-universal property of H.

Proof. Define Z to be the event that some ciphertext c = (σ, cH , r, b, Ψ, Π) with cH ∈ C \V,
is accepted for a decryption query in Game 7, but is rejected in Game 8. It follows that
Game 7 and Game 8 proceed identically until Z occurs. Given at most Qd decryption
queries, Qe encryption queries, and Qc challenge queries, we claim the following.

Pr(Z) ≤ Pr(Z1) + Pr(Z2) ≤ QdΘ +Qdγ (2)

where γ represents the probability of some adversary generating a lossy branch for the
LM collection and Θ = (2λ+Qc(θ+l)+Qe(θ+l))/(2ν −Qd), with θ := n(M− 1) + log (p) and
ν = log(1/ε1). We first prove the equation for QdΘ. QdΘ represents the event Z1 that
c is accepted for decryption, and where b ∈ c is an injective branch with ch ∈ C \ V.
Let c = (σ, cH , r, b, Ψ, Π) be a decryption query input that triggers Z1. In encryption, cH
serves as input to ΛskH . From the adversary’s point of view, ΛskH is dependent on pkH ,
cH , λ, the set {ci}i∈[Qe ] of encryption query outputs and the set {c∗j }j∈[Qc ] of challenge
ciphertexts. For i ∈ [Qe] and j ∈ [Qc], the signatures σi ∈ ci and σ∗j ∈ c∗j do not provide
additional information on ΛskH , since they are functions of (cH,i, Ψi, bi) and (c∗H,j, Ψ∗j , b∗j ),
respectively. For i ∈ [Qe] and j ∈ [Qc], the branches bi and b∗j likewise do not provide
additional information as they are independently sampled. Using results of Lemma 1, we
prove the following:

Γ̃∞(ΛskH (cH)|(pkH , cH , Λ, {ci}i∈[Qe ], {c
∗
j }j∈[Qc ]))

≥ Γ̃∞(ΛskH (cH)|(pk, cH , {ci}i∈[Qe ], {c
∗
j }j∈[Qc ]))− λ

≥ Γ̃∞(ΛskH (cH)|(pk, cH , {ci}i∈[Qe ]))− λ−Qcθ −Qcl

≥ Γ̃∞(ΛskH (cH)|(pk, cH))− λ−Qcθ −Qcl −Qeθ −Qel

≥ ν− λ−Qc(θ + l)−Qe(θ + l)

The first inequality applies Lemma 1. For the second inequality, given challenge
ciphertext c∗j = (σ∗j , c∗H,j, r∗j , b∗j , Ψ∗j , Π∗j ) for j ∈ [Qc], information on skH is provided by c∗H,j,

Ψ∗j and Π∗j as shown above. Given that Ψ∗j has 2l possible values, and Π∗j has 2log (p) =

p possible values, the second inequality follows by applying Lemma 1. For the third
inequality, given any encryption query output ci = (σi, cH,i, ri, bi, Ψi, Πi) for i ∈ [Qe],
information on skH is covered by cH,i, Ψi and Πi as shown above, where Ψi has 2l possible
values, while Πi has 2log (p) = p possible values. Given that the total number of encryption
queries is Qe, the third inequality follows from Lemma 1. For the last inequality, for all pkH
and cH ∈ C \V, we have Γ∞(ΛskH (cH)|(pkH , cH)) ≥ ν = log(1/ε1), under the assumption
that H is an ε1-universal hash proof system.

Using the above set of inequalities, we note that Π = LeM (s, b, k) with k = ΛskH (cH).
Starting with Game 2, all ciphertexts for decryption involve injective branches. Injective
functions preserve the min-entropy of its input, and we have Γ̃∞(Leabo (s, b, ΛskH (cH))|vA) ≥
ν, where vA = (pkH , cH , Λ, {ci}i∈[Qe ], {c

∗
j }j∈[Qc ]). Using the fact that H is an ε1-universal

hash proof system we have Γ∞(ΛskH (cH)|(pkH , cH)) ≥ ν = log(1/ε1). We then have:

Γ̃∞(LeM (s, b, ΛskH (cH))|vA) ≥ ν− λ−Qc(θ + l)−Qe(θ + l)

Taking the logarithm of both sides and multiplying by −1, the probability that Z1
occurs is at most Qd2λ+(Qe+Qc)(θ+l)/2ν. Assuming that up to Qd decryption queries are
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not rejected, the adversary can rule out up to Qd values of k ∈ K (i.e., outputs of ΛskH ).
Combining these, we have:

Pr(Z1) ≤ Qd
2λ+(Qe+Qc)(θ+l)

2ν −Qd
= QdΘ

Pr(Z1) is negligible given that λ ≤ ν− λ− (Qe +Qc)(θ + l)− α(log κ) by assumption.
We now state the proof for the second element Qdγ at the right hand side of Equation (2).
Qdγ accounts for the event Z2 that an adversary submits c for decryption such that b ∈ c
is a new lossy branch, i.e., b 6∈ ci for any prior encryption query output ci and b 6∈ c∗j for
any c∗j ∈ ciphers. Suppose that Z2 occurs under some efficient adversary. Using this

adversary, we construct a simulator that can efficiently generate a lossy branch for LM. The
simulator has access to an oracle that provides it with a function index s, but the oracle does
not disclose the corresponding set of lossy branches. In encryption query i for i ∈ [Qe],
the oracle provides the simulator with a signing/verification key pair (ski,σ, vki,σ) such
that vki,σ is equal to a lossy branch in LM. The same is done by the oracle for challenge
queries. At initialization, the simulator completely emulates the challenger in Game 10,
but requests its oracle for s. Since the simulator knows pkH , s, coins, and can request its
oracle for signing and verification keys, it can answer any encryption or challenge query.
Since the simulator knows sk, it can answer secret-key leakage queries and decryption
queries. The simulator keeps a list of all the ciphertext inputs it received for a decryption
query. At the end of the game, the simulator randomly picks i ∈ [Qd] and outputs the
branch bi of the ith decryption query ciphertext input. Suppose that with probability γ,
the adversary is able to query a ciphertext for decryption such that its branch is lossy. The
probability that the simulator outputs a lossy branch for LM is then γ/Qd. However, given
that it is computationally difficult to generate a lossy branch for LM, γ is negligible. It
follows that Qdγ in Equation (2) or Pr(Z2) is also negligible. Combining all these facts the
proposition follows.

Proposition 16. Game 8 and Game 9 are computationally indistinguishable, given that E is a
((ν− λ− ((Qc +Qe)(θ + l))/Qc), ε2) average case strong randomness extractor.

Proof. By Game 8, all ciphertexts with an invalid cH component are explicitly rejected
for decryption. Denote challenge ciphertext c∗j as c∗j = (σ∗j , c∗H,, r∗j , b∗j , Ψ∗j , Π∗j ) for j ∈ Qc.

Denote an encryption query output as ci as ci = (σi, cH,i, ri, bi, Ψi, Πi) for i ∈ Qe. For each
c∗j , the adversary cannot learn any information on ΛskH (c

∗
H,j) aside from those provided

by pkH , Π∗j and Ψ∗j , λ, encryption query outputs {ci}i∈[Qe ] and challenge ciphertexts

{c∗j }j∈[Qj ]
. Both Ψ∗j and Ψi have 2l possible values for i ∈ [Qe] and j ∈ [Qc]. Π∗j has

2log (p) = p possible values, and Πi has 2log (p) = p possible values for i ∈ [Qe] and
j ∈ [Qc]. Under the assumptions of the cryptosystem, for all pkH and c∗H,j ∈ C \ V , we
have Γ̃∞(ΛskH (c

∗
H,j)|(pkH , c∗J,j)) ≥ ν. Combining these, we apply Lemma 1, and have the

following result for each j ∈ [Qc].

Γ̃∞(ΛskH (c
∗
H,j)|(pkH , c∗j ))

≥ Γ̃∞(ΛskH (c
∗
H,j)|(pkH , c∗H,j, λ, {Ψ∗j }j∈[Qc ], {Ψi}i∈[Qe ], {Π

∗
j }j∈[Qc ], {Πi}i∈[Qe ]))

≥ Γ̃∞(ΛskH (c
∗
H,j)|(pkH , c∗H))− λ−Qc(log (p) + l)−Qe(log (p) + l)

≥ ν− λ− (Qc +Qe)(log (p) + l)

Applying the above for j ∈ [Qc], and given that extractor E is a ((ν − λ − ((Qc +
Qe)(θ + l))/Qc), ε2) average case strong randomness extractor, the value of E(ΛskH (c

∗
H))

is ε2 close to uniform from the point of view of the adversary. The claim thus follows.
Combining all these claims prove the stated theorem as well.
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6. Concrete Instantiations

Let Addh be a group sampling algorithm that takes as input a security parameter, κ,
and which outputs a tuple, (p,G, g), where G is a cyclic group of order p for some prime p,
and g is the generator of the group. Let a, b, c← Zp. The DDH assumption states that the
ensemble of tuples {(G, ga, gb, gab)}κ∈N is computationally difficult to distinguish from the
ensemble of tuples {(G, ga, gb, gc)}κ∈N

6.1. Hash Proof System Based on DDH

This concrete example of a hash proof system follows [2].

Parameter Generation. Hg(1κ) first runsAddh to obtain (p,G, g)← Addh(1κ). It randomly
samples u ← G followed by σ, τ ← Ap. It defines the secret key as skH = (σ, τ).
It defines the projective hash function ΛskH : G2 → G as ΛskH (v, w) = vσ, wτ . In
this case, the projection function µ associated with ΛskH is the same, i.e., µ := ΛskH .
Using µ, it constructs the public key pkH = (h, u), where h := µ(g, u) = gσuτ . In
this case, the set of ciphertexts C consists of G2, i.e., C := G×G. The set of valid
ciphertexts V ⊆ C consists of all element (u, v) of G × G for which (u, v, w) is a
DH-triple, i.e., uωvω = wω.

Public Evaluation. Hpub(pkH , cH , ω) takes as input public key pkH = (h, u), cH ∈ G×G
and witness ω ∈ Zp that cH ∈ V. Let cH = (v, w). Given u, Hpub first checks if
(v, w) = gωuω. If true, Hpub outputs hω, which equals to ΛskH (v, w) given that:

ΛskH (v, w) = vσwσ = (gω)σ(uω)τ = (gσuτ)ω = hω

We note here that the value of ΛskH (v, w) is evaluated using only the auxiliary infor-
mation h, without knowing the secret key (σ, τ).

Private Evaluation. Hpriv(skH , cH) takes as input private key skH = (σ, τ), and cH ∈
G×G. Let cH = (v, w). Hpriv evaluates ΛskH on any element of C without requiring
a witness. In this case, Hpriv outputs vσuτ .

As shown in [2] if ΛskH is evaluated in (v, w) without using auxiliary information h,
the probability that ΛskH (v, w) equals some number is 1/p, which is close to uniform.

6.2. ABO Function Collection Based on DDH

Given κ, let (p,G, g) ← Addh(1κ). The ElGamal cryptosystem is initiated as fol-
lows: (i) a secret key is drawn randomly z ← Zp and (ii) the public key is computed
as h = gz [8]. Given public key h and secret key z, let Eh denote the encryption al-
gorithm of ElGamal, while Dz is the decryption algorithm. Encryption of a message
m ∈ Zp is done by first drawing random number z ← Zp, and the ciphertext c is
the tuple Eh(m, r) = c = (gr, hrgm). Decryption on the other hand is computed as
Dz(c) = logg(h

rgm/grz). The correctness of the ElGamal cryptosystem follows from
logg(h

rgm/grz) = logg(grzgm/grz) = logg(gm) = m. From [8], this cryptosystem is seman-
tically secure under the DDH assumption and is additively homomorphic in the sense that,
given two ciphertexts ca = Eh(m1, r1) and cb = EH(m2, r1) for any pair of messages
m1, m2 ∈ Zp and random elements r1, r2 ∈ Zp, they can be ’added’, in the sense that
ca � cb = Eh(m1 + m2, r1 + r2), where � is the coordinate-wise multiplication of ciphertexts.
This can, likewise, be applied to the exponentiation operation, i.e., Eh(m, r)x = Eh(mx, rx).
We also define the operation �; given ciphertext c = (c1, c2), we can add a scalar v ∈ Zp
to the underlying plaintext, i.e., c � v := (c1, c2gv) = Eh(m + v, r), using the r used in
computing c.

6.2.1. Matrix Encryption

Let n > 0 be some integer and p a prime number. Given a matrix M = (mi,j) ∈ Zn×n
p ,

M can be encrypted based on ElGamal. Encryption produces indistinguishable ciphertexts
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under the DDH assumption (Lemma 4 below). The first step is to sample zj ∈ Zp for
j ∈ [n], followed by computing hj = gzj for j ∈ [n]. Encrypting M is done by drawing n
random numbers ri ∈ Zp, and then, for rows i ∈ [n] and columns j ∈ [n], we compute the
ciphertext cij = Ehj

(mij, ri). This scheme outputs a ciphertext tuple (C1, C2) that serves as
the encryption of M, where the vector C1 and the matrix C2 are as follows.

C1 =

gr1

...
grn

 C2 =

hr1
1 gm1,1 hr1

2 gm1,2 · · · hr1
n gm1,n

...
...

. . .
...

hrn
1 gmn,1 hrn

2 gmn,2 · · · hrn
n gmnn


Lemma 4 ([8]). The ElGamal matrix encryption scheme produces indistinguishable ciphertexts.

6.2.2. DDH-Based ABO Function Collection

Let a (n, p) collection of ABO functions be given by Lgabo , Leabo ([8] also includes a
trapdoor algorithm but we do not include it here). Given κ, let B := Bκ denote the set of
branches with lossy branch b◦ ∈ B. Each element of B belongs to Z1×n

p . The algorithms are
described as follows:

Function sampling algorithm. Lgabo (1κ , b◦) takes as input the security parameter κ, and
the lossy branch b◦ ∈ B. Denote b◦ := (b◦1 , b◦2 , . . . , b◦n). The algorithm first runs
(p,G, q) ← Addh(1κ). Let I denote the identity matrix over Zn×n

p . Lgabo samples
a vector of secret keys z = {zj}i∈[n] and forms the vector h = gz ∈ Z1×n

p . It also
samples a random vector, r ∈ Z1×n

p . The output s of Lgabo consists of the function
index s ∈ Zn×n

p , which is the second element (i.e., the matrix C2) of the ElGamal
matrix encryption of −(b◦ I) (using h, r, and z), along with the t consisting of the
vector of secret keys z = {zj}i∈[n] ∈ Z1×n

p . The vectors r and h do not need to be
published publicly. In detail, we have s as follows.

s =


hr1

1 g−b◦1 hr1
2 · · · hr1

n
hr2

1 hr2
2 g−b◦2 · · · hr2

n
...

...
. . .

...
hrn

1 hrn
2 · · · hrn

n g−b◦n


Evaluation algorithm. Leabo (s, b, m) takes as input the function index consisting of the ma-

trix s = −(b◦ I) sampled by Lgabo , a desired branch b from B, and a vector m ∈ Z1×n
p .

The output consists of a vector Π = m(s � bI) ∈ Z1×n
p . In summary:

Π = m(s � bI) =


gm1

gm2

...
gmn


T

hr1
1 g(b1−b◦1 ) hr1

2 · · · hr1
n

hr2
1 hr2

2 g(b2−b◦2 ) · · · hr2
n

...
...

. . .
...

hrn
1 hrn

2 · · · hrn
n g(bn−b◦n)



=


h〈m,r〉gm1(b1−b◦1 )

h〈m,r〉gm2(b2−b◦2 )

...
h〈m,r〉gmn(bn−b◦n)

 =


gz1(m1r1+m2r2+...mnrn)+m1(b1−b◦1 )

gz2(m1r1+m2r2+...mnrn)+m2(b2−b◦2 )

...
gzn(m1r1+m2r2+...mnrn)+mn(bn−b◦n)


Let yj denote the jth coordinate of Π and let 〈x, y〉 denote the dot product of x and
y. Let mj denote the jth coordinate of m, and let Ec2

hj
denote the function Ehj

that
discards the first element c1 in its output and returns only c2. Using the homomorphic
properties of the system we restate yj as: yj := Ec2

hj
((b− b◦)mj, r := 〈m, r〉). This is
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computed without knowing r and h from the sampling stage; oOnly s is needed to
compute Π.

Lemma 5 ([8]). The algorithms Lgabo , Leabo , described above, give a collection of (n, p) ABO lossy
functions under the DDH assumption for Addh.

6.3. LM Lossy Function Collection

Let n, p be values of polynomials in κ, and let M ∈ N. Let S denote the set of function
indices of a LM collection and let B = {B}κ∈N denote the collection of sets of branches
indexed by κ. A concrete instantiation of a (n, p) LM collection is given by algorithms LgM ,
LeM , which are as follows.

Concrete Instantiation of the LM Collection

Given κ, define B := B as the branch set corresponding to function index s ∈ S. Define
B◦ ⊆ B as a lossy branch set of size M with elements b◦i ∈ Z1×n

p for i ∈ [M]. Using
B◦, define q as the ordered tuple q := (b◦1 , b◦2 , . . . , b◦M) for b◦i ∈ B◦, i ∈ [M]. Suppose
that (Lgabo , Leabo ) are algorithms that give a (n, p) ABO collection satisfying the required
properties. Using (Lgabo , Leabo ), we implement (LgM , LeM ) as follows.

Function sampling algorithm. LgM (1κ , q) takes as input κ and q. The algorithm computes
(p,G, q) ← Addh(1κ). Given q and p, LgM outputs s, where s ∈ S. Let s ∈ Zn×n

p,1 ×
Zn×n

p,2 × ...×Zn×n
p,M . Denote by si the ith coordinate of s, denote by qi the ith coordinate

of q. Using the algorithm Lgabo , we compute si ← Lgabo (1κ , qi) for i ∈ [M] so that
s = (s1, s2, ..., sM).

Evaluation algorithm. LeM (s, b, m): on input s, branch b ∈ B and message m ∈ Z1×n
p , the

output is a vector π ∈ Z1×n
p,1 ×Z1×n

p,2 × ...×Z1×n
p,M . Denote by si the ith coordinate of s

and denote by πi the ith coordinate of π. Using the algorithm Leabo , πi is computed
as πi = Leabo (si, b, m) for i ∈ [M], so that π = (π1, π2, .., πM).

Lemma 6. Assume that (Lgabo , Leabo ) are algorithms that give a (n, p) ABO collection of lossy
functions satisfying the required properties for an ABO collection. Using (Lgabo , Leabo ), the al-
gorithms (LgM , LeM ), presented above, give a LM collection of lossy functions that satisfies the
required properties of a LM collection under the DDH assumption.

Proof. Property 1 is satisfied since q ∈ Z1×n
p,1 ×Z1×n

p,2 × ...×Z1×n
p,M , which can be constructed

in polynomial time by drawing M elements of Z1×n
p . For property 3, each coordinate si

of the function index s is computed as si = Lgabo (1κ , qi) in polynomial time. Since this
is done M times, the total time of LgM is polynomial. For property 4, to generate an
element of B◦, one has to sample elements of Z1×n

p , which cannot be done in polynomial

time. To prove property 3, we construct experiments H1, . . . , HM+1. Let qa, qb ∈ Z(1×n)M
p

with qa 6= qb represent two ordered tuples. Denote qa = (q1,1, q1,2, . . . , q1,M) and qb =
(q2,1, q2,2, . . . , q2,M). Experiment H0 computes s← LgM (1κ , qa). For i′ ∈ [M+ 1], experiment
Hi′ constructs q as follows:

q = (q2,1, q2,2, q2,3, . . . , q2,i′−1, q1,i′ , q1,i′+1, . . . , q1,M)

Suppose that some polynomial time adversary can distinguish between Hi′ and Hi′+1
for any i′ ∈ [M− 1]. Using this adversary, we construct a simulator that breaks property
3 of the ABO collection given by (Lgabo , Leabo ). The simulator has access to an oracle
that, on input (b◦0 , b◦1), provides it with either s ← Lgabo (1κ , b◦0) or s ← Lgabo (1κ , b◦1). For
i′ ∈ [M − 1], let qa, qb be fixed with qa 6= qb and where qa = (q1,1, q1,2, . . . , q1,M) and
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qb = (q2,1, q2,2, . . . , q2,M). Given i′ ∈ [M− 1], the simulator constructs q0 and q1 as follows
during initialization:

q0 = (q2,1, q2,2, q2,3, . . . , q2,i′−1, q1,i′ , q1,i′+1, . . . , q1,M)

q1 = (q2,1, q2,2, q2,3, . . . , q2,i′−1, q2,i′ , q1,i′+1, . . . , q1,M)

For i ∈ [M] \ i′, the simulator computes si ← Lgabo (1κ , q0), since q0 and q1 are equal
for all coordinates not equal to i′. For si′ , the simulator forwards (q1,i′ , q2,i′) to its oracle and
it receives si′ . The simulator then forms s = (s1, s2, . . . , sM) and forwards it to its adversary.
Once the adversary outputs a guess a′ ∈ {0, 1}, the simulator outputs a′. The advantage
of the simulator is thus equal to the probability that the adversary outputs a′ = 0 and
the oracle computes si ← Lgabo (1κ , q0). However, given that the ABO collection given by
(Lgabo , Leabo ) satisfies the required properties, no efficient adversary would be able to output
a′ correctly with non-negligible probability. It follows that the advantage of the simulator
is likewise negligible. By construction, if the oracle computes si′ ← Lgabo (1κ , q1,i′), the
simulator is performing experiment Hi′ , while if the oracle computes si′ ← Lgabo (1κ , q2,i′),
the simulator is performing experiment Hi′+1 for i ∈ [M− 1]. Experiment H0 computes
s← LgM (1κ , qa), while HM+1 computes s← LgM (1κ , qb). This proves property 3.

We now show that (LgM , LeM ) satisfy the lossiness property. Let s ← LgM (1κ , q) for
some q. We note that to efficiently sample a lossy branch, simply pick any ith coordinate qi
of q. Let πj denote the jth coordinate of π, where π is the output of LeM (s, qi, k) for some
k ∈ Z1×n

p . For j ∈ [M] with i 6= j, we have πj = Leabo (sj, qi, k), as injective since qi 6= qj.
For j = i, we have πj = Leabo (si, qi, k), which is lossy given that si ← Lgabo (1κ , qi), i.e., si is
computed with qi as the lossy branch. It follows that πi has, at most, p possible values.
Transferring from the Zp domain to the binary domain, let πj, with i 6= j have 2n′ possible
values for some n′ ∈ N. It follows that π can have, at most, 2n′(M−1)+log (p) possible values.
This proves the lossiness property.

7. Conclusions and Future Work

In this paper, we proposed cryptosystems that seek to address the problem of construct-
ing CCA2 secure public-key cryptosystems that are resilient against related randomness
attacks and related key attacks, albeit under the more limited classes of randomness reset
attacks and constant-bit secret-key leakage attacks. Under this security notion, attacks
from both the encryption and decryption processes of a cryptosystem are considered. We
formally define this security notion in terms of an attack game between a challenger and
an adversary, where the adversary has access to encryption queries with randomness reset
and secret-key leakage queries aside from the standard challenge queries and decryption
queries in CCA2 security. Under this attack game, we have presented two cryptosystems
that are provably secure, where the first cryptosystem relies on the random oracle assump-
tion, while the second cryptosystem is a standard model that relies on a proposed primitive
called LM lossy functions, which can provide up to M lossy branches. In particular, the
second cryptosystem uses the loss of information provided by multiple lossy branches
to render it secure under a bounded number of encryption and challenge queries. While
the LM collection exhibits a higher degree of information in the lossy branch and requires
more memory than other lossy functions, it is easy to construct, as it uses Cartesian product
operations over ABO lossy function primitives.

For future work, stronger public-key cryptosystems could, perhaps, be developed such
that they are secure against more general types of related randomness attacks or related
key attacks. For instance, instead of a randomness reset, a randomness attack may involve
linear or polynomial functions of the randomness. The same can be said of secret-key
leakage attacks, wherein, instead of the leakage of a constant number of bits, the leakage
could be arbitrary functions of the secret key. In addition, further analysis can be done on
the efficiency and experimental performance of the algorithm. In particular, the following
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can be explored: (1) to experimentally assess the efficiency/speed of cryptosystem 1 using
an appropriate hash function as a simulated random oracle, and to compare this with
cryptosystem 2 using the LM hash function and with other algorithms; (2) to experimentally
assess the memory complexity of the LM lossy function relative to the other hash functions
in the literature; (3) to provide a discussion on the time and space complexity of our
algorithm relative to other algorithms; and (4) to perform an experimental simulation of
a randomness reset attack and constant secret-key leakage attack, and demonstrate the
algorithm’s response and resiliency to these attacks
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