
cryptography

Article

Preventing Differential Cryptanalysis Attacks Using a KDM
Function and the 32-Bit Output S-Boxes on AES Algorithm
Found on the Internet of Things Devices

Khumbelo Difference Muthavhine * and Mbuyu Sumbwanyambe *

����������
�������

Citation: Muthavhine, K.D.;

Sumbwanyambe, M. Preventing

Differential Cryptanalysis Attacks

Using a KDM Function and the 32-Bit

Output S-Boxes on AES Algorithm

Found on the Internet of Things

Devices. Cryptography 2022, 6, 11.

https://doi.org/10.3390/

cryptography6010011

Academic Editor: Jim Plusquellic

Received: 13 October 2021

Accepted: 2 November 2021

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Mining Engineering, University of South Africa, Johannesburg 2000, South Africa
* Correspondence: kdmuthavhine@gmail.com (K.D.M.); sumbwm@unisa.ac.za (M.S.)

Abstract: Many Internet of Things (IoT) devices use an Advanced Encryption Standard (AES)
algorithm to secure data stored and transmitted during the communication process. The AES
algorithm often suffers DC (DC) attacks. Little has been done to prevent DC attacks, particularly
on an AES algorithm. This study focuses on preventing Differential Cryptanalysis attacks. DC
attacks are practiced on an AES algorithm that is found on IoT devices. The novel approach of
using a Khumbelo Difference Muthavine (KDM) function and changing the 8 × 8 S-Boxes to be the
8 × 32 S-Boxes successfully prevents DC attacks on an AES algorithm. A KDM function is a newly
mathematically developed function, coined and used purposely in this study. A KDM function
was never produced, defined, or utilized before by any researcher except for in this study. A KDM
function makes a new 32-Bit S-Box suitable for the new Modified AES algorithm and confuses the
attacker since it comprises many mathematical modulo operators. Additionally, these mathematical
modulo operators are irreversible. The study managed to prevent the DC attack of a minimum of
70% on AES and a maximum of 100% on a Simplified DES. The attack on the new Modified AES
Algorithm is 0% since no S-Box is used as a building block.

Keywords: Internet of Things (IoT); DC attacks; Advanced Encryption Standard (AES); 8× 8 S-Boxes;
8 × 32 S-Boxes; Khumbelo Difference Muthavine (KDM) function; Internet of Things (IoT) devices

1. Introduction

IoT devices and platforms are advancing boundless while initiating a seamless combi-
nation of computer networks with things or objects [1,2]. IoT is an open network platform
and a new communication standard for the latest innovations, connecting multiple hetero-
geneous devices to render new conventional services [3,4]. Nonetheless, the tremendous
benefits of utilizing IoT devices face diverse predicaments to solve and reach IoT full
adoption. Security and privacy are the crucial predicaments for the IoT devices and yet
admit some of the immense inconveniences such as DC attacks [3,4]. IoT devices and
platforms, with no skepticism, depend on cryptographic algorithms such as AES for the
security and privacy of confidential information and data [3,4].

Consequently, new services provided by IoT devices have to be sufficiently secured
utilizing solid cryptographic algorithms such as AES [1,2]. A cryptographic algorithm is a
mathematical method that converts plaintext (simple messages) into ciphertext (unclear
messages), and vice versa [5,6]. At the same time, while an improvement of security and
privacy on IoT devices is observed, there is also an increasing use of old cryptographic
algorithms such as AES. The attackers create and improve different techniques of attacking
the distinct solid algorithms [7,8]. The most standard algorithms, such as AES, are being
attacked using various mathematical methods, such as DC attacks [1,9]. For instance,
four-round AES can be attacked using the DC attacks [1]. DC attacks are subjected to a
differential that is supplemented by a significant probability [1]. AES has been implemented
on other IoT devices to secure data used for online transactions such as smart cards [1].

Cryptography 2022, 6, 11. https://doi.org/10.3390/cryptography6010011 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-1709-0607
https://doi.org/10.3390/cryptography6010011
https://doi.org/10.3390/cryptography6010011
https://doi.org/10.3390/cryptography6010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography6010011
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6010011?type=check_update&version=2

Cryptography 2022, 6, 11 2 of 33

AES has been attacked using the DC attacks on a reduced number of rounds version, and
the complexity has been compared to that of an exhaustive research attack [10]. DC attacks
have worked successfully and faster than comprehensive research attacks, which have
been treated as the upper bound attack in cryptography [6,10].

An AES algorithm is still used to secure confidential information and data stored in
IoT devices today [3,4]. For instance, cell phones and wireless networks as IoT devices
are using AES for confidentiality, integrity, and availability of data [3]. Additionally,
the packet filtering methods of cellular phones and wireless networks are using AES for
security [3]. In addition, AES is used on IoT sensors where communication security is being
established in various IoT devices such as intelligent energy-grids, Machine to Machine
(M2M) communications, buildings, and data computing devices [11]. IoT boards, the CYW
board, IoT edge, and BCM board, as examples of IoT devices, are using an AES algorithm
for data security [12]. The PRISEC module of the UbiPri middleware is one of the IoT
devices that have been using an AES to secure data privacy and protection [13].

This study focuses essentially on the DC attacks of an AES commonly encountered
and required in IoT devices. DC attacks of an AES are the biggest problem on confidential
information and data. An intruder can effortlessly attack an AES because of fewer output
bits from an AES S-Box and its inverse. An AES needed in IoT devices has 8-output bits
from the S-Boxes, far less than 32 bits.

A newly generated 32 output bits S-Box prevents DC attacks of an AES found on IoT
devices. A KDM function makes a new 32-Bit S-Box suitable for the new Modified AES
algorithm, which confuses the attacker. The novel approach of using a KDM function and
changing the 8 × 8 S-Boxes to be the 8 × 32 S-Boxes successfully blocks DC attacks on an
AES algorithm. A KDM function is a new mathematically developed function, coined and
used purposely in this study. A KDM function was never produced, defined, or utilized
before by any researcher except for in this study.

The principal concern of this study is a DC attack practiced on IoT devices by tres-
passers to identify the cryptographic keys of an AES algorithm. An AES can suffer a DC
attack [1,9]. For instance, a DC attack was implemented experimentally on a Mini-AES
algorithm [14]. The experiment exposed more than 50 percent of the secret key. In addition,
an AES was attacked, utilizing an algebraic DC attack to decode the secret key [15]. The
basic principle of the DC attack adventured the high probability of appropriate events of
plaintext pair differences and ciphertext pair differences created in the decisive round [7].
Lacko-Bartosova [16] showed a DC attack of a two-round AES with a complexity approach
of a three-round AES attack. Lacko-Bartosova [16] also showed that a DC attack depends
on the support of extraordinary bitwise text differences. Grassi [5] attacked a five-round
AES utilizing a DC attack and “multiple-of-8” rule. Tunstall [1] says the first attack is a
four-round AES DC attack controlled to a differential that completed a significant probabil-
ity. The second attack was a five-round AES Square attack that required a time complexity
of 237.5 throughout the encryption process and 28 pairs of ciphertexts to crack an AES
secret key [1].

IoT devices use an AES algorithm to encrypt and convey the encrypted data to the
next layer of security, which is known as the Message Queuing Telemetry Transport
protocol [4]. The Message Queuing Telemetry Transport protocol is an ISO standard
(ISO/IEC PRF 20922). They are then used to transfer encrypted data. On the receiver side,
the encrypted data was decrypted using an AES algorithm [4]. The VMware SD-WAN
Edge holds. The VMware SD-WAN Dynamic Multipath Optimization (DMPO) and an
Extensive Application Recognition as IoT devices aggregated on reoccurring links related
to regulating traffic across optimal links [17]. Additionally, traffic is being directed to
other VMware SD-WAN Edges of distinct departments, private data centers, universities,
and offices, utilizing an AES for secure communication [17]. Sophia et al. [18] showed
that the health department is a growing concern for patients worldwide. An e-healthcare
Remote Clinical Sensor Network is supported in accumulating the vital body information

Cryptography 2022, 6, 11 3 of 33

of personal terminals using sensors as IoT devices. The recommended technique was for
policies executing a secured key and encoded by an AES [18].

With all this knowledge, the interest of this study is to recure an AES from DC
attacks and secure all IoT devices utilizing an AES algorithm. A DC attack can destroy
the complete security of IoT devices and users if it is not appropriately examined. Little
has been conducted to advance the number of output bits on the S-Boxes to combat a DC
attack [1,9]. This study concentrates on retaliating a DC attack on an AES.

The newly generated 32 output bits S-Boxes are employed to obstruct the DC attacks
of an AES identified on IoT devices. A KDM function makes a new 32-Bit S-Box suitable
for the new Modified AES Algorithm and confuses the attacker since it comprises many
mathematical modulo operators. Additionally, most mathematical modulo operators are
irreversible. Additionally, the novel approach of applying a KDM function and transform-
ing the 8 × 8 S-Boxes to be the 8 × 32 S-Boxes successfully blocks DC attacks on an AES
algorithm. A KDM function is a new mathematically function, generated, named, and used
purposely for this study. A KDM function was never developed, defined, explained, or
employed before by any researcher besides in this study.

1.1. An AES Algorithm

AES algorithm is a symmetrical cryptographic algorithm, which is widely and com-
monly applied in IoT devices with a block size of 128-Bit [19,20]. An AES has four
main steps, called functions, namely: Substitute Byte (SubByte), Shi f t Rows (Shi f tRows),
Mix Columns (MixColumn), and finally Add Round Key (AddRoundKey) [19,20]. With
these four main functions, three functions have inverses, namely: Inverse Mix Columns
(InvMixColumn), Inverse Substitute Byte (InvSubByte), and Inverse Shi f t Rows
(InShi f tRows). The Add Round Key (AddRoundKey) is the only function that does not
have an inverse [2,19]. The main functions are employed during the encryption process,
and inverses are employed during the decryption process [19,20]. Figure 1 depicts the
encryption and decryption processes. During the encryption process, the initial step or
function is SubByte. In this function, an AES algorithm uses a Substitution-Box (S-Box).
An S-Box is a look-up table comprised of inputs and outputs in the number of bytes [2,19].
In the SubBytes step, each input byte is replaced by a different unconventional byte using
an AES S-Box [19,20]. Referring to Figure 2, assume that the input byte is c000 in hexadec-
imal notation, c0 = x, which is a row number, and 00 = y, which is a column number.
Examining from an AES S-Box on Figure 2 where x and y intersect, c000 is replaced by ba.
During the decryption process, an inverse AES S-Box is employed. When an inverse AES
S-Box is employed, the step is called InvSubBytes, step number three during the decryp-
tion process. The InvSubByte is a straight inverse of the SubByte. Referring to Figure 2.
An AES changes a string of plaintext (input) into 4×4 matrix; after the replacement or
substitution, the matrix is called the state of an AES. Note that a state is referred to the
output of each step or function of an AES. Another critical function that operates the
state is MixColumns. The mixing or MixColumns is the multiplication method of mixing
matrix rows and columns. Each 8-Bit entity of a row is multiplied by each 8-Bit entity of
the state column using matrix transformation. In simple terms, each row of the matrix
transformation is employed to multiply every column of the state [19,20]. The outputs
of multiplication are XORed to produce a distinct state. The reverse transformation of
MixColumn is called InvMixColums. InvMixColums is achieved during the decryption
process [2,19]. The size of states is constantly the same size, which is a 4×4 matrix. Refer to
Figure 3.

The last function or step of an AES during the encryption process is called Add Round
Key (AddRoundKey). Unlike other functions, the AddRoundKey does not have an inverse.
The method of the AddRoundKey is implemented to both the encryption and decryption
process. During the AddRoundKey operation, either the state produced after MixColumns
or InvMixColums are XORed with the state of key [2,19]. For detail, refer to Figure 4.

Cryptography 2022, 6, 11 4 of 33

An AES supports three original sizes of keys, namely: 192-Bit, 128-Bit, and 256-
Bit [19,20]. The encryption process involves 10 rounds of altering for 128-Bit key, 14 rounds
for 256-Bit key, and 12 rounds for 192-Bit key [2,19]. All subkeys are produced from an
initial key; producing subkeys depends on the size of the initial key. Subkeys are used
during encryption and decryption processes [19,20]. The mathematical steps explaining
the generation of subkeys are given in Figure 5.

Figure 1. Encryption and decryption processes of an AES.

1.2. DC Attack

A DC attack utilizes the high probability of specific events of plaintext differences and
differences into the final round of the algorithm [1,9]. For instance, consider an algorithm
with input (plaintext) P = [P1, P2, ..., Pn] and output (ciphertext) C = [C1, C2, ..., Cn] [7].
Suppose that two inputs to the algorithm are P

′
and P” with the complementary outputs

C
′

and C”, respectively. The input difference is calculated by ∆ P = P
′ ⊕ P”, the symbol ⊕

indicates XOR bitwise operator, and hence ∆Pi = P
′
i ⊕ P”

i , correspondingly to the output
difference where, ∆C = C

′ ⊕ C” and ∆Ci = C
′
i ⊕ C”

i [8]. The intruder has to find the high
differential probabilities of each S-Box utilized in the particular algorithm to implement
a DC attack [1,9]. Then the intruder calculates outputs of high differential probabilities
of S-boxes, which affect the known-plaintext difference ∆P = P

′ ⊕ P” corresponding to
the ciphertext difference ∆C = C

′ ⊕ C” [7,8]. Additionally, the intruder constructs the
Difference-Distribution tables for each S-Box for input difference ∆P and output difference
∆C to discover the differential characteristic. Many S-Boxes used by the different algorithms
are weak due to the size of both input and output bits [1,7]. Regarding an S-Box’s weakness,
the intruder may easily calculate the high difference probabilities of pair (∆Pi, ∆Ci) of
(1/(2n)), where n is the number of bits used as an output [7,8]. The intruder analyses all
different pairs of input Pi and output Ci of an S-Box, where i represents the i− th bit of the
Pi and Ci, respectively. The high difference probabilities of pair (∆Pi, ∆Ci) of each S-Boxes
are combined and used from the first round to the second last round, utilizing the S-Boxes
as an independent building block of the particular algorithm. Suppose that the differential
characteristic for the second last round gives a desirable high enough probability pD. In
that case, it is easy to discover certain bits of the key or subkey used on the last round
subkey by XORing all the potential keys of all affected non-zero difference bits TPS (Target
Partial Subkeys) utilizing the last round with the output and operating one round backward
through the S-Boxes. The number of known plaintext–ciphertext pair differences needed
for the intruder is 1/pD [7,8].

Cryptography 2022, 6, 11 5 of 33

Figure 2. SubByte and InveSubBytes of an AES with example.

Cryptography 2022, 6, 11 6 of 33

Figure 3. Mix columns and inverse mix columns of an AES.

Cryptography 2022, 6, 11 7 of 33

Figure 4. Adding key process of an AES.

Figure 5. Key scheduling of an AES.

In a DC attack, the intruder examines the difference pairs of the S-Boxes found in
the cryptographic algorithm. For instance, suppose a 4 × 4 S-Box was illustrated in
Table 1 with plaintext P = [P1, P2, P3P4] and ciphertext C = [C1, C2, C3C4] [7,8]. All
difference pairs of an S-Box illustrated in Table 1, (∆Pi, ∆Ci), can be scrutinized and the

Cryptography 2022, 6, 11 8 of 33

probability of ∆Ci given ∆Pi can be calculated by considering ciphertext pairs (P
′
, P”) such

that ∆P = P
′ ⊕ P” [1,21]. For a 4 × 4 S-Box like the one illustrated in Table 1 the intruder

only considers all 16 = (24) values for P
′

and then the value of ∆Pi shows the value of P”

to be P” = P
′ ⊕ ∆P [7,8].

Considering a 4 × 4 S-Box illustrated in Table 1, the intruder can calculate the probabil-
ity values of ∆C for each plaintext pair (P

′
, P” = P

′ ⊕ ∆P) [1,22]. For instance, the binary
values of P, C, and the ciphertext values for ∆C for given plaintext pairs (P, P⊕ ∆P) are
presented in Table 2 for ∆P values of 1011binary number, 1000binary number, and 0100binary number.
The last three columns of Table 2 depict ∆C values for the P value row and the particu-
lar ∆P value column [1,15]. From Table 2, the intruder can observe that the occurrence
number of ∆C = 0010binary number for ∆P = 1011binary number is 8 over 16 possible val-
ues, then the probability = 8/16; the occurrence number of ∆C = 1011binary number given
∆P = 1000binary number is 4 over 16; the occurrence number of ∆C = 1binary number given
∆C = 0100binary number is 0 over 16 [1,9].

The intruder tabularizes the entire data for a 4 × 4 S-Box illustrated in Table 1 in a
Difference–Distribution Table in which the columns represent ∆Chexadecimal and the rows
represent ∆P values [8,22]. The Difference-Distribution Table for a 4 × 4 S-Box illustrated in
Table 1 is given in Table 3 [5,7]. Each element of Table 3 depicts the occurrence number of the
corresponding ciphertext difference ∆C value given the plaintext difference ∆P [1,8,10,16].
The intruder can observe that, besides the specific cases of (∆P = 0, ∆C = 0), the highest
value in Table 1 is 8, corresponding to ∆P = Bhexidecimal and ∆C = 2hexidecimal [1,21]. In
consequence, the probability that ∆C = 2hexidecimal knowing an arbitrary pair of plaintext
values that satisfy ∆P = Bhexidecimal is 8/16 [7,8]. On the contrary, the smallest value in
Table 1 is 0 and happens for various difference pairs. In this situation, the probability of
the ∆C value happening knowing the ∆P value is 0. With all this information on hand, the
intruder can simply discover the highest percentage of secret bits key of any algorithm
using a similar S-Box like the one defined in Table 1 [7,8]. The few remaining bits of the
secret key are found using simple mathematical and statistical analysis and a trial and
error method.

Table 1. A simplified DES’s S-Box.

P 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(P) = C 4 E D 1 2 F B 8 3 A 6 C 5 9 0 7

Cryptography 2022, 6, 11 9 of 33

Table 2. Representation of difference pairs of a 4 × 4 S-Box.

∆C ∆C ∆C
P C ∆P = 1011 ∆P = 1000 ∆P = 0100

0000 1110 0010 1101 1100
0001 0100 0010 1110 1011
0010 1101 0111 0101 0110
0011 0001 0010 1011 1001
0100 0010 0101 0111 1100
0101 1111 1111 0110 1011
0110 1011 0010 1011 0110
0111 1000 1101 1111 1001
1000 0011 0010 1101 0110
1001 1010 0111 1110 0011
1010 0110 0010 0101 0110
1011 1100 0010 1011 1011
1100 0101 1101 0111 0110
1101 1001 0010 0110 0011
1110 0000 1111 1011 0110
1111 0111 0101 1111 1011

Table 3. Difference-distribution table.

Input Difference
∆P Output Difference ∆C

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0

2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0

3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4

4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0

5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2

6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2

7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4

8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2

9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0

A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0

B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2

C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0

D 0 4 0 8 0 0 0 4 2 0 2 0 2 0 2 0

E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0

F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

1.3. A KDM Function

In this study, a new function called a KDM function is included. Refer to Figure 6. A
KDM function is a newly generated C++ function applied only to intensify a DC attack
blockage on an AES algorithm needed on IoT devices. This function is acquired after the
S-Boxes of an AES algorithm are modified to generate the 32-bits output S-Boxes. The main
function of a KDM function is to assure that the newly 32-bits output S-Boxes fit an AES

Cryptography 2022, 6, 11 10 of 33

algorithm infrastructure. In simple terms, a KDM function coordinates all newly 32-bits
output S-Boxes to be efficiently used throughout the encryption and decryption process of
the newly adjusted AES algorithm. A KDM function is used to make a new 32-Bit S-Box
suitable for the new modified AES algorithm and confuse the attacker since it comprises
many mathematical modulo operators. Additionally, most mathematical modulo operators
are irreversible. Without a KDM function, the newly generated 32-bits output S-Boxes will
not be set in algorithms. This KDM function has particular properties to assure that a DC
attack is blocked. These properties are:

1. The output of a KDM function is not determined, unlike in the S-Boxes, where a
look-up table is applied with determined inputs and outputs;

2. The output of a KDM function is secret and calculated, unlike in an AES S-Boxes,
where the output is noticeable on a look-up table;

3. A KDM function is unchangeable. If one identifies an output of a KDM function, that
does not mean an input can be reversely calculated and recovered. The reason is that
a KDM function is comprised of several quantities of modular operators;

4. Chosen constant numbers (such as Muthavine, Khumbelo, and Di f f erence) used in a
KDM function are un-factorizable. Refer to Figure 6;

5. All functions utilized to comprise a KDM function are non-linear;
6. The input of a KDM function is 32-bits long, and the attacker can not simply construct

the Difference-Distribution Table of 232 using a computer;
7. A KDM function accepts the output of the 32-bits S-Boxes and handles it as its input.

Then, a distinct output value is created to be applied in the modified AES algorithm. A
new particular output value is unpredictable; hence it brings confusion to the attacker;

8. The output of the 32-bits S-Boxes is defined as state32hold. The KDM function takes
this output as its input and returns an unpredicted variable called Khumbelo. Refer to
Figure 6;

9. After implementing a KDM function, all functions in an AES algorithm calling the
S-Boxes have to call or use a KDM function because S-Boxes are mathematically
protected and unchangeable in a KDM function;

10. A KDM function makes the 32-Bit output S-Boxes tamper-proof. If the positions of the
32-Bit output S-Boxes are changed, or the 32-Bit S-Boxes are replaced, then M_AES
will not yield the expected results.

This study uses a KDM function to make a new 32-Bit S-Box suitable for the new
Modified AES Algorithm and confuse the attacker since it comprises many mathematical
modulo operators. Additionally, most mathematical modulo operators are irreversible. A
KDM function has added robustness against a DC attack, unlike the conventional S-Boxes
utilized in predominant AES algorithms. A KDM function operates successfully in both
the appropriateness of the newly 32 bits S-Boxes and in the blocking of a DC attack of
a recently modified AES algorithm. Mathematically, a KDM function is constructed as
follows:

Assign: Muthavhine = 4294967296, Khumbelo = 4559351687 and Di f f erence =
4302746963

Create the first f or both i and j less than four, where both i and j range form 0 to 4,
do: assign
T = state32hold[j][i]× (state32hold[j][i]

Muthavhine). where state32hold[j][i] is an input of a KDM
function from a 32-bit S-Box.

do: assign
V = Muthavhine× (Muthavhine

state32hold[j][i])

Change the value of state32hold[j][i], to be the value of T + V by assigning
state32hold[j][i] = T + V.
Close the first f or loop.

Cryptography 2022, 6, 11 11 of 33

Create an array of six elements called Arrao f 6 and assign to as Arrao f 6 = 256604724,
40037230360, 7779667, 4294968531, 0273, 4 where Arrao f 60 is the first element of Arrao f 6
defined as Arrao f 60 = 256604724, Arrao f 61 = 40037230360, ..., Arrao f 65 = 4.

Create the second f or loop both i and j less than four, where both i and j range form 0
to 4.

Recall the value of state32hold[j][i] calculated from the f irst for loop.
Compare the value of state32hold[j][i] to the value of Muthavhine.
Create condition one: if state32hold[j][i] is greater than Muthavhine, then do: assign
Khumbelo = Arrao f 60 ⊕ Khumbelo
Di f f erence = (Arrao f 62 ⊕Muthavhine) modulo (Khumbelo).
Where modulo operation is the mathematical operator that returns the remainder of a

division (Arrao f 62 ⊕Muthavhine) divided by Khumbelo.
do: assign
Muthavhine = (Arrao f 62 ⊕ Di f f erence) modulo (Arrao f 63).
Close condition one.
Recall the value of state32hold[j][i] calculated from the f irst for loop.
Compare the value of state32hold[j][i] to the value of Muthavhine.
Create condition two: if state32hold[j][i] is less than or equal to Muthavhine, then
do: assign
Muthavhine = (state32hold[j][i] <<< Arrao f 64) modulo (Khumbelo).
Where <<< is left circular shifting of the bits, for instance, 5 in decimal = 0101 in

binary. If 0101 is left-shifted by 1, then 0101 will be 1010 in binary, which equals 10 in
decimal or A in hexadecimal.

do: assign
Khumbelo = (state32hold[j][i] <<< Arrao f 65) modulo (Di f f erence).
Di f f erence = (state32hold[j][i] modulo Khumbelo)
<<< Arrao f 64).
Khumbelo = (Muthavhine⊕ Di f f erence) modulo (Arrao f 62).
Di f f erence = Muthavhine⊕ Khumbelo + Arrao f 60).
Muthavhine = (Khumbelo⊕ Di f f erence) modulo (Muthavhine).
Close condition two and the second f or loop.
Create the third f or loop where i and j are less than four, where both i and j range for

0 to 4.
Recall all the returned values calculated from the first and second f or loops. If the

value returns to variable Khumbelo, greater than 0, then create a variable TempState.
do: assign
TempState = NOT(state32hold[j][i])ANDKhumbelo.
Where NOT and AND are bitwise operators. Note that NOT return negative number

increased by 1 if an input is a positive integer. For instance, NOT(2) = −3, NOT(5) = −6,
NOT(10) = −11 and so on.

do: assign
state32hold[j][i] = |(state32hold[j][i]⊕ Khumbelo|, where |x| means absolute operator.

An absolute operator changes every negative value to be positive. For instance, | − x| =
|x| = x.

do: assign
statehold[j][i] = (state32hold[j][i]

Arrao f 62⊕Muthavhine)⊕Mod4.
do: assign
Khumbelo = TempState <<< 1.
Note that the expression of Khumbelo = TempState <<< 1 always reduces the value

of Khumbelo until Khumbelo is less than 0. It also checks if Khumbelo is greater than 0. If
Khumbelo is greater than 0, repeat the third f or loop repeated until Khumbelo is less than 0.

Else do: assign
TempState = Khumbelo⊕ TempState
Khumbelo = Khumbelo(modulo (Muthavhine))

Cryptography 2022, 6, 11 12 of 33

Send or return the new value of statehold[j][i] to be used by other AES functions or
building blocks

Close the third f or loop.
Close a KDM function.
A KDM Function takes 32-bit output value from an S-Box as state32hold[j][i] and

returns a new value state32hold[j][i] value as an output. A KDM Function also makes
Muthavhine value, Di f f erence value, and Khumbelo value be un-factorizable polynomials,
then modular operators are used for confusion and diffusion to block reverse engineering
for intruders. The modular operator (modulo) changes the value of the variables inside a
KDM Function. The modular operator also gives a confusion range of input when intruders
reverse back a KDM Function to guess the correct information used in that event. The value
of Muthavhine, Di f f erence, and Khumbelo also constantly kept un-factorizable polynomial
variables non-linear and cumbersome in order to construct a Difference Distribution Table
using any machine. Modular operators also make variables unknown, invisible, and
irreversible to intruders. A KDM function makes a new 32-Bit S-Box suitable for the new
Modified AES Algorithm and confuses the attacker since it comprises many mathematical
modulo operators. Additionally, most mathematical modulo operators are irreversible. For
more mathematical features of a KDM function and C++ comments, refer to Figure 6. For
more detail of a KDM function and flowchart, refer to Appendix A Figure A1.

1.4. Problem Statement

The main concern is a DC attack used in IoT devices by intruders to discover the
cryptographic keys of an AES algorithm. An AES can suffer from a DC attack [1,9]. For
instance, a DC attack has been applied experimentally on a d Mini-AES algorithm [14]. The
experiment revealed more than 50 percent of the secret key. An AES has been attacked using
an algebraic DC attack to crack the secret key [15]. The fundamental principle that the DC
attack adventured was the high probability of particular events of plaintext pair differences
and ciphertext pair differences generated in the last round, which has been conducted
in the study done by [7]. Lacko-Bartosova [16] presented a DC attack of a two-round
AES with a complexity approximation of a three-round AES attack. Lacko-Bartosova [16]
has also indicated that a DC attack depends on recommendation particular bitwise text
differences. Grassi [5] has attacked five-round AES using a DC attack and “multiple-of-
8” rule. Tunstall [1] says the first attack is a four-round AES DC attack subjected to a
differential that supplemented a significant probability. The second attack is a five-round
AES Square attack that needs a time complexity of 237.5 during the encryption process and
28 pairs of ciphertexts to break an AES secret key [1].

An AES is being used on IoT devices even though it is attackable. For instance,
IoT devices use an AES algorithm to encrypt and transfer the encrypted data to the
next layer of security known as Message Queuing Telemetry Transport protocol [4].
Message Queuing Telemetry Transport protocol is an ISO standard (ISO/IEC PRF 20922)
to transmit encrypted data. On the recipient side, the encrypted data was being decrypted
using an AES algorithm [4]. The VMware SD-WAN Edge comprises VMware SD-WAN
Dynamic Multipath Optimization (DMPO) and an Extensive Application Recognition as
IoT devices aggregated on reoccurring links used to direct traffic across optimal links [17].
Additionally, traffic is being led to other VMware SD-WAN Edges of different departments,
private data centers, universities, and offices, using an AES for secure communication [17].
Sophia et al. [18] have indicated that the health department is the swelling concern of the
patients worldwide. An e-healthcare Remote Clinical Sensor Network is supported in
collecting the vital body information of individual terminals using sensors as IoT devices.
The suggested technique is on the principles of implementing a secured key and being
encoded by an AES [18].

With all this information, the concern of this study is to recure an AES from the DC
attacks and secure all IoT devices and data using an AES algorithm. A DC attack can ruin
the whole security of IoT devices and consumers if it is not duly analyzed. Little has been

Cryptography 2022, 6, 11 13 of 33

done to improve the number of output bits on the S-Boxes to resist a DC attack [1,9]. This
study focuses on resolving a DC attack on an AES.

The newly generated 32-output bits S-Boxes are utilized to block DC attacks of an AES
detected on IoT devices. A KDM function makes a new 32-Bit S-Box suitable for the new
Modified AES Algorithm and confuses the attacker since it comprises many mathematical
modulo operators. Additionally, most mathematical modulo operators are irreversible.
Additionally, the novel approach of employing a KDM function and converting the 8 × 8
S-Boxes to be the 8 × 32 S-Boxes successfully prevents DC attacks on an AES algorithm. A
KDM function is a new mathematically generated, named, and designed for this study. A
KDM function was never developed, defined, or utilized before by any researcher except
for in this study.

Figure 6. A KDM function to make a new 32-S-Box suitable for the modified AES algorithm.

Cryptography 2022, 6, 11 14 of 33

1.5. Theoretical Confirmation of DC Attack on AES

The DC attack has initially been presented on the AES-128 decreased to five rounds
by Biham and Keller [23,24]. That was later developed by Cheon et al. [25] to discover
six rounds utilizing 291.5 preferred plaintext pairs and time complexity of 2122. For AES-
192 and AES-256, Raphael and Phan [26] achieved to attack both AES-192 and AES-256
reduced to seven rounds [24]. The DC attack needed 292 (AES-192) and 292.5 (AES-256)
chosen-plaintext pairs with time complexities of 2186 (AES-192) and 2250.5 (AES256)
respectively [24]. Currently, the best DC attack filters AES-128 up to six rounds [24]. For
both AES192 and AES-256, the best DC attack so far succeeds in breaking through seven
rounds [24].

Lacko-Bartosova [16] used the DC attack on two rounds of AES with the calculation
of complexity for a three-round AES attack. Given the DC attack, which was based on
discovering apparent bitwise differences of the secret key. The data complexity of the
defined DC attack was 227, where 8 bits of the private key were recovered [16].

Jakimoski and Desmedt [27] used a related-key DC attack to the 192-bit secret key
modification of AES. Jakimoski and Desmedt [27] also indicated that although any 4-round
DC attack had at least 25 active bytes of the secret key. The intruder could invent a 5-round
related-key DC attack that isolated and cracked 15 active bytes of the private key and
revealed a 6-round key with 2106 plaintext/ciphertext pairs and complexity 2112 [27].
Jakimoski and Desmedt [27] indicated that the attack could be enhanced using a truncated
DC attack. In that case, the required number of plaintext/ciphertext pairs could be 281,
which was about 286 of computational complexity. Utilizing impossible related-key DC
attack, Jakimoski and Desmedt [27] claimed to break 7-rounds with a computational
complexity of 2116 and 2111 plaintext/ciphertext pairs. The attack on 8-rounds required a
complexity of about 2183 encryptions and 288 plaintext/ciphertext pairs [27].

Hu and He [28] utilized a new property of MixColumns Transformation and con-
structed a new 4-round impossible DC attack path. Hu and He [28] added 1-round and
3-round possible DC attack paths before and behind the path, respectively. Additionally,
Hu and He [28] constructed a new 7-round impossible DC attack path. Hu and He [28]
utilized the path to analyze 64-bit initial keys of 7-round AES-192, and that analysis method
required 271 pairs of selected plaintexts, about 272 memory cells, and about 2135 encryption
and decryption computation. Finally, they recovered the secret keys [28].

Rouquette and Solnon [9] indicated that based on the complete distribution ratio and
complexity that occurred, Mini-AES algorithms were vulnerable to a DC attack [9]. The
best DC attack characteristic is the DC attack characteristic utilizing a single active S-Box
with the distribution ratio of 8/16 [9]. Rouquette and Solnon [9] used the distribution ratio
of 8/16 as the probability of guessing the secret key.

This study has found no denial from the above information that AES is being attacked
using the DC attack on different rounds. Other information is detailed in Section 2 (the
literature review section) of this study. Additionally, more experimental data are explained
in Section 4 of this paper for experimental confirmation of the DC attack on AES done in
this study.

1.6. The Objective of the Study

An AES can suffer from a DC attack [1,9]. This study aims to solve the problem of a
DC attack used in IoT devices by intruders to discover the cryptographic keys of an AES
algorithm. Additionally, the study aims at solving the problem of using a KDM function
and the newly generated the 32 output bits S-Boxes to generate a new Modified AES
Algorithm that confuses and blocks the attacker from applying the DC attack.

2. Literature Review

Tunstall [1] presented an experimental intricacy of an AES DC attack. The results
showed that most attacks used the same approach and application but used incompatible
models. Tunstall [1] drew the improved attacks suggested in other literature reviews using

Cryptography 2022, 6, 11 15 of 33

different models on differential fault and DC attacks. The attack was a four-round AES
DC attack subjected to a differential that supplemented a significant probability. Javed
et al. [3] indicated that cell phones and wireless networks as IoT devices are found using
AES for confidentiality, integrity, and availability of data. Additionally, the packet filtering
and patches method of cellular phones and wireless networks was found using an AES for
security [3].

Heys [7] conducted an experiment driven by the basic Substitution-Permutation Net-
work algorithm of an AES. The presentation gave a comprehensive understanding of the
DC attack as applied to the algorithm. It was helpful since an Advanced Encryption Stan-
dard (AES) had been based on the basic Substitution-Permutation Network structure [1,7].
Furthermore, experimental results from the DC attacks were conferred as evidence of
accepting the idea as outlined. Even though the first plan of DC attack was on DES [1,16],
however, the extensive applicability of DC attacks to several other cryptographic algo-
rithms thickened the superiority of DC attack techniques in the security inspection of
all cryptographic algorithms [1,7,9,22,29]. Cryptologists developed technology based on
techniques explicitly targeted at DC circumvention [6,7,9]. That was evident, for instance,
in the Rijndael cipher, the cryptographic cipher nominated to be the prospective stan-
dard [9,14,26]. Rokan et al. [11] indicated the use of sensors as IoT devices that connect
embedded-subsystem using networks. An AES was found helping IoT sensors’ commu-
nication security, which was being established in various IoT devices such as intelligent
energy-grids, Machine to Machine (M2M) communications, buildings, and data computing
devices [11].

Z’aba and Maarof [10] applied a differential cryptanalytic attack on a reduced number
of rounds, and the complexity was compared to that of an exhaustive research attack. An
exhaustive research is an attack that probes every key possibility value of a cryptographic
algorithm [5,6,10,26]. Consequently, an exhaustive research attack was treated as the upper
bound attack in cryptography [6,10]. Z’aba and Maarof [10] reviewed other existing crypt-
analytic attacks on an AES. However, the focus was on DC attacks. Z’aba and Maarof [10]
indicated that the superiorities of attacks were grounded in the principle of a DC attack. For
instance, the impossible differential attack was utilized on the MixColumns transformation
of an AES [10,29]. If a pair of plaintext varied only in one byte, then the reduced four
rounds ciphertext of an AES would never be the same in the ciphertext byte positions:
(0, 0), (1, 3), (2, 2), (3, 1), (0, 1), (1, 0), (2, 3),(3, 2), (0, 2), (1, 1), (2, 0), (3, 3) nor (0, 3), (1, 2),
(2, 1), (3, 0) [10]. Wrong key bytes were removed if the impossible event exists [10]. The
impossible differential attack was initially presented on an AES-128 after being reduced
to five rounds by Biham and Keller [5,6,10,10]. Z’aba and Maarof [10] indicated that a
cryptologist called Cheon later improved the impossible differential attack up to six rounds
utilizing a time complexity of 2122 and 291.5 chosen plaintext. For the AES-256 and AES-
192. Z’aba and Maarof [10] indicated that a cryptologist called Phan achieved attacking the
seven rounds reduce AES. The attack needed 292.5 (AES-256) and 292 (AES-192) chosen
plaintexts with time complexities of 2250.5 (AES-256) and 2186 (AES-192), respectively. The
impossible differential attack worked better on AES-128 up until six rounds [10]. Applied
to AES-256 and AES-192, the impossible differential attack was hitherto accomplished to
discover the key up to seven rounds [10]. The impossible related-key differential is an
attack that uses the key scheduling of a cryptographic algorithm [10,22,29]. The impossible
related-key differential inspected the deportment of an AES by applying a variant but
related keys. The impossible related-key differential attack was unrelated to the inner
structure, and the number of rounds [10]. The combination of the impossible related-key
attack and the impossible DC attack gave good results [10]. When an impossible related-key
differential attack was applied on an AES-192, then the variety of two attacks was capable
of breaking up to seven rounds of an AES utilizing 2111 plaintext/ciphertext pairs and
time complexity of 2116 [10]. An AES was found being used on IoT devices even after
it was broken or attacked. Munoz et al. [12] indicated that IoT boards and IoT edge as
examples of IoT devices were found using an AES algorithm for data security.

Cryptography 2022, 6, 11 16 of 33

Grassi [5] indicated that at Eurocrypt 2017, an initial secrete key differentiator for
five-round AES depended on the “multiple-of-8” rule had been conferred. Despite the fact
that a secrete key differentiator permits to differentiate a random AES permutation, it is
evidently rather hard to apply a key-recovery attack different than an exhaustive research,
using such a differentiator [5,8,14]. An AES was found being used on IoT devices even
after it was broken or attacked. Alshammari et al. [30] indicated sensor nodes recognized
with their IoT limited abilities, and implementing software based on the truly security
protocols caused the subject to be cumbersome. Assuring security in sensor nodes as IoT
devices, communications were found being encrypted using an AES algorithm [30].

Lacko-Bartosova [16] presented DC of two-round AES with a complexity approxi-
mation of a three-round AES attack. Lacko-Bartosova [16] also indicated that DC attacks
depend on recommendation, particular bitwise text differences. Complexity data described
the differential attack of 227, where a subkey byte was retrieved. Lacko-Bartosova [16]
described a DC attack that was initially introduced at the crypto conference in 1990 by E.
Biham and A. Shamir as a cryptanalysis attack applied on DES [16].

Heys [7] defined the fundamental principle that DC adventured a high probability
of particular events of plaintext pair differences and ciphertext pair differences generated
in the last round. It was a chosen-plaintext cryptanalysis attack, which means the modus
operandi was to select plaintext, and ciphertext was consequently calculated to recover
the secret key. An AES was found being used on IoT devices even after it was broken or
attacked. Saraiva et al. [13] indicated that the PRISEC module of the UbiPri middleware
was one of the IoT devices that were found using an AES to secure data privacy and
protection. Simmons [15] stipulated that a Simplified AES was developed to educate
students about the fundamental understanding of an AES. An AES was designed in such a
way that the DC was not valueless on simplified AES [15]. An algebraic DC attack is an
approach that exploits modern mathematical equation solvers to attack ciphers such as an
AES [8,9,15,26]. Simmons [15] indicated that there had been a few allegations that an AES
and a DES were vulnerable to algebraic DC attacks. Simmons [15] utilized an algebraic
DC attack to crack a simplified AES. Algebraic DC attack was a imaginably convincing
attack on symmetric-key block algorithms [10,15,22]. An algebraic DC attack started by
creating a quite substantial non-linear structure of polynomial equations in terms of input
plaintext bits, input key bits, and output ciphertext bits and then attempted to crack that
structure by using an imaginably convincing equation-solving application [5,15,22]. The
variable number, the polynomial numbers, and the polynomial degrees, the power of
the mathematical equations, and memory and the speed of the computer being utilized
resolved whether the infrastructure could be able to reveal the secret key bits [15]. Despite
the fact, an AES was still cracked by an algebraic DC attack and a simplified AES was
quickly broken by the DC attack, even though an AES was still openly used [10,15,22].
Rekha and P. Saravanan [31] indicated that edges such as IoT devices were accessible
through the internet and were found using an AES to secure the accumulated data collected
from the sensors located in the field.

Gemellia [14] presented the experimental results of a DC attack applied on a Mini-AES
algorithm. To give the experimental results, Gemellia [14] implemented the key eradication
for differential characteristics which yielded the lowest and highest characteristics and the
probability as a correlation. Depending on the propagation ratio amount and complexity
obtained by Gemellia [14], Mini-AES algorithms were defenseless to DC attack. The first-
rate differential characteristic was by utilizing a single active S-Box of Mini-AES algorithm
that yielded the propagation ratio of 8/16 = 0.5 [14]. The LoRaWAN protocol was being
used for low energy consumption [32]. The particular LoRaWAN protocol comprised large
networks with many IoT devices to secure bi-directional communication for machine-to-
machine (M2M), smart city, and industrial applications using an AES algorithm for secure
data communication [32].

Ankele et al. [6] showed that the Substitution Permutation Networks were one of
the essential functions used to design cryptographic algorithms such as AES and DES.

Cryptography 2022, 6, 11 17 of 33

Ankele et al. [6] applied a DC attack on a three-round Substitution Permutation Network.
Ankele et al. [6] had utilized a 16-bit plaintext, a 16-bit ciphertext, and selected the first row
of a third DES’ S-Box of DES for the importance of an S-Box and ShiftRows transformation
to permute bytes in an AES for Substitution Permutation Networks. Consequently, Ankele
et al. [6] had revealed a 12-bit key of a 16-bit key from the final round of an AES, DES,
and Skinny algorithm using the DC attack method. Farooq et al. [33] indicated that a
tremendous amount of data contains information stored in health monitoring systems,
intelligent cars, industrial plants, and intelligent buildings, as IoT devices were being
encrypted using an AES.

Khurana and Kumar [8] presented a multiset of state vectors with an integral ‘n’
representing the number of bytes in the ciphertext and plaintext. The steps Khurana and
Kumar [8] demonstrated to finding the variants, distinguishing, and revealing the key
using a DC attack would considerably help the attacks of cryptographic algorithms such as
DES and AES. Nandan et al. [34] indicated that the Xilinx nexys 4 Artix 7 –FPGA board
and Xilinx ISE hardware suite using telosB sensor mote as an IoT device to sense room
temperature. Data collected by telosB sensor mote were found to be encrypted using an
AES algorithm [34]. Amrita et al. [21] indicated that the DC utilized similarities that exist
between differences in the input and output of a building block of an algorithm such
as Mixcolumn in an AES. In the response of a cryptographic algorithm such as an AES,
plaintext pairs with established differences were scrutinized [6]. Amrita et al. [21] used a
DC attack to exploit plaintext pairs and expose the probabilities to various subkeys bits.
Results indicated that an AES was then vulnerable to various attacks such as DC [21,22,26].
Amrita et al. [21] indicated that applicable improvements were accessible which, when
accurately implemented, could resolve these vulnerabilities at a high level. Other methods
such as hybrid attacks, man-in-the-middle attacks, and Denial of Services attacks were
making slow progress, but no successful attacks had been recorded [10,16,21]. Amrita
et al. [21] indicated that evolutions showed that an AES would not survive the expectancy
of the conventional algorithm suite recognized for confidential applications. Additionally,
Amrita et al. [21] indicated that evolutions could cause an AES an irrelevant preference
for confidential and extensive applications. Nonetheless, modernized secure strategical
communications tools such as IoT devices use programmable cryptographic algorithms
such as an AES [8,15,21].

Muthavhine and Sumbwanyambe [35] indicated that an AES was found being used
on IoT devices to secure sensors and encrypt contactless intelligent cards.

Rijmen [22] showed that cryptologists did not have enough time to develop a robust
128-bit cryptographic algorithm such as an AES. After intensive research, Rijmen [22]
found that the theoretical security level of algorithms like the AES candidates would be
2100 or less if approximately 5 to 10 years would be spent in the effort of severe DC attacks.
Clarity as a design principle was challenged on the risk of failure and resistance against
DC attacks [15,21,22]. Additionally, there were curiosities about the anxiety of mitigating
analysis and mitigating DC attacks. Rijmen [22] indicated that mitigations relied on the
opinion, and many programming languages were not yet supporting the Finite field as a
building block of the AES candidates. The S-Boxes were still a challenge to program in
hardware platforms. Alimi et al. [36] indicated that the DASH7 Alliance protocol provided
various layers of security in protocols Low Power Wide Area Networks (LPWAN) and was
being used as an activator network protocol embedded with a wireless sensor network.
Securing communication being established by the DASH7 Alliance protocol depended on
an AES-128 encryption scheme [36]. An AES-128 encryption algorithm was found driving
security in LoRa as an IoT device [36].

Sophia et al. [18] indicated that the security of the health department is a growing con-
cern of patients worldwide. The e-healthcare Remote Clinical Sensor Network supported
collecting the vital body information of individual terminalsusing sensors as IoT devices.

Jithendra and Shahana [29] indicated that the security of an algorithm was typi-
cally evaluated through the operation of different models of cryptanalysis methods. A

Cryptography 2022, 6, 11 18 of 33

cryptanalysis method employing impossible differentials for a cryptanalysis attack was
observed to be a feasible method for retrieving the secret keys of an algorithm such as
an AES [8,15,22,29]. Related keys were applied to increase rounds to apply unacceptable
conditions to minimize impossible cryptanalysis attack complexity [29]. Jithendra and
Shahana [29] introduced a new related-key and reduced round attack to measure an AES-
192 strength. Most of the attacks stopped at the seven-round attack presented earlier as
the better method [14,21,26,29]. Jithendra and Shahana [29] created an eight-round attack
utilizing a new relative key, which exposed the secrete keys with the lowest time complexity.
The VMware SD-WAN Edge was composed of VMware SD-WAN Dynamic Multipath
Optimization (DMPO) and an Extensive Application Recognition as IoT devices aggregated
on reoccurring links used to direct traffic across optimal links [17]. Additionally, traffic was
being led to other VMware SD-WAN Edges of different departments, private data centers,
universities, and offices, using an AES for secure communication [17].

Rouquette and Solnon [9] proposed Constraint Programming models to solve DC
attack problems on a cryptographic algorithm such as an AES. The models were more
effective than devoted approaches even though the program was cumbersome compared
to simple models and showed no scalability, and it was essential to introduce improved
constraints contemplated from cryptographic properties [6,22,26,29]. Rouquette and Sol-
non [9] introduced a global constraint that refined the mathematical modeling steps in an
understandable way and reformed the efficiency to improve implementation. Rouquette
and Solnon [9] also studied an AES complexity, introduced propagators, and practically
analyzed them on single-key and related-key cryptanalysis attack problems for Midori and
an AES algorithm [9]. The results showed that the global constraint permitted the calcu-
lation of Maximum Differential Characteristics (MDCs) at a higher speed than advanced
models (which were cumbersome to design a program) for single-key and related-key
cryptanalysis attacks on Midori, and additionally, for single-key cryptanalysis attacks on
an AES. Although, a related-key cryptanalysis attack on an AES failed to solve the two
biggest instances of an AES-192 within an acceptable quantity of time [9]. Ahamed et al. [4]
indicated that Secure Hashing Algorithm-256 and AES-256 were proposed to fulfill the
security of IoT devices. The data collected from IoT devices were found to be initially
encrypted using an AES-256 with an SHA-256 symmetric key, and finally, encrypted data
was being produced [4]. IoT devices transferred that encrypted data to the next layer
of security known as Message Queuing Telemetry Transport protocol, an ISO standard
(ISO/IEC PRF 20922) being used to transmit encrypted data. On the recipient side, the
encrypted data was being decrypted [4].

3. Research Methodology

The primary objective research of this study is to defend an AES algorithm discovered
on IoT devices against a DC attack. This study replaced an original 8-Bit-output S-Box and
the inverse Box of an AES algorithm with the newly generated 32-Bit-output S-Boxes. A
unique mathematical function called KDM is developed for the suitability of the newly
generated 32-Bit-output S-Boxes. The newly generated 32-Bit-output S-Boxes are inserted
on an AES algorithm to get more a desirable encryption and decryption process with the
protection against a DC attack. A KDM function is used to make the new 32-Bit S-Box
suitable for the new Modified AES Algorithm and confuse the attacker since it comprises
many mathematical modulo operators. Additionally, most mathematical modulo operators
are irreversible. A new modified AES algorithm is developed after embedding the newly
generated 32-Bit-output S-Boxes and a KDM function in an AES’s infrastructure. In this
study, the newly modified AES algorithm, with the newly generated 32-Bit-output S-Boxes
and a KDM function, is coined M_AES. The mode of operation of M_AES is very distinctive
and is related to an original AES algorithm since the strength, the encryption process, and
the resistance of the DC attacks is more substantial than an original AES algorithm found
on IoT devices. The research is conducted as follows:

Cryptography 2022, 6, 11 19 of 33

1. An original AES algorithm is found in IoT devices (such as cellphones, smart cards,
Machine to Machine (M2M), and sensors);

2. The accuracy of an original AES algorithm is validated and examined using test
vectors given in the literature review;

3. All the executed procedures on an original AES algorithm during DC attacks are
experimented and verified using C++;

4. Both an original 8-Bit-output S-Box and the inverse S-Box of an AES are converted to
the newly created 32-Bit-output S-Boxes;

5. The new KDM function is embedded in an original AES algorithm infrastructure
using C++. Refer to Figure 6;

6. All other functions using an S-Box and the inverse of 8-Bit-output from an original
AES algorithm are changed to use a KDM function with the newly 32-Bit-output
S-Boxes as an input of a KDM function. For instance, if

Output = C = Si(P). (1)

Note: Si(P) Equation (1) uses an 8-Bit-output S-Box. Equation (1) is substituted using
Equation (2).

KDM f unction(Si(P), Khumbelo), (2)

Si(P) Equation (2) uses a new 32-Bit-output S-Box because an AES S-Box and its
inverse are converted to give the new 32-Bit-output S-Boxes;

7. The possibility for the DC attacks is reconstructed on the M_AES algorithm. If the
DC attacks are still successful after a newly 32-Bit-output S-Box and a KDM function
has been embedded, and if it is furthermore achievable, steps three and four are
re-conducted;

8. If DC attacks are prevented in steps three, four, and five, then a new M_AES algorithm
embedded with a newly 32-Bit-output S-Box and a KDM function is accepted as a
M_AES algorithm.

The research methodology performed a Difference-Distribution Table more obstreper-
ous to block the attackers from discovering AES’s keys after DC attacks are applied. The
security of the M_AES algorithm depends on the size of the S-Boxes output bits and a KDM
function. The originals output bits of an AES’s S-Box and its inverse are low (8-Bit). It is
simple for intruders to attack such a kind of algorithm. A newly generated 32-Bit-output
S-Box and its inverse are employed to substitute all the 8-Bit-output S-Boxes and improve
the size of output bits from 8 to 32-bits for the M_AES algorithm that is used to improve
the output bits robust against DC attacks. Experiments showed that a new 32-Bit-output
S-Box and its inverse worked successfully to block DC attacks. At the same time, a KDM
function is used to make a new 32-Bit S-Box suitable for the new Modified AES Algo-
rithm and confuse the attacker since it comprises many mathematical modulo operators.
Additionally, most mathematical modulo operators are irreversible. The research method-
ology is outlined, utilizing the schematic diagram in Figure 7. The results successfully
prevented the construction of the Difference-Distribution Table and produced a complex
process to conduct DC attacks on the M_AES algorithm (refer to Figure 8). Comparing
Figures 1 and 8, the difference is a new 32-Bit-output S-Box, the inverse 32-Bit output S-Box,
and a KDM function. Consequently, the M_AES algorithm is found to be repellent to the
DC attacks. Refer to Figure 8.

An AES’s S-Box and its inverse were discovered to be 8x8, indicating that they have
8-Bit-inputs and 8-Bit-outputs, respectively. The research found that it is simple to construct
a Difference-Distribution Table utilizing these descriptions of the S-Boxes. For instance,
back to our example, a 4 × 4 S-Box illustrated in Table 1 yielded a Difference-Distribution
Table of 24 × 24 illustrated in Table 3 with high-probability components of detecting
secret key bits. Commonly, if an S-Box has X-Bit of inputs and Y-Bit of output, then
its Difference-Distribution Table, when created, will be a 2X × 2Y matrix. Hence, the
Difference-Distribution Table illustrated in Table 3, is shown to be 24 × 24. In this study, the

Cryptography 2022, 6, 11 20 of 33

C++ code is written to create a Difference-Distribution Table of 24 × 24 illustrated in Table 3
using Equation (2). The code proved to be simple for attacking any algorithm using a 4 × 4
S-Box illustrated in Table 1. Additionally, the code indicated that it is used to construct the
Difference-Distribution Table of 28 × 28, using 8 × 8 AES Box and its inverse is defined in
Figure 2.

To prevent the DC attacks, a new 32-Bit-output S-Box and its inverse are generated to
replace the 8 × 8 AES Box, and its inverse is defined in Figure 2.

For instance, an AES S-Box in Figure 2 is replaced with a new 32-Bit output of an
AES S-Box. An AES inverse S-Box in Figure 2 is replaced with the new 32-Bit output
of an AES inverse S-Box. A KDM function is constructed for the suitability of a new
32-Bit-output S-Box and its inverse in a new M_AES algorithm. A KDM function makes a
new 32-Bit S-Box suitable for the new Modified AES Algorithm and confuses the attacker
since it comprises many mathematical modulo operators. Additionally, most mathematical
modulo operators are irreversible. A new 32-Bit S-Box is resistant to the DC attacks (refer to
Figure 8). Comparing Figures 1 and 8, the M_AES algorithm shown in Figure 8 is resistant
to DC attacks compared with the AES algorithm shown in Figure 1.

Figure 7. Flowchart or schematic diagram of the research methodology.

Cryptography 2022, 6, 11 21 of 33

Figure 8. New modified AES (M_AES) algorithm with the encryption and decryption process.

4. Results and Analysis

On an AES, results showed that a DC attack was possible. The main components that
made all the possibilities of a DC attack were the size of the S-Boxes. An S-Box of an AES
was 8 × 8, indicating a 8-Bit input and a 8-Bit output. The Difference-Distribution Table
discovered that it was straightforward to create the Difference-Distribution Table utilizing
an 8 × 8 AES S-Box.

The study wrote a C++ program to create the Difference-Distribution Table of a 4 × 4,
a 6 × 4, a 8 × 8, and a 8 × 32 S-Box. The validation of code was tested using a simplified
DES’s S-Box of 4 × 4 given in Table 1, a 6 × 4 DES S-Box given in [37] page 12 and 13, an
8 × 8 AES S-Box given in Figure 2 and a new generated 8 × 32 S-Box of M_AES algorithm.
The aim of validating the code was to verify the correctness of the written C++ experimental
output Difference-Distribution Table compared to the theoretical outputs. Figure 2 shows
that no DDT was feasible to be constructed due to the high percentage of memory needed
to build DDT. No DDT and no DC attack occurred according to the definition and the
procedure of a DC attack.

The C++ Difference-Distribution Table of a 4 × 4 S-Box. The entities were the same
as in Table 3. Therefore, the C++ Difference-Distribution Table of 4 × 4 was executing the
correct results. The time taken to execute the C++ Difference-Distribution Table of a 4 × 4
S-Box was 0.2815 s. Note that the Difference-Distribution Table of a 4 × 4 S-Box is a matrix
of 24 × 24 = 16 × 16 matrix with 256 entities. For the C++ Difference-Distribution Table
of 6 × 4, and the entities were the same as in the theoretical Difference-Distribution Table
given in [37] pages 12 and 13. Therefore the C++ Difference-Distribution Table of 6 × 4 was
executing the correct results. The time taken to execute the C++ Difference-Distribution

Cryptography 2022, 6, 11 22 of 33

Table of a 6 × 4 S-Box was 1.2100 s. Note that the Difference-Distribution Table of a 6 × 4
S-Box is a matrix of 26 × 24 = 64 × 16 matrix with 1024 entities.

The experiment continues on an 8× 8 AES S-Box. Note that the Difference-Distribution
Table of an 8 × 8 AES S-Box is a matrix of 28 × 28 = 256 × 256 matrix with 65,536 entities.
To display an entire visible 256 × 256 matrix, 5 pages are needed.

The experiment continues on a newly generated 8 × 32 S-Box of M_AES algo-
rithm. The program crashed after 3 h before the Difference-Distribution Table was ex-
ecuted. No machine or computer could compute the Difference-Distribution Table of
28 × 232 = 256 × 4,294,967,296 matrix, expected to contain 1,099,511,627,776 entities. With-
out a Difference-Distribution Table, it was impossible to conduct a DC attack on a newly
generated 8 × 32 S-Box of M_AES algorithm.

A Difference-Distribution Table of a 4× 4 S-Box had the first entity of integer 16, which
is (24) since an S-Box needed four bits as the highest parameter. A number 16 is a byte
donated as 00010000 in binary. If each entity of a 4 × 4 S-Box Difference-Distribution Table
is treated as a byte, then memory needed to construct a 4 × 4 S-Box Difference-Distribution
Table was 8 bits × 256 = 256 bytes. Note that 256 is the number of entities displayed on
a 4 × 4 S-Box Difference-Distribution Table. A machine or computer can easily handle
4096 bytes.

Difference-Distribution Table of a 6 × 4 S-Box had the first entity of integer 64, which
is (26) since a S-Box needed six bits as the highest parameter. Number 64 is a byte donated
as 001000000 in binary. If each 6 × 4 S-Box Difference-Distribution Table entity is treated as
a byte, then the memory needed to construct a 6 × 4 S-Box Difference-Distribution Table
was 8 bits × 1024 = 1024 bytes. Note that 1024 is the number of entities displayed on
a 6 × 4 S-Box Difference-Distribution Table. A machine or computer can easily handle
1024 bytes.

A Difference-Distribution Table of an 8 × 8 S-Box had the first entity of integer 256,
which is (28) since an S-Box needed 8 bits as the highest parameter. A number 256 is a word
composed of 2 bytes donated as 0000000100000000 in binary. If each 8 × 8 S-Box Difference-
Distribution Table entity is treated as a word, then the memory needed to construct an
8 × 8 S-Box Difference-Distribution Table is 16 bits × 65,536 = 131,072 bytes. Note that
65,536 is the number of entities displayed on an 8 × 8 S-Box Difference-Distribution Table.
A machine or computer can handle 131,072 bytes.

From the above calculations, the study expected that the Difference-Distribution Table
of an 8 × 32 S-Box would have the first integer entity as 4,294,967,296, which is (232)
since an S-Box needed 32 bits as the highest parameter. 4,294,967,296 is a triple-word
composed of 5 bytes donated as 00000000100000000000000000000000000000000 in binary. If
each 8 × 32 S-Box Difference-Distribution Table entity were treated as a triple-word, then
the memory needed to construct an 8 × 32 S-Box Difference-Distribution Table would be
40 bits × 1,099,511,627,776 = 5,497,558,138,880 bytes. Note that 1,099,511,627,776 was an
expected number of entities displayed on an 8 × 32 S-Box Difference-Distribution Table. A
machine or computer could not easily handle a computation memory of 5,497,558,138,880
bytes of each entity. Hence the C++ Difference-Distribution Table of an 8 × 32 S-Box
program crashed before execution. All the findings were given in Tables 4–6. Comparison
of the findings were explained graphically using Figures 9–11.

Difference-Distribution Table of an AES S-Box was a table 28 rows × 28 columns with
great probabilities of figuring a key. The C++ program was written to create the Difference-
Distribution Table of an 8 × 8 AES S-Box. After investigating the procedure, the results
verified that it was feasible to attack an AES algorithm utilizing the Difference-Distribution
Table. The newly generated 32 output bits S-Boxes were used on an AES found on a IoT
devices to prevent a DC attack. Additionally, the novel approach of changing the 8 × 8
S-Boxes to be the 8 × 32 S-Boxes successfully blocks the DC attacks on an AES algorithm.
A KDM function is a new mathematically developed function, coined, and used purposely
in this study. A KDM function was never produced, defined, or utilized before by any
researcher except in this study. A KDM function was used to make the new 32-Bit S-Boxes

Cryptography 2022, 6, 11 23 of 33

suitable for the new Modified AES Algorithm and confuse the attacker since it comprised
many mathematical modulo operators. Additionally, most mathematical modulo operators
were irreversible.

A C++ program was written to create the Difference-Distribution Table of an 8 × 32
AES S-Box. The code crashed before constructing a Difference-Distribution Table of a new
S-Box, which was assumed to be a 28 × 232 matrix. The results showed that it was infeasible
to create a Difference-Distribution Table of a new 8× 32 AES S-Box with an output of 32-Bit
because a computer has limited memory compared to the required memory to construct
a Difference-Distribution Table of a new S-Box. The first trial was to apply an array of a
232 = 4, 294, 967, 296 size; the results showed that input 28 = 256 also had to be added. This
prevented creating a Difference-Distribution Table of an 8 × 32 AES S-Box due to memory
constraints required by the computer.

The program of creating a Difference-Distribution Table of a new S-Box failed before
the construction of a Difference-Distribution Table due to memory needed to run, dis-
play and execute a 256 × 4, 294, 967, 296 matrix by a computer. Calculation of 232 × 256
required more than 264 memory allocation, which is impracticable when using a com-
puter. The research also validated that it was impractical to create a table or any matrix of
256 × 4, 294, 967, 296 due to memory constraints allocated in a computer. The boundaries
of memory were 264 in Microsoft (Hp) and Macintosh (Apple) computers, which caused
a Difference-Distribution Table difficulty for the DC attack. To get the probabilities of
calculating a key of 32-Bit output S-Box was impractical. Therefore, the results prevented
Difference-Distribution Table construction using the newly 32-Bit output S-Boxes and
a KDM function that was a new mathematically developed function, coined, and used
purposely in this study. A KDM function was never produced, defined, or utilized before
by any researcher except in this study. A KDM was generated for the suitability of newly
developed the 32-Bit-output S-Boxes in a freshly modified AES algorithm. The study used a
KDM function to make the new 32-Bit S-Box suitable for the new Modified AES Algorithm
and confuse the attacker since it comprises many mathematical modulo operators. Addi-
tionally, most mathematical modulo operators are irreversible. For further information
about a KDM function, refer to Figure 6.

It was found that no Difference-Distribution Table resulted in a DC attack. Conse-
quently, in this study, the results intensified the protection of an AES against a DC attack.

To confirm that all methods of the DC attack using a Difference-Distribution Table
were conducted, the C++ executable file of a Difference-Distribution Table defined in
Table 3. The study conducted the experimental DC attack on Simplified-DES and AES. In
this paper, the study explains only portions of a round of the practical DC attack. The rest
is the repetition of the same process on each round to complete an entire attack.

4.1. Experimental Confirmation of the DC Attack on Simplified-DES

The study first conducted the DC attack on a Simplified-DES to verify the attack before
attacking AES. Consider the following mathematical functions: ciphertext1 = plaintext1⊕
key By using the difference of a ciphertext pair of ciphertext, the calculation would have
dropped out the key required, giving us no knowledge about the key: ciphertext1 ⊕
ciphertext2 = plaintext1⊕ key⊕ plaintext2⊕ key ciphertext1⊕ ciphertext2 = plaintext1⊕
plaintext2.

The above function shows that the difference between the plaintext is equivalent to
the difference between the ciphertext.

Note that Simplified-DES is not a linear algorithm function. Therefore, the difference
between plaintext is not the same as the difference between ciphertext. Considering
Simplified-DES, the difference in a plaintext pair for a specific difference of a ciphertext pair
is determined by the key value. From the Difference-Distribution Table given in Table 3,
plaintext1 ⊕ plaintext2 = ∆P ciphertext1 ⊕ ciphertext2 = ∆C With the guidance of
the Difference-Distribution Table the study got the output and input values from Table 3.
For instance, when ∆P = 12 and ∆C = 3, the possible of key occurrence is two. That

Cryptography 2022, 6, 11 24 of 33

is ∆P = 6⊕ 10 or ∆P = 10⊕ 6. Therefore possible two input pairs are (6, 10) and
(10, 6). Consider input pair (6, 10), then plaintext1 = 6, plaintext2 = 10 and assume
then ciphertext_1 = 3 and ciphertext2 = 0 therefore ∆C = 3. If the input difference of a
4 × 4 S-Box is denoted by H = H1 ⊕ H2, let us assume that H1 = plaintext1 ⊕ key and
H2 = plaintext2 ⊕ key. From the above analysis, the key has no influence on the input
difference value because is the same constant value, therefore: ∆P = H = 6⊕ 10 = 12
meaning H = 12 = 4⊕ 8 if ∆C is assumed to be equal to 0 using the Difference-Distribution
table. H is a pair of (H1, H2) = (4, 8). that is H = 12 = 4⊕ 8 key = H ⊕ ∆P therefore
key = H1 ⊕ plaintext1 and key = H1 ⊕ plaintext2. Substituting the values key = H1 ⊕
plaintext1 = 4 ⊕ 6 = 2 and key = H1 ⊕ plaintext2 = 4 ⊕ 10 = 14. Alternatively
key = H ⊕ ∆P therefore key = H2 ⊕ plaintext1 and key = H2 ⊕ plaintext2. Substituting
the values key = H2⊕ plaintext1 = 8⊕ 6 = 14 and key = H1⊕ plaintext2 = 8⊕ 10 = 2.
Therefore two possible key values are found, that is, 2 and 4. Each key is tested to give the
value of ∆C, the one that gives the same value of a pair is the right key. In this case, two is
the right tested key. Therefore key = 2. With this information, the study confirmed that the
Simplified-DES is crackable using the DC attack. The DC attack managed to crack both
two rounds of a Simplified DES using a ciphertext pair of 210 with a time complexity of
216.Then, the same procedure was used on DES.

Table 7 shows that no DDT was feasible to be constructed due to the high percentage
of memory needed to build DDT. No DDT and no DC attack occurred according to the
definition and the procedure of a DC attack. Refer to Table 7 and Figure 12.

4.2. Experimental Confirmation of the DC Attack on DES

The study used an input pair ∆P to a DES S-Box as (1, 35) where ∆P = Plaintext1 ⊕
Plaintext2 = 1⊕ 35, therefore ∆P = 34. Suppose, ∆C = D. ∆P = 34, regardless
of the key value because H1 = Plaintext1 ⊕ key and H2 = Plaintext2 ⊕ key, therefore
H = H1 ⊕ H2 H = (Plaintext1 ⊕ key)⊕ (Plaintext2 ⊕ key) H = Plaintext1 ⊕ Plaintext2
H = ∆P. Also H1 = ∆P⊕ key and key = H ⊕ DeltaP. Using the Difference-Distribution
Table, the possible key occurrence is 8, which is {07, 11, 17, 1D, 23, 25, 29, 33}.

If the same procedure was repeated when input pair ∆P to a DES S-Box as (21, 15),
but still keeping ∆P = 34 since 21⊕ 15 = 34, and change ∆C = 3 instead of using
∆C = D. Using the Difference-Distribution Table, the possible key occurrence is 6, which
is {00, 14, 17, 20, 23, 34}. The accurate key value should visible in both of these groups:
{07, 11, 17, 1D, 23, 25, 29, 33} and {00, 14, 17, 20, 23, 34} which {17, 23} either 17 or 23 is the
right key value. Each key is tested to give the value of ∆C, the one that gives the same
value of pair is the right key. In this case, 17 is the right tested key. The DC attack managed
to crack all 16 rounds of DES using a ciphertext pair of 214 with a time complexity of 258.
Then, the same procedure was used on AES. Refer to Table 7 and Figure 12.

4.3. Experimental Confirmation of the DC Attack on AES

The study determines a difference in a byte. A byte has 8 bits, then 28 = 256 possible
ciphertexts have to be generated. Once all 256 possible ciphertexts have been developed, the
last subkey can be verified using the Difference-Distribution Table hypotheses. Hypotheses
testing is accomplished by examining conditions on the final subkey byte-by-byte. The
study analyses that the input pair to the final round is equal to zero. The calculation returns
the accurate subkey. The study also expects one extra wrong hypothesis byte-by-byte,
given that a random distribution has an input pair equal to zero with a probability of 1/256
from the Difference-Distribution Table hypotheses. The analysis resulted in an anticipated
total number of key assumptions for the final subkey of 216. The DC attack managed to
crack 7 rounds out 10 using a ciphertext pair of 292 with a time complexity of 2186. Refer to
Table 7 and Figure 12.

Cryptography 2022, 6, 11 25 of 33

4.4. Experimental Confirmation of the DC Attack on M_AES

M_AES utilized a new 32-bit S-box which failed to execute the C++ Difference-
Distribution Table from different machines and computers due to the memory constraints
of different machines and computers. No machine or computer could compute the
Difference-Distribution Table of 28 × 232 = 256 × 4,294,967,296 matrix, expected to contain
1,099,511,627,776 entities. Without a Difference-Distribution Table, it was impossible to
conduct the DC attack on a newly generated 8 × 32 S-Box of M_AES algorithm. No round
out of 16 was cracked using the DC attack due to a new 32-bit output S-Box, which blocked
the construction of the Difference-Distribution Table due to machine memory constraints.
Refer to Table 7 and Figure 12.

Analysis of how Table 3 was theoretically created was investigated and written in
practical C++ code for validation, testing, and verification (refer to Table 3) Table 3 had the
same probability entities. Table 3 was a theoretical Difference-Distribution Table, which
was used to verify and confirm that the investigation of creating a Difference-Distribution
Table was conducted with all the methods of the DC attack on an AES.

The code was also applied to both AES and M_AES to test whether the DC attack was
possible. All the findings were given in Tables 4 and 5. Table 4 showed all the construction
of the Difference-Distribution Table before and after a Novel Approach of using the 32-Bit
S-Boxes were applied. The study used a KDM function to make a new 32-Bit S-Box suitable
for the new Modified AES Algorithm and confuse the attacker since it comprises many
mathematical modulo operators. Additionally, most mathematical modulo operators are
irreversible. Table 5 showed the results of key bits discovery before and after a novel
approach of using a KDM function and the 32-Bit S-Boxes was applied.

In this study, M_AES was resistant to the DC attack and was constructed using the
new 8 × 32 S-Boxes. The study used a KDM function to make a new 32-Bit S-Box suitable
for the new Modified AES Algorithm and confuse the attacker since it comprises many
mathematical modulo operators. Additionally, most mathematical modulo operators are
irreversible. New M_AES was adequate to decrypt and encrypt successfully after using
a KDM function and the new 8 × 32 S-Boxes. The code of newly M_AES is available on
request. The C++ code showed that the DC attack was possible to a standard AES on
several rounds before using a KDM function and the new 8 × 32 S-Boxes. However, after
using a KDM function and the new 8 × 32 S-Boxes as a novelty, the C++ code showed
that the DC attack was prevented successfully on M_AES. Additionally, it was difficult
to construct a Difference-Distribution Table of 232 rows and columns matrix due to the
memory limitation of a computer. All the findings were given in Tables 4–6. Comparison
of the findings were explained graphically using Figures 9–11.

Table 4. Results of feasibility of creating Difference-Distribution Table before and after a novel
approach of using a KDM function and the 32-Bit S-Boxes were applied.

Name of
Algorithms

Before a Novel
Approach of
Using a KDM
Function and the
32-Bit S-Boxes
Were Applied

After a Novel
Approach of
Using a KDM
Function and the
32-Bit S-Boxes
Were Applied

AES

The construction of
a Difference-
Distribution Table
was feasible.

The construction of
a Difference-
Distribution Table
was infeasible due
to the memory
limitation of the
computer.

Cryptography 2022, 6, 11 26 of 33

Table 5. Results of key bits discovery before and a novel approach of using a KDM function and the
32-Bit S-Boxes were applied.

Name of
Algorithms

Before a Novel
Approach of
Using a KDM
Function and the
32-Bit S-Boxes
Were Applied

After a Novel
Approach of
Using a KDM
Function and the
32-Bit S-Boxes
Were Applied

AES
The key was
discovered in many
rounds.

No key bits were
discovered or
detected in all
rounds of an AES.

Table 6. Results of creating a Difference-Distribution Table (DDT).

The Size
of the
S-Box

Time Taken (in
Seconds) to a
Create Difference-
Distribution Table
(DDT)

Number
of Entities
Required

Memory
(in Bytes)
Needed

4 × 4 0.2815 256 256

6 × 4 1.2100 1024 1024

8 × 8 23.6800 65,536 131,073

8 × 32 ∞ 1,099,511,627,776 5,497,558,138,880

Table 7. Results of a differential cryptanalysis attack.

Name of Algorithm Number of Rounds Attacked during a
DC Attack Process in %

Simplified DES (S-DES) 2 out 2 or 100%

DES 16 out 16 or 100%

AES 7 out 10 or 70%

M_AES 0 out 10 or 0%

In cryptography, the Avalanche Effect is the acceptable property of algorithms [38].
If one input bit is changed (flipped), the output bits have to change significantly. Such a
slight modification in either the plaintext or the key should create an extreme difference
in the ciphertext in robust algorithms [38]. The Avalanche Effect is advanced to get a
procedure called the Strict Avalanche Criterion (SAC) to test the encryption strength of the
algorithm [39]. The SAC is fulfilled if a single input bit, either the plaintext or the key, yields
the change of ciphertext output bits of 50% probability [39]. This study conducted the
Avalanche Effect on S-DES, DES, AES, and M_AES to get SAC. The results showed that the
AES and a newly generated M_AES algorithm had a better SAC property than S-DES and
DES since the Avalanche Effect of M_AES on both key and plaintext were approximately a
50% probability compared to S-DES and DES (refer to Table 8)

Cryptography 2022, 6, 11 27 of 33

Figure 9. Experimental time taken to create a DDT.

Figure 10. Experimental number of entities to create a DDT.

Cryptography 2022, 6, 11 28 of 33

Figure 11. Experimental memory required to create DDT.

Figure 12. Experimental number of rounds cracked during a differential cryptanalysis attack.

In cryptography, a tool called the Strict Avalanche Criterion (SAC) is applied to decide
if an algorithm is adequate to be powerful or not using the interpretation of the output
of the Avalanche Effect. The SAC is satisfied if, whenever a 1-Bit input is flipped, the
output bits should vary with approximately 50% (the range between 45% and 55%) of
the Avalanche Effect probability. For example, take a sample of algorithms, say A and B,

Cryptography 2022, 6, 11 29 of 33

which have 15% and 25% of the Avalanche Effect probability, respectively. Both A and B
fail the criterion since their Avalanche Effect is considerably less than approximately 50%.
Additionally, if an algorithm has 85%, then according to the SAC definition, that distinct
algorithm fails the criterion since 85% is considerably greater than approximately 50% (the
range between 45% and 55%) of the Avalanche Effect probability. Therefore, an algorithm
with roughly 50% has a higher encryption strength than other algorithms with considerably
less and more significance than approximately 50%. The results showed that the AES and
a newly generated M_AES algorithm had a better SAC property than S-DES and DES
since the Avalanche Effect of M_AES on both key and plaintext were approximately a 50%
probability compared to S-DES and DES (Refer to Table 8)

All algorithms (S-DES, DES, AES, and M_AES) managed to encrypt and decrypt the
same image, but encrypted images were not the same (refer to Figure 13).

Table 8. The avalanche effect of the key and plaintext bit that were flipped.

Name of Algorithm Plaintext Avalanche Effect
in Percentage

Key Avalanche Effect in
Percentage

Simplified DES (S-DES) 25 25

DES 60.4003 44.2138

AES 50.0488 50.2807

M_AES 49.9023 50.2807

Figure 13. Image Encryption of All Algorithm.

Cryptography 2022, 6, 11 30 of 33

5. Conclusions and Future Work

The study confirms that an AES used on IoT devices is vulnerable to DC attacks. The
sizes of a AES S-Box and the inverse are 8 × 8. The study reveals that these S-Boxes are the
first building blocks applied during a DC attack because the output size is smaller than
32-Bit. An S-Box of 8 × 8 gives a Difference-Distribution Table of 28 rows × 28 columns,
which is a sound probability table for an attacker to conduct the DC attack.

This study confirms that it is convincing to prevent all schemes from administering
the DC attack on an AES algorithm commonly utilized on IoT devices by employing a
novel approach by using the newly generated 32-Bit S-Boxes AES. The study used a KDM
function to make a new 32-Bit S-Box suitable for the new Modified AES Algorithm and
confuse the attacker since it comprises many mathematical modulo operators. Additionally,
most mathematical modulo operators are irreversible.

The study examines how to make a cryptanalysis attack more challenging to create
and to make it more difficult for the intruder to calculate the keys of an AES after using a
KDM function and the newly generated 32-Bit S-Boxes. Results confirm that the security
of any algorithm such as an AES relies on the size of the output of the S-Boxes. If the size
of the output bits of an S-Box is small, it is easy to reveal the secret key of that particular
algorithm. The study confirms that a novel approach using a KDM function and the newly
generated 32-Bit S-Boxes successfully confuses and prevents the DC attacks, respectively.
The results managed to stop the Difference-Distribution Table construction successfully.
Additionally, the results were cumbersome while administering the DC attack.

In the future, the succeeding research will be on how to block IoT devices against
other kinds of attacks such Boomerang attacks using a KDM function and the 32-bit
output S-Boxes.

Author Contributions: Supervision, M.S.; writing—original draft, K.D.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2022, 6, 11 31 of 33

Appendix A

Figure A1. Flowchart of a KDM function.

References
1. Tunstall, M. Practical complexity Differential Cryptanalysis and fault analysis of AES. J. Cryptogr. Eng. 2011, 1, 219–230. [CrossRef]
2. Muthavhine, K.D.; Sumbwanyambe, M. An Analysis and a Comparative Study of Cryptographic Algorithms used on the

Internet of Things (IoT) Based on Avalanche Effect. In Proceedings of the 2018 International Conference on Information and
Communications Technology, Yogyakarta, Indonesia, 6–7 March 2018; pp. 1–7.

3. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. Preventing DoS Attacks in IoT Using AES. Researchgate 2018, 9, 55–60.
4. Ahamed, J.; Zahid, M.D.; Ahmad, K. AES and MQTT based security system in the internet of Things. J. Discret. Math. Sci.

Cryptogr. 2020, 22, 1589–1598. [CrossRef]
5. Grassi, L. Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on Round-Reduced AES; International

Association for Cryptologic Research: Lyon, France, 2017; pp. 1–66.

http://doi.org/10.1007/s13389-011-0018-7
http://dx.doi.org/10.1080/09720529.2019.1696553

Cryptography 2022, 6, 11 32 of 33

6. Ankele, R.; Banik, S.; Chakraborti, A.; List, E. Related-Key Impossible-Differential Attack on Reduced-Round Skinny. In 2017
Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–11.

7. Heys, H.M. A Tutorial on Linear and Differential Cryptanalysis; Computer Science Department at Boston College: Philadelphia, PA,
USA, 2017; pp. 1–33.

8. Khurana, M.; Kumar, M. Variants of Differential and Linear Cryptanalysis. Int. J. Comput. Appl. 2015, 18, 20–29. [CrossRef]
9. Rouquette, L.; Solnon, C. Abstract XOR: A Global Constraint Dedicated to Differential Cryptanalysis. In Proceedings of the 2020

Constraint Programming, Louvain-la-Neuve, Belgium, 7–11 September 2020; pp. 566–584.
10. Z’aba, M.R.; Maarof, M.A. A Survey on the Cryptanalysis of the Advanced Encryption Standard; 2016 Core Sematic Scholar: Rome,

Italy, 2006; pp. 97–102.
11. Rokan, J.; Majeed, G.H.; Farhan, A. Internet of Things Security using New Chaotic System and Lightweight AES. J. Qadisiyah

Comput. Sci. Math. 2019, 11, 45–52. [CrossRef]
12. Munoz, P.S.; Tran, N.; Craig, B.; Dezfouli, B.; Liu, Y. Analyzing the Resource Utilization of AES Encryption on IoT Devices. In

Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Asia-Pacific,
Honolulu, HI, USA, 12–15 November 2018; pp. 1–8.

13. Saraiva, D.A.F.; Leithardt, V.R.Q.; de Paula, D.; Mendes, A.S.; González, G.V.; Crocker, P. PRISEC: Comparison of Symmetric Key
Algorithms for IoT Devices. Sensors 2019, 19, 4312. [CrossRef] [PubMed]

14. Gemellia, A.D.A. Differential Attack on Mini-AES. AIP Conf. Proc. 2012, 1450, 222–229. [CrossRef]
15. Simmons, S. Algebraic Cryptanalysis of Simplified AES. Cryptologia 2019, 33, 305–314. [CrossRef]
16. Lacko-Bartosova, L. Linear and Differential Cryptanalysis of Reduced-Round AES. Tatra Mt. Math. Publ. 2011, 50, 51–61.

[CrossRef]
17. VMware SD-WAN. VMware SD-WAN Edge Platform Specifications; Velocloud: Los Altos, CA, USA, 2020; pp. 1–14.
18. Sophia, B.; Jeril, L.; Harnesh, M.K.; Kumar, V.L. A Secure Remote Clinical Sensor Network Approach for Privacy Enhancement. J.

Phys. Conf. Ser. 2021, 1916, 012107. [CrossRef]
19. Kak, A. AES: The Advanced Encryption Standard; Engineering Purdue University: West Lafayette, IN, USA, 2021; pp. 1–92.
20. Ariffin, N.A.M.; Ashawesh, A.Y.A. Enhanced AES Algorithm Based on 14 Rounds in Securing Data and Minimizing Processing

Time. J. Phys. Conf. Ser. 2021, 1793, 1–9.
21. Amrita, K.; Gupta, N.; Mishra, R. An Overview of Cryptanalysis on AES. Int. J. Adv. Res. Sci. Eng. (IJARSE) 2018, 2014, 368–649.
22. Rijmen, V. 10 Years of Rijndael; Research Group Cosic and Ku Leuven, Heverlee (Leuven): Leuven, Belgium, 2021; pp. 1–70.
23. Biham, E.; Keller, N. Cryptanalysis of Reduced Variants of Rijndael. In Proceedings of the 3rd AES Candidate Conference, New

York, NY, USA, 13–14 April 2000.
24. Z’aba, M.R.; Jamil., M.; Rusli, M.E.; Jamaludin, Z.; Yasir, A.A.M. I-PRESENTTM: An Involutive Lightweight Block Cipher. J. Inf.

Secur. 2014, 5, 1–9.
25. Cheon, J.H.; Kim, M.; Kim, K.; Lee, J.Y.; Kang, S. Improved Impossible Differential Cryptanalysis of Rijndael and Crypton. In

Proceedings of the Information Security and Cryptology—ICISC 2001: 4th International Conference, Seoul, Korea, 6–7 December 2001;
Springer: Heidelberg/Berlin, Germany, 2002; pp. 39–49.

26. Raphael, C.; Phan, W. Impossible Differential Cryptanalysis of 7-round Advanced Encryption Standard (AES). Inf. Process. Lett.
2004, 2288, 33–38.

27. Jakimoski, G.; Desmedt, Y. Related-Key Differential Cryptanalysis of 192-bit Key AES Variants. In Proceedings of the International
Workshop on Selected Areas in Cryptography, Ottawa, ON, Canada, 14–15 August 2003; pp. 208–221.

28. Hu, Z.; He, Z. A New Method for Impossible Differential Cryptanalysis of 7-Round AES-192. In Proceedings of the 2011 2nd
International Symposium on Intelligence Information Processing and Trusted Computing, Washington, DC, USA, 22–23 October
2011; pp. 1–12.

29. Jithendra, K.B.; Shahana, T.K. New Results in Related Key Impossible Differential Cryptanalysis on Reduced Round AES-192. In
Proceedings of the 2018 International Conference on Advances in Communication and Computing Technology, Sangamner, India,
8–9 February 2018; pp. 1–28.

30. Alshammari, B.M.; Guesmi, R.; Guesmi, T.; Alsaif, H.; Alzamil, A. Implementing a Symmetric Lightweight Cryptosystem in
Highly Constrained IoT Devices by Using a Chaotic S-Box. Symmetry 2021, 13, 129. [CrossRef]

31. Rekha, S.S.; Saravanan, P. Low-Cost AES-128 Implementation for Edge Devices in IoT Applications. J. Circuits Syst. Comput. 2019,
28, 1950062. [CrossRef]

32. Lorawan Security. Full End–to–End Encryption for IoT Application Providers; Lora-Alliance: Paris, France, 2020; pp. 1–4.
33. Farooq, U.; Hasan, N.U.; Baig, I.; Shehzad, N. Efficient adaptive framework for securing the Internet of Things devices. EURASIP

J. Wirel. Commun. Netw. 2019, 2019, 1–16. [CrossRef]
34. Nandan, V.; Rao, R.G.S. An Efficient AES Algorithm for IoT-based Applications. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 9,

1939–1944.
35. Mustafa, G.; Ashraf, R.; Ashraf, R.; Ayzed, M.; Muhammad, M.; Mirza, A. A Review of Data Security and CryptographicTech-

niques in IoT Based Devices. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems,
New York, NY, USA, 26–27 June 2018; pp. 1–9.

36. Alimi, K.O.A.; Ouahada, K.; Abu-Mahfouz, A.M.; Rimer, S. A Survey on the Security of Low Power Wide Area Networks: Threats,
Challenges, and Potential Solutions. Sensors 2020, 20, 5800. [CrossRef] [PubMed]

http://dx.doi.org/10.5120/ijca2015907534
http://dx.doi.org/10.29304/jqcm.2019.11.2.571
http://dx.doi.org/10.3390/s19194312
http://www.ncbi.nlm.nih.gov/pubmed/31590354
http://dx.doi.org/10.1063/1.4724144
http://dx.doi.org/10.1080/01611190903185328
http://dx.doi.org/10.2478/v10127-011-0036-y
http://dx.doi.org/10.1088/1742-6596/1916/1/012107
http://dx.doi.org/10.3390/sym13010129
http://dx.doi.org/10.1142/S0218126619500622
http://dx.doi.org/10.1186/s13638-019-1531-0
http://dx.doi.org/10.3390/s20205800
http://www.ncbi.nlm.nih.gov/pubmed/33066336

Cryptography 2022, 6, 11 33 of 33

37. Biham, E.; Shamir, A. Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptol. 1991, 4, 3–72. [CrossRef]
38. Subandi, A.; Lydia, M.S.; Sembiring, R.W. Analysis of RC6-Lite Implementation for Data Encryption. In Proceedings of the 3rd

International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology,
Medan, Indonesia, 4–6 May 2018; pp. 42–47.

39. Sanap, S.D.; More, V. Performance Analysis of Encryption Techniques Based on Avalanche effect and Strict Avalanche Criterion.
In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication, Coimbatore, India, 13–14 May
2021; pp. 676–679.

http://dx.doi.org/10.1007/BF00630563

	Introduction
	An AES Algorithm
	 DC Attack
	A KDM Function
	Problem Statement
	Theoretical Confirmation of DC Attack on AES
	The Objective of the Study

	Literature Review
	Research Methodology
	Results and Analysis
	Experimental Confirmation of the DC Attack on Simplified-DES
	Experimental Confirmation of the DC Attack on DES
	Experimental Confirmation of the DC Attack on AES
	Experimental Confirmation of the DC Attack on M_AES

	Conclusions and Future Work
	
	References

