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Abstract: We propose a new functional encryption for pattern matching scheme with a hidden
string. In functional encryption for pattern matching (FEPM), access to a message is controlled by its
description and a private key that is used to evaluate the description for decryption. In particular,
the description with which the ciphertext is associated is an arbitrary string w and the ciphertext
can only be decrypted if its description matches the predicate of a private key which is also a string.
Therefore, it provides fine-grained access control through pattern matching alone. Unlike related
schemes in the literature, our scheme hides the description that the ciphertext is associated with.
In many practical scenarios, the description of the ciphertext cannot be public information as an
attacker may abuse the message description to identify the data owner or classify the target ciphertext
before decrypting it. Moreover, some data owners may not agree to reveal any ciphertext information
since it simply gives greater advantage to the adversary. In this paper, we introduce the first FEPM
scheme with a hidden string, such that the adversary cannot get any information about the ciphertext
from its description. The security of our scheme is formally analyzed. The proposed scheme provides
both confidentiality and anonymity while maintaining its expressiveness. We prove these security
properties under the interactive general Diffie–Hellman assumption (i-GDH) and a static assumption
introduced in this paper.

Keywords: functional encryption; pattern matching system; searchable encryption

1. Introduction

Functional encryption was introduced to provide fine-grained access control for sensi-
tive data. In particular, functional encryption for regular language (FERL) [1] was proposed
by Waters et al. In FERL, a private key is associated with Deterministic Finite Automata
(DFA) and a ciphertext is associated with a string. Access to an encrypted message is
controlled by a descriptive string, such as a sentence or a genetic sequence. If the string
associated with the ciphertext is satisfied by the DFA of a private key, the one holding the
private key can decrypt the ciphertext. For example, medical data can be encrypted under
the genetic sequence of a patient. A doctor who seeks a specific genetic disease can decrypt
detailed medical data of patients by matching his private key, which is based on specific
genetic sequences, to the genetic sequence that is used as the description of the ciphertext.

Although FERL is versatile, its usage is limited since the ciphertext description is not
hidden. In FERL, the description of the ciphertext must be public information. This restricts
the usefulness of FERL, particularly when the ciphertext description is also sensitive. For
instance, based on the previous example, the genetic sequences of a patient can also be
considered to be sensitive information even though the hospital still wants access control
based on genetic sequences as it is a good indicator to triage patients. In this scenario, it
would be difficult to use FERL as an encryption algorithm. Therefore, hiding the ciphertext
description is of interest in public key encryption. Due to this reason, several public key
primitives, including anonymous identity based encryption [2,3], function hiding inner
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production encryption [4–10], and hidden policy attribute based encryption [11–13], have
been proposed to hide all information associated with the ciphertext.

In our paper, we provide functional encryption for pattern matching (FEPM) with a
hidden string. Like FERL, FEPM can also be used for fine-grained access control over a
string. In our proposed scheme, an arbitrary string is used to control access to the ciphertext.
Therefore, it maintains the fine-grained access control that FERL provides. The difference
between FERL and FEPM is that a private key is associated with a string, which is the
predicate. In particular, the string used to describe a ciphertext is hidden. Hence, it is useful
in the more restrictive scenario where the description of the ciphertext is also sensitive.

We propose a new FEPM scheme with a hidden string. Prior to our work, there is no
functional encryption scheme that uses a hidden string (natural language) for access control
of a ciphertext. Therefore, our scheme makes the following contributions to existing work:

• Our scheme is fully expressive such that it supports any string that describes the
ciphertext. In our scheme, another string is used as a predicate, which is associated
with a private key. This enables us to select any language, from binary to alphabet
letters, for the description and the predicate. For example, we can use a binary string
of which characters are simply 0 and 1, and also a string which consists of English
alphabets A–Z. Moreover, the predicate can consist of wildcard letters to increase the
flexibility of pattern matching.

• In our scheme, the size of the ciphertext only increases linearly with the size of the
description, which is an arbitrary string that a ciphertext is associated with. Therefore,
it can support a long description, such as a sentence or genetic sequences. Moreover,
our scheme does not use Deterministic Finite Automata (DFA) for a private key.
Instead, a private key is also associated with a string. Therefore, it does not require
evaluation of the description from beginning to end. This may significantly reduce
the evaluation time for decryption if the location where two strings, a predicate and a
description, match are given.

• We provide formal security proofs of our scheme. In particular, we show that both
confidentiality and anonymity of the encrypted message and of a hidden string
property hold by providing formal security proofs in our security analysis.

We organize the rest of the paper as follows: We provide important related work
in Section 2. We explain the essential preliminary knowledge needed to understand our
proposed scheme in Section 3. In Section 4, we introduce a pattern matching system which
our work is motivated from. In Section 5, we introduce our FEPM scheme. We prove its
security in Section 6 and we conclude our paper in Section 7.

2. Related Work

Functional encryption for regular language (FERL) was introduced by Waters et al. [1].
In the FERL proposed by Waters et al., a private key is associated with Deterministic Finite
Automata (DFA) and its ciphertext is associated with a string. If the string in the ciphertext
is expressed by DFA of a private key, the key owner can decrypt the message encrypted
in the ciphertext. More recently, Attrapadung introduced an adaptively secure FERL [14]
using dual system encryption [15]. Although both schemes are quite flexible as access
to the encrypted message is controlled by DFA, which can evaluate a regular language
and ciphertext associated with a string, there is no scheme for hiding the string that is the
description of the ciphertext.

Hidden policy attribute based encryption (ABE) [4–10] was introduced to hide an
access policy controlling the access to the encrypted message. Those schemes also hide the
description, which is an access policy for the ciphertext. In particular, in a Ciphertext Policy
ABE (CP-ABE) scheme, the description consists of attributes that must be well defined. For
example, the ciphertext can be associated with two attributes “Computer” AND “Science”.
A private key must also have exactly the same attributes to match them for decryption. If
the private key is based on “Compute” (without r) or “Sci”, it cannot be used to decrypt
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the ciphertext. Similarly, function hiding inner product encryption [11–13] was introduced
for hiding the description associated with a ciphertext for inner product encryption.

A searchable encryption with shiftable trapdoor scheme was proposed by
Desmoulins et al. [16] as a pattern matching system over encrypted data. The proposed
scheme uses a shiftable trapdoor and matches any string to the encrypted data. Therefore,
its search method is as flexible as that of our functional encryption for pattern matching
(FEPM). More recently, Bkakria et al. [17] proposed a system that improves both efficiency
and security. This achieves an anonymous trapdoor such that a string corresponding to a
trapdoor is hidden. It also significantly improves the computation for matching keywords.
Moreover, Kim et al. [18] showed that its efficiency can be further improved.

Middlebox searchable encryption [19–22] can also be used to detect a keyword from
encrypted data. In particular, the schemes from [19–21] allow the proposed systems to
match a pattern to the encrypted traffic using only AES encryption, which is fast, and show
good matching performance. However, those schemes need to tokenize a message before
encrypting it. This significantly increases the size of the ciphertext and prevents flexible
search compared to a pattern matching system and FEPM.

Pattern matching systems and middlebox searchable encryption only have a matching
algorithm and do not have a decryption algorithm. Therefore, they can only be used for
matching keywords to data. In the case of a pattern matching system, decryption can be
performed by giving tokens for all alphabet letters. However, it cannot be used for access
control as it only detects keywords or decrypts the entire data. Sophisticated access control
that provides functional encryption cannot be implemented in those schemes. We compare
FEPM to other encryption primitives in Table 1.

Table 1. Comparison with other primitives.

Function Hidden Policy Decryption Flexible Predicate

FERL [1,14] DFA No Yes Yes
HP-ABE [4–10] Boolean policy Yes Yes No
MBSE [19–22] Matching Yes No No

PA [16–18] Matching Yes No Yes

FEPM (Ours) Matching Yes Yes Yes

3. Preliminaries

We introduce important preliminaries that are needed to understand functional en-
cryption for pattern matching (FEPM).

3.1. Bilinear Pairing

Let set G be a group generator that takes a security parameter λ as input and outputs
a description of a bilinear group (p, G1, G2, GT , e) where p is a prime. G1, G2 and GT are
cyclic groups of order p, and e : G1×G2 → GT is an efficiently computable non-degenerate
bilinear map. We assume that the group operations in G1, G2 and GT as well as the bilinear
map e are efficiently computable in polynomial time with respect to λ, and that the group
descriptions of G1, G2 and GT include generators of the respective cyclic groups. We call e
an asymmetric pairing if G1 6= G2 and no efficiently computable homomorphism exists
between G1 and G2, in either direction.

We use the interactive General Diffie–Hellman (i-GDH) assumption [16] to prove our
security, which is defined as follows:

Assumption 1. (i-GDH Assumption) [16]. Let r, s, t, c and k be five positive integers and
R ∈ Fp[X1; . . . ; Xc]r, S ∈ Fp[X1; . . . ; Xc]s, and T ∈ Fp[X1; . . . ; Xc]t be three tuples of multivari-
ate polynomials over Fp.
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Let OR (resp. OS and OT) be oracles that on input {{a(k)i1,...,ic}
dk
ij=0}k add polynomials

{∑i1,...,ic a(k)i1,...,ic ∏j X
ij
j }k to R (resp. S and T).

Let (x1, . . . , xc) be a secret vector and qR (resp. qS) (resp. qT) be the number of queries to OR

(resp. OS) (resp. OT). The i-GDH assumption states that given the values {gR(i)(x1,...,xc)}r+k·qR
i=1 ,

{g̃S(i)(x1,...,xc)}s+k·qS
i=1 and {e(g, g̃)T

(i)(x1,...,xc)}t+k·qT
i=1 , it is hard to decide whether U = g f (x1,...,xc)

or U is random if f is independent of < R, S, T >.

Assumption 2. Let g and h be random generators of G1 and G2 and u, v, c and d1, . . . dn be
selected randomly from Z∗p and T is a random element from GT . We define

D0 = (g, h, gu, hc, {gdi , hdi , hv+c·di}n
i=0, e(g, h)b, e(g, h)uv)

D1 = (g, h, gu, hc, {gdi , hdi , hv+c·di}n
i=0, e(g, h)b, T)

Then, there is no PPT algorithm B that can distinguish D0 from D1 with non-negligible
advantage. We denote the advantage of B as

AdvA2
B = |Pr[B(D0 = 0)]− Pr[B(D1 = 0)]|.

Lemma 1. D0 and D1 in Assumption 2 are indistinguishable in a generic group model.

Proof. The proof of Lemma 1 is straightforward because the only difference between D0
and D1 is whether T is a random element or e(g, h)uv. Therefore, we can only distinguish
D1 and D2 by testing the value of T, Because exponents u and v only appear in gu and
hv+c·di , T can only be tested by their pairing results, which are e(g, h)uv+u·c·di . However,
the computation of e(g, h)u·c·di cannot be computed from the given instances as there is no
monomial that has two of those three exponents, either u · c, u · di or c · di. Due to this fact,
the adversary cannot use e(g, h)uv+u·c·di to distinguish e(g, h)uv from T.

3.2. Definitions

FEPM is defined by four algorithms that we call Setup, Keygen, Encrypt and Decrypt
as follows:

Setup(1λ, n, S)→ (pp, msk): This algorithm takes as inputs a security parameter k and
an integer n defining the maximum size of a string (i.e., a pattern) that one can use as a
description associated with a ciphertext. It also takes a finite set S , which is a set of alphabet
letters for the description, as input. It sets a master secret key msk and publishes public
parameters pp.
KeyGen(W, msk)→ skW : This algorithm takes as inputs a string W of any size 0 < `W ≤ n,
along with the master secret key, and returns a private key skW .
Encrypt(M, S, pp) → CT: This algorithm takes as inputs a message M and the public
parameters pp along with a string S = s0 . . . sm−1 where m ≤ n, such that si ∈ S for all
i ∈ [0, m− 1], and returns a ciphertext CT which encrypts M.
Decrypt(CT, skW) → M: This deterministic algorithm takes as inputs a ciphertext CT
associating to a string S = s0 . . . sm−1 of size m, along with the private key skW for a string
W = w0 . . . w`W−1 of size `W . If `W > m, then the algorithm returns ⊥. Otherwise, the
algorithm decrypts a ciphertext CT and return M.

Correctness Property. For correctness, the following property must be satisfied:

Let (pp, msk) ← Setup(1k,S , n). For a string W = w0 . . . w`W−1 of any size less than or
equal to n (i.e., `W ≤ n), skW ← KeyGEn(W, msk) will be returned as a private key. For a
string S = s0 . . . sm−1, a ciphertext CT ← Encrypt(M, S, pp) is returned. For a ciphertext
CT and a private skW , M ← Decrypt(CT, tdW) will be returned if there exists an index j
such that sj . . . sj+`W−1 = w0 . . . w`W−1.
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3.3. Security Models

Our proposed FEPM scheme pursues both confidentiality of message (i.e., confiden-
tiality) and hidden predicate (i.e., anonymity). These security properties can be proved
by using two different security models. We use sIND-CPA and sANON-CPA, which are
defined in this section, to prove confidentiality and anonymity, respectively.

3.3.1. IND-CPA

We first define the indistinguishable chosen plaintext security (IND-CPA) for our
FEPM. IND-CPA of FEPM is defined by an experiment ExpIND-CPA-β

A1
(1λ, `) where β ∈ {0, 1}

defined as follows:

• Setup: The challenger runs Setup(1λ, n, S) to obtain a public parameter pp. It gives
A1 the public parameter pp.

• Phase I: The adversaryA1 queries private keys skW1 , . . . , skWq1
for strings W1, . . . , Wq1 .

• Challenge: If Phase I is over, A1 outputs messages M0 and M1 with a string
S = s0 . . . sm−1 with the restriction that there is no private key queried in Phase I to
be matched with S. More formally, the challenger outputs ⊥ if ∃W = w0 . . . w`W−1 ∈
{W1, . . . , Wq1} and ∃i ∈ {0, . . . , m− `w} such that

si . . . si+`W−1 = w0 . . . w`W−1.

The challenger randomly selects β ∈ {0, 1} and runs Encrypt algorithm to obtain
C = Encrypt(Mβ, S, pp) and returns C to A1.

• Phase I: The adversaryA1 continues to query private keys skWq1+1 , . . . , skWq for strings
Wq1+1, . . . , Wq under the same restriction that

si . . . si+`W−1 6= w0 . . . w`W−1.

for all W = w0 . . . w`W−1 ∈ {Wq1+1, . . . , Wq} and all i ∈ {0, . . . , m− `w}.
• Guess: Finally, the adversary A1 outputs a guess β′ ∈ {0, 1} and wins the game if

β = β′.

We define the advantage of an adversary A1 as follows:

AdvIND-CPA
A1

(1λ, `) = |Pr[ExpIND-CPA-1
A1

(1λ, `)]− Pr[ExpIND-CPA-0
A1

(1λ, `)]|.

A functional encryption for pattern matching is IND-CPA secure if this advantage is
negligible for any polynomial-time adversary. A weaker notion, which is selective security,
sIND-CPA, can be defined with an adversary giving S to the challenger before the challenge
gives pp to the adversary in Setup.

3.3.2. ANON-CPA

We also define the ANON-CPA security of the functional encryption for pattern
matching, namely FEPM-ANON-CPA security.

FEPM-ANON-CPA is defined by an experiment ExpANON-CPA-β
A2

(1λ, `) the adversary
A2 where β ∈ {0, 1} defined as follows:

• Setup: The challenger runs Setup(1λ, n, S) to obtain a public parameter pp. It gives
A2 the public parameter pp.

• Phase I: The adversaryA2 queries private keys skW1 , . . . , skWq1
for strings W1, . . . , Wq1 .

• Challenge: If Phase I is over,A2 outputs S0 = s(0)0 . . . s(0)m−1 and S1 = s(1)0 . . . s(1)m−1 with
the restriction that there is no trivial trapdoors queried in Phase I to distinguish S0 and
S1. More formally, the challenger outputs ⊥ if ∃W = w0 . . . w`W−1 ∈ {W1, . . . , Wq}
and i, j such that

s(i)j . . . s(i)j+`W−1 = w0 . . . w`W−1 6= s(i−1)
j . . . s(i−1)

j+`W−1.
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The challenger randomly selects β ∈ {0, 1} and runs Encrypt algorithm to obtain
C = Encrypt(M, Sβ, pp) and returns C to A2.

• Phase II: The adversary A2 having accesses to the oracle OIssue continue to query
private keys skWq1+1 , . . . , skWq for strings W1, . . . , Wq with the same restriction that there
is no trivial W ∈ {W1, . . . , Wq} to distinguish M0 and M1 was queried in Phase I.

• Guess: Finally, the adversary A2 outputs a guess β′ ∈ {0, 1} and wins the game if
β = β′.

We define the advantage of an adversary A2 as follows:

AdvANON-CPA
A2

(1λ, `) = |Pr[ExpANON-CPA-1
A2

(1λ, `)]− Pr[ExpANON-CPA-0
A2

(1λ, `)]|.

A functional encryption for pattern matching is FEPM-ANON-CPA secure if this
advantage is negligible for any polynomial-time adversary.

A weaker notion, which is selective security, FEPM-sANON-CPA, can be defined
with an adversary giving S0 and S1 to the challenger before the challenge gives pp to the
adversary in Setup.

4. DFOS’s Pattern Matching System

To introduce our FEPM system, we first give an overview of the pattern matching
system proposed by Desmoulines et al. [16]. In short, the pattern matching system encrypts
a string by each letter so that one who has a valid token to search for a keyword (or a
pattern) in the encrypted data can determine if the encrypted data contains a keyword (or
a pattern) that matches the token. In particular, the pattern matching system [16] consists
of five algorithms: Setup, KeyGen, Issue, Encrypt and Test as follows:

• Setup(1λ, n,S)→ (pp, msk): The algorithm takes as input a security parameter λ and

the maximum size of the ciphertext n. It selects g R←− G1 and h R←− G2 and publish
pp = (G1,G2,GT , e, g, h, n).

• KeyGen(S)→ (pk, sk): It takes as input the set of alphabet letters S . It selects |S|+ 1

random values z and {σs}s∈S from Z∗p and sets gi ← gzi
. It publishes a public key

pk = ({gi, {gσs
i }s∈S}n−1

i=0 ) and outputs a secret key sk = (z, {σs}s∈S).
• Issue(W, sk)→ skW : To create a token skW for a string W = w0w1 . . . w`W−1 of length

`W(≤ n), the algorithm generates r, r0, r1, . . . , r`W−1. For i ∈ {0, . . . , `W − 1}, it sets

Ki = hri and K′ = h∑`w−1
i=0 σwi ·z

i ·ri . It sets a private key skW for W as ({Ki}i∈{0,...,`W−1}, K′).
• Encrypt(S, pp)→ CT: To encrypt a string S = s0, . . . , sm−1, for i ∈ {0, . . . , m− 1}, the

algorithm selects a random value a ∈ Z∗p and sets Ci = ga
i and C′i = g

a·σsi
i . It outputs

the ciphertext CT := ({Ci, C′i}
m−1
i=0 ).

• Test(pk, tdW , CT) → J : The algorithm takes as inputs a public key pk, a token tdW ,
and a ciphertext CT. The algorithm sets J = ∅. For all i ∈ {0, . . . , m− `}, it computes
Di = e(Ci, K′) and Ei = ∏`W−1

j=0 e(C′i+j, Kj). If Di = Ei, it add i to J . Finally, it outputs
the set of indexes J .

It should be noted that the above pattern matching system from DFOS is selectively
secure. This means that if oracles O(0)

PMS and O(1)
PMS respectively encrypt two strings S0 and

S1 using the above pattern matching system, O(0)
PMS and O(1)

PMS are indistinguishable for
any polynomial time adversary.

Proposition 1. We let O(β)
PMS denote an oracle to simulate a description Sβ for β ∈ {0, 1} using

the DFOS pattern matching system. Then, O(0)
PMS and O(1)

PMS are indistinguishable if Sβ is given
before the system set-up.

It should be noted that it is straightforward to prove Proposition 1 using the definition
of sIND-CPA for the pattern matching system given in [16].
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5. Our Construction

In this section, we explain the technique that we used to construct a FEPM scheme.
We then provide the construction of our proposed scheme.

5.1. Our Technique

FEPM with a hidden string needs two security proofs: one for confidentiality of the
message and the other for anonymity of the ciphertext. Proving both properties in a single
encryption system is difficult.

Therefore, we take an idea from a pattern matching system [16,17] which was recently
introduced. We observe that a pattern matching system exhibits some similarity to FERL as
it evaluates encrypted data using a search token based on alphabet letters. More precisely,
the pattern matching system has a trapdoor and a ciphertext, which are associated with
a search string and a message, respectively. If a search string matches with a message
encrypted in a ciphertext, then, a trapdoor can be used to reveal a location (i.e., an index)
where they match in the ciphertext. Thus, it can detect a search string in the message
without full decryption of the ciphertext.

However, a pattern matching system is also different from FERL as it does not have
a decryption algorithm. As it is designed to only detect a string from the encrypted
message, it naturally does not have a decryption algorithm but has a match algorithm.
This means that data that does not match the search token will remain encrypted. One
of the trivial solutions to decrypt all encrypted data is by giving trapdoors (i.e., search
tokens) to all individual alphabet letters. However, this makes detection inefficient as all
tokens representing alphabet letters must be matched against each encrypted letter in the
ciphertext until one of them matches. Moreover, each letter in a message will be encrypted
by multiple group elements to search for a pattern in the whole message. It may not be
suitable when a message to be encrypted is long, as several hundred bits are required for
each alphabet letter (1 bit for binary or 1 byte for English letter) in the ciphertext. The
efficiency of the system will be significantly improved if we can extract some strings,
which can be used to control access to a whole message, and use the extracted strings as a
description of the ciphertext.

Based on these observations, in our paper, we devise a new functional encryption (FE)
scheme that controls access via pattern matching. We consider a message in the pattern
match system as a description of a ciphertext in FE. This naturally hides the description of a
ciphertext so that it guarantees the anonymity of FERL. Using this idea, we construct FEPM
based on one of the simplest pattern matching systems [16] and show that the IND-CPA
of the pattern matching system actually implies anonymity, called ANON-CPA, in our
proposed FEPM with a hidden string.

Although the hidden string property can be proved relatively easily, proving confiden-
tiality remains demanding. Anonymity in FEPM does not directly imply confidentiality.
A ciphertext of FEPM with a hidden string contains two types of information, a description
S and a message M, which it aims to hide. Assume that there are two ciphertexts, C1 and C2
encrypted under (S1, M1) and (S2, M2), respectively, where S1 and S2 are strings to describe
ciphertexts and M1 and M2 are messages to be encrypted. S1 and S2 have the same length
as M1 and M2 does so that the C1 and C2 cannot be trivially distinguished by the difference
of their sizes. Anonymity implies that the adversary cannot distinguish between the two
ciphertexts C1 and C2 if M1 = M2 but S1 6= S2. However, confidentiality requires that
the adversary cannot distinguish between C1 and C2 if M1 6= M2, but S1 = S2. Therefore,
we need a separate proof for IND-CPA of FEPM. As this proof is not straightforward, we
propose a new static assumption, which can be used to prove the security of the proposed
FEPM, then show that the security can be reduced to the assumption. We also utilize the
strategy that is used to prove anonymity as a part of the confidentiality proof. This implies
that we first prove that the adversary cannot distinguish the ciphertext from the original
ciphertext even if a string that the ciphertext is associated with is replaced with a random
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string. We then show that the message of this ciphertext also cannot be distinguished from
a ciphertext containing a random message.

5.2. FEPM

In this section, we introduce our FEPM scheme. We use λ and n to denote a security
parameter and the maximum size of the description for a ciphertext. It also sets a symmetric
encryption Sym := (Encsym, Decsym) and a oneway function H : GT → K where K is a
key space of Sym. Our scheme consists of four algorithms, Setup, KeyGen, Encrypt and
Decrypt as follows:

• Setup(1λ, n,S)→ (pp, msk): The algorithm takes as input a security parameter λ, the

maximum size of the description n and set of alphabet letters S . It selects g R←− G1 and

h R←− G2. It selects |S|+ 2 random values γ, z and {σs}s∈S from Z∗p and set gi ← gzi
.

It publishes a public parameter:

pp = (Encsym, Decsym, H1, {e(gi, h)γ, gi, {gσs
i }s∈S}n−1

i=0 )

and sets a master secret key msk = (z, γ, h, {σs}s∈S).
• KeyGen(W, msk) → skW : To create a token skW for a string W = w0w1 . . . w`W−1 of

length `W(≤ n), the algorithm generates r, r0, r1, . . . , r`W−1. For i ∈ {0, . . . , `W − 1},
it sets Ki = hri and K′ = hγ+∑`w−1

i=0 σwi ·z
i ·ri . It sets the private key skW for W as

({Ki}i∈{0,...,`W−1}, K′).
• Encrypt(M, S, pp) → CT: To encrypt a string S = s0, . . . , sm−1. It selects random

value a and b from Z∗p and K ∈ K. It sets C = Encsym(K, M). For i ∈ {0, . . . , m− 1},
the algorithm sets Ci = Encsym(H(e(gi, h)γ·a), K), C′i = ga

i , C′′i = g
a·σsi
i . It outputs the

ciphertext CT := (C, {Ci, C′i , C′′i }
m−1
i=0 ).

• Decrypt(pp, skW , CT) → M: The algorithm takes as inputs a public parameter pp,
a private key skW , and a ciphertext CT. If `W > m, it outputs ⊥. Otherwise, for all
i ∈ {0, . . . , m− `W}, it computes Di =

(
e(C′i , K′)/ ∏`W−1

j=0 e(C′′i+j, Kj)
)
. It then outputs

M = Decsym(Decsym(H(Di), Ci), C).

Correctness. Let W be a substring of S (i.e., ∃i s.t. si . . . si+`W−1 = w0 . . . w`W−1). First, one
can compute Di as follows:

Di = e(C′i , K′)/
`W−1

∏
j=0

e(C′′i+j, Kj)

= e(ga
i , hγ+∑`w−1

j=0 σwj ·z
j ·rj)/

`W−1

∏
j=0

e(g
a·σsi+j
i+j , hrj)

= e(g, h)a·γ·zi+a·∑`w−1
j=0 σwj ·z

i+j ·rj /
`W−1

∏
j=0

e(g, h)a·σsi+j ·z
i+j ·rj

= e(g, h)a·γ·zi · e(g, h)a·∑`w−1
j=0 σwj ·z

i+j ·rj /e(g, h)a·∑
`W−1
j=0 σsi+j ·z

i+j ·rj

= e(g, h)a·γ·zi
.

The last equality holds as W is a substring of S. Finally, we can compute M as

Decsym(Decsym(H(Di), Ci), C) = Decsym(Decsym(H(e(g, h)a·γ·zi
), Ci), C)

= Decsym(K, C)

= M.

6. Security Analysis

We formally prove the security of our proposed FEPM scheme.
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Theorem 1. Our FEPM scheme is FEPM-sANON-CPA secure.

Proof. We prove that the selective security sANON-CPA of FEPM using the security of
sIND-CPA of DFOS. More formally, we prove the following claim to show the security of
our FEPM scheme:

Claim: Suppose that there is a polynomial time algorithm A1 breaking sANON-CPA of our
FEPM with non-negligible advantage ε. Then, we can construct a polynomial time algorithm B
distinguishing between O(0)

PMS and O(1)
PMS (i.e., breaking sIND-CPA of DFOS’s pattern matching

system with advantage ε) using A1.
Before starting Setup, the challenger provides two strings S(0) = s(0)0 . . . s(0)m−1 and

S(1) = s(1)0 . . . s(1)m−1 to B. B will also set the oracle O(β)
PMS by giving S(0) and S(1). B will

simulate sANON-CPA with A to distinguish between O(0)
PMS and O(1)

PMS.

Setup: First, the oracle, O(β)
PMS, will give a public parameter pp′ and a public key pk′ to

B where pp′ = (G1,G2,GT , e, g, h, n) and pk′ = ({gi, {gσs
i }s∈S}n−1

i=0 ). To simulate the Setup
algorithm of FEPM with A, B randomly selects γ from Z∗p. It computes {e(gi, h)γ}n−1

i=0 . It
returns a public parameters pp = ({e(gi, h)γ, gi, {gσs

i }s∈S}n−1
i=0 ) to A1.

Phase I and II: WhenA requests a key for W = w0, . . . w`W−1 ∈ {W1, . . . Wq} to B, first
B check if W is a string that can trivially distinguish S(0) or S(1). It can test it by checking if
there exist β ∈ {0, 1} and k ∈ {0, . . . , |Sβ| − `W} such that

s(β)
k−j − s(β)

k−j+`W−1 = w0 . . . w`W−1 6= s(1−β)
k−j − s(1−β)

k−j+`W−1.

If β and k exists, it aborts. Otherwise, B also requests a trapdoor tdW = ({Ki}`W−1
i=0 , K) =

({hri}`W−1
i=0 , h∑

`W−1
i=0 σwi ·z

i ·ri ) to the oracle running the pattern matching system. It sets

skW = ({Ki}`W−1
i=0 , hγ · K) and returns skW to A.

Challenge: When the challenger requests a ciphertext to B. B first requests challenge

ciphertext to the oracle and receives {ga
i , g

a·σ
si
(β)

i }. B randomly selects b ∈ Z∗p, K ∈ K and
a message M ∈ M and sets C = Encsym(K, M), Ci = Encsym(H(e(ga

i , h)γ), K), C′i = ga
i and

C′′i = g
a·σsi
i . It sends CT := (C, {Ci, C′i , C′′i }

m−1
i=0 ) to A.

If β = 0, then B simulates O(0)
PMS with A1. Otherwise, β = 1, it simulates O(1)

PMS.
Because A1 have non-negligible advantage ε to distinguish β, B also can distinguish
between O(0)

PMS and O(1)
PMS with non-negligible advantage ε.

Theorem 2. Our FEPM scheme is FEPM-sIND-CPA secure.

Proof. We will prove the selective security of FEPM by defining security games and
showing that they are indistinguishable from ExpsIND-CPA

A (1λ, n). First, we set Game0 to be
identical to ExpsIND-CPA

A (1λ, n). Then, let S = s0, . . . , sm−1 denote the description for the
challenge ciphertext. For all j ∈ {1, . . . , m− 1}, we define Gamej by switching the first j
elements C′′(·) (i.e., C′′0 , . . . , C′′j−1) of the challenge ciphertext to random elements of G1 in
Game0. This allows us to replace all elements C′′j for all j ∈ {0, . . . , m− 1} in the ciphertext
on Gamem, which is the last game in the proof, to random values. It means that the adversary
A only has negligible advantage to distinguish between Game0 and Gamem. Then, we will
show that Gamem is indistinguishable from the interim final game Game f inal′ , where the
keys (in Ci) encrypting the message encryption key (in C) of symmetric encryption in
the challenge ciphertext are replaced by random keys. Finally, we will show that this is
equivalent to the final game Game f inal where the message is replaced by a random message
in the proofs. Therefore, the adversary cannot distinguish the message in the challenge
ciphertext.
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First, we will show that Game0 and Gamem are indistinguishable in Lemma 2.
Lemmas 3 and 4 will show the indistinguishabilities among Gamem, Game f inal′

and Game f inal .

Lemma 2. For all j ∈ {0, . . . , m− 1}, Game(j) and Game(j+1) are indistinguishable.

Proof. We will show that Game(j) and Game(j+1) for j ∈ {0, . . . , m− 1} are indistinguishable
using the i-GDH assumption. The parameters of the assumption are initially set as follows:
R = {(zi, xj · zi, a · zi)}2m−1,|S|−1

i=0,j=0 , S = ∅, T = {zi, a · zi}2m−1
i=0 and f = a · x0 · z2m−1.

It should be noted that the simulator receives a string S before generating any parame-
ters so that this will prove selective security of FEPM.

Setup: From the i-GDH assumption, the following parameters are given along with
U ∈ G1:

{gzi
, gxj ·zi

, ga·zi}2m−1,|S|−1
i=0,j=0 and {e(g, h)a, (e(g, h)a·zi

, e(g, h)zi
)2m−1

i=0 }.

The algorithm B randomly generates γ from Z∗p. It, then, generates the public parame-
ters pp as follows:

1. It sets by first defining gi = gzm+i−j∗
. This results in gj∗ = gzm

.

2. It sets gi
σsj∗ = gx0·zm+i−j∗

and gσs
i = gx f (s) ·zm+i−j∗

for all s ∈ S \ {sj∗}where a function f
be a random permutation from ∀s ∈ S \ {sj∗} to {1, . . . , |S| − 1} (i.e., f : S \ {sj∗} →
{1, . . . , |S| − 1}).

3. It also sets (e(g, h)zi
)γ.

The above setting allows the simulator to return pp.
Phase I: Upon receiving a query for a private key with a string W = w0 . . . w`−1 ∈

{W1, . . . , Wq}, the simulator checks that the string complies with the restriction where there
does not exist j ∈ {0, . . . , m− `− 1} such that

s(β)
j∗−j − s(β)

j∗−j+`−1 = w0 . . . w`−1.

It, then, queries the key to OS to receive {(hri )`−1
i=0 , h∑`w−1

i=0 σwi ·z
i ·ri}. It returns a private key

{(hri )`−1
i=0 , hγ+∑`−1

i=0 σwi ·z
i ·ri} .

Challenge: When the challenger gives M0 and M1. Finally, the algorithm B flip a coin
to get β ∈ {0, 1} and creates the challenge ciphertext as follows:

It selects a random symmetric key K ∈ K and sets C = Encsym(K, Mβ). For

i ∈ {0, . . . , m− 1}, the algorithm sets Ci = Encsym(H(e(g, h)zm+i−j∗ ·a), K), C′i = gzm+i−j∗ ·a.
For the first j indexes, C′′i are set as random values from G1. It then uses the OR oracle to
get valid C′′i for all indexes i > j∗. It sets C′′j∗ as U.

If U = ga·x0·z2m
, then C′′j∗ is a valid element and the simulator is simulating Game(j).

Otherwise, if C′′j∗ is a random value from G1, it is simulating Game(j+1). This implies that if
an adversary A is able to distinguish Game(j) from Game(j+1), it also can break the i-GDH
assumption.

Now, we need to show that f = a · x0 · z2m is independent of the sets R, S and T.
This proof is identical with Lemma 5 in [16] except that T is not an empty. In this proof, T
includes {zi, a · zi}2m−1

i=0 . Since those are the exponent of e(g, h), we simply need to show
that there are no outputs from OS that can be used to distinguish U. This holds obviously
as monomials in T do not include x0 and the outputs of OS (∈ G2) also do not have 1/x0,
which can be taken as input of pairing together with U (∈ G1) to evaluate U using an
element in T (∈ GT). Therefore, {zi, a · zi}2m−1

i=0 in T cannot be used to distinguish U, which
has x0 as an exponent.

Lemma 3. Gamem and Game f inal′ are indistinguishable.
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Proof. Given {g, h, gu, hc, {gdi , hdi , hv+c·di}|S|i=0, e(g, h)v} from Assumption 2, the algorithm
B will simulate either Gamem or Game f inal′ .

Setup: The algorithm B randomly generates z. It implicitly sets γ = b and σsi = di for
all i ∈ {0, . . . , |S| − 1} where si is the ith element in S . It publishes the public parameter:

pp = ({(gi, h)γ = (e(g, h)v)zi
, gi = gzi

, {gσsj = (gdj)zi}j∈S}n−1
i=0 ).

Phase I and II: When the adversary requests a private key for W = w0, . . . , w`W−1, it
randomly generates r0, . . . , r`W and sets K0 = hc · hr0 and Ki = hri for all i ∈ {1, . . . , `W − 1}.
It also sets K′ = hv+c·σw0 · (hc)r0 ·∏`W−1

i=1 gσwi ·z
i ·ri .

It should be noted that σw0 ∈ d1, . . . , d|S| so that hb+c·σw0 is the one of the elements

given in the assumption. It sets skW = ({Ki}`W−1
i=0 , hγ · K) and returns skW to A. This

process can be repeated q times for each W ∈ {W1, . . . , Wq}.
Challenge: The adversary A requests a challenge ciphertext with M0 and M1. To

generate ciphertext, first, it randomly select β ∈ {0, 1}. It selects random value b ∈ Z∗p
and {R0, . . . , Rn−1} ∈ G1 and implicitly sets a = u. It, then, sets C = Encsym(K, Mβ). For

i ∈ {0, . . . , m − 1}, the algorithm sets Ci = Encsym(H(Tzi ), K), C′i = (gu)zi
, C′′i = Ri. It

outputs the ciphertext CT := (C, {Ci, C′i , C′′i }
m−1
i=0 ). It should be noted that if T = e(g, h)uv,

this simulates Gamem. Otherwise, it simulates Game f inal′ .

Lemma 4. Game f inal′ and Game f inal are indistinguishable.

Proof. This holds straightforwardly due to the security of symmetric encryption Sym. Since
all keys used in Ci = Encsym(H(Rzi ), K) replaced to random keys where R is a random

element from GT in Game f inal , the adversary cannot differentiate if K is replaced by K′ R←− K
which is a random key. This means K in C = Encsym(K, Mβ) does not appear anywhere
else. Therefore, the adversary cannot distinguish Mβ from a random message MR ∈ M.
It should be noted that the keys in Ci are correlated to each other because they are all
based on the random element R ∈ K. This is natural in our scheme as the ciphertext
is decrypted by decrypting any of Ci, not all Ci. Moreover, generally, symmetric key
cryptography provides strong security, which provides enough permutation results even
for those correlated keys.

7. Conclusions

In this paper, we presented new functional encryption for pattern matching scheme
with a hidden string. In the proposed scheme, we concealed the description of the ciphertext
so that the ciphertext does not need to present any public information related to the message
without the loss of expressiveness compared to existing functional encryption schemes.
This is extremely useful for the scenario where the description of data used for access
control is also sensitive. Moreover, our FEPM is the first scheme that achieves all those
practical requirements together. To present formal security proofs for the proposed scheme,
we define two security models for anonymity (ANON-CPA) and confidentiality (IND-CPA).
We showed that the security of the proposed scheme under these security models. For
future work, it would be interesting if can we achieve FEPM under static assumptions.
The security of our scheme is proved under the i-GDH assumption which is considered to
be stronger than static assumptions. Developing a scheme under static assumptions may
guarantee better security. Additionally, it would be greatly valuable if FEPM is achieved
with a non-pairing group. The proposed version of FEPM needs computationally expensive
pairing computations. This computation overhead may become significant if the size of the
predicate increases. Therefore, constructing a similar scheme without pairing computations
will be beneficial in practice.
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