
cryptography

Article

A New Hybrid Automated Security Framework to Cloud
Storage System

Noha E. El-Attar 1,*, Doaa S. El-Morshedy 2 and Wael A. Awad 3

����������
�������

Citation: El-Attar, N.E.; El-Morshedy,

D.S.; Awad, W.A. A New Hybrid

Automated Security Framework to

Cloud Storage System. Cryptography

2021, 5, 37. https://doi.org/10.3390/

cryptography5040037

Academic Editors: Jim Plusquellic

and Josef Pieprzyk

Received: 25 November 2021

Accepted: 17 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
2 Faculty of Science, Port Said University, Port Said 41523, Egypt; doaa_morshady@yahoo.com
3 Faculty of Computers and Artificial Intelligence, Damietta University, Damietta 34711, Egypt;

wael_abdelkader@du.edu.eg
* Correspondence: noha.ezzat@fci.bu.edu.eg

Abstract: The need for cloud storage grows day after day due to its reliable and scalable nature.
The storage and maintenance of user data at a remote location are severe issues due to the difficulty
of ensuring data privacy and confidentiality. Some security issues within current cloud systems
are managed by a cloud third party (CTP), who may turn into an untrustworthy insider part. This
paper presents an automated Encryption/Decryption System for Cloud Data Storage (AEDS) based
on hybrid cryptography algorithms to improve data security and ensure confidentiality without
interference from CTP. Three encryption approaches are implemented to achieve high performance
and efficiency: Automated Sequential Cryptography (ASC), Automated Random Cryptography
(ARC), and Improved Automated Random Cryptography (IARC) for data blocks. In the IARC
approach, we have presented a novel encryption strategy by converting the static S-box in the AES
algorithm to a dynamic S-box. Furthermore, the algorithms RSA and Twofish are used to encrypt the
generated keys to enhance privacy issues. We have evaluated our approaches with other existing
symmetrical key algorithms such as DES, 3DES, and RC2. Although the two proposed ARC and ASC
approaches are more complicated, they take less time than DES, DES3, and RC2 in processing the
data and obtaining better performance in data throughput and confidentiality. ARC outperformed all
of the other algorithms in the comparison. The ARC’s encrypting process has saved time compared
with other algorithms, where its encryption time has been recorded as 22.58 s for a 500 MB file size,
while the DES, 3DES, and RC2 have completed the encryption process in 44.43, 135.65, and 66.91 s,
respectively, for the same file size. Nevertheless, when the file sizes increased to 2.2 GB, the ASC
proved its efficiency in completing the encryption process in less time.

Keywords: advanced encryption standard; cloud computing; cryptography; data privacy; improved
data encryption standard

1. Introduction

The benefits of cloud computing technologies such as rapid scalability, cost reduction,
and high reliability make it an attractive and widespread environment for various users [1].
Cloud computing is a flexible and elastic environment for various computing services
such as servers, storage, networks, development platforms, and applications, which can be
delivered on-demand with payment based on usage [2].

In general, cloud computing offers three main categories of service models; Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS
provides the infrastructure as virtual computing machines (e.g., CPU, memory, storage, and
network) accessible by cloud users [3]. PaaS is another kind of cloud computing service
that offers a platform for users to create, run, and manage applications without going
into detail about their infrastructure construction [4]. Finally, SaaS is one of the business
services models cloud computing provides and allows users only to use the provided
applications [5]. One of the significant shortcomings in a cloud environment is the lack

Cryptography 2021, 5, 37. https://doi.org/10.3390/cryptography5040037 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography5040037
https://doi.org/10.3390/cryptography5040037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5040037
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5040037?type=check_update&version=1

Cryptography 2021, 5, 37 2 of 20

of complete control over data when saved in a cloud data center, which makes the data
sources more vulnerable to different types of threats, to name a few, unauthorized access,
unauthorized modification, and loss of data integration [4,6]. Therefore, storing data in
the cloud environment raises different security issues, such as confidentiality, availability,
and integrity [7]. Data availability is the process of making data accessible and usable on
demand for authorized users [8]. Data integrity is the process of ensuring data reliability
and accuracy, where the data should not be deleted or modified by unauthorized users [9].
Data confidentiality is another critical kind of challenge that may confront cloud environ-
ments, where the cloud service provider (CSP) must ensure authorized access to sensitive
and private data stored in the cloud.

The obvious risk appeared when the CSP resorted to using a cloud third party (CTP).
The CSP usually gives CTP several significant roles in dealing with data. To name a few, it
is responsible for data analysis, data validation, data integrity, data auditing, managing and
monitoring storage media, data outsourcing to third-parties storage, receiving responses
from CSP, and sending reports to users [10–12].

Despite these delicate functions of CTP, it may morph into a vulnerability in the cloud
environment. In more clarity, the third party is usually a human element, who could
occasionally be a non-neutral or untrusted entity that poses a malicious insider threat to
the cloud community [13]. As known, data confidentiality can be threatened in several
ways, such as vulnerability and patch management, threat-aware identity and access
management, and encryption and decryption methods [14]. Therefore, a large segment of
cloud providers has tended to protect the user’s data confidentiality away from the CTP by
encrypting the data before hosting it on the cloud resources [6,15]. Thus, the main issues
that will be handled in this paper can be summarized as follows:

• The problem of CTP as it may convert into a vulnerable point inside the cloud environment.
• The problem of simple keys in the encryption process, which can be readily broken.
• The problem of easier data breaching when using one encryption scheme.

This paper will handle the above data confidentiality issues in cloud computing
systems by developing an automated data encryption system based on a novel modified
AES algorithm to encrypt the user’s data before exporting it to the cloud storage media.
The main contributions of this proposed module are as follows:

• Curbing the CTP functions and enhancing data privacy.
• Dividing the original data into blocks with random sizes.
• Generating random encryption keys equal to the number of data blocks.
• Encrypting the random encryption keys by both RSA and Twofish algorithms.
• Saving the keys encrypted by the RSA algorithm in a private Mongo DB to be used in

the decryption process.
• Using the keys encrypted by the Twofish algorithm as keys to encrypt the original data.
• Encrypting the blocks of data by two novel approaches using AES and DES.
• Improved AES by using a dynamic S-box for each block in the ARC approach.
• Comparing the proposed approaches with other state-of-the-art encryption algorithms,

such as DES, 3DES, and RC2.

The rest of this paper is organized as follows; Section 2 discusses the related works
that handle the security concerns of cloud computing. In Section 3, the preliminaries
for the typical cryptographic algorithms used in our model are presented. The proposed
automated encryption system for data storage and its architecture are discussed in Section 4.
Section 5 presents the experiments and the comparison of statistical results. Finally, the
paper ends with conclusions and the future work in Section 6.

2. Literature Reviews

The direction of eliminating the role of the CTP or reducing the potential risks of
its existence has become the core of several recent studies that concern cloud security
issues. In [16], S. Chakraborty et al., (2018) proposed an approach to ensure the integrity of

Cryptography 2021, 5, 37 3 of 20

data stored on a remote cloud server with the assistance of a trusted third-party auditor
(TTPA). TTPA has been proposed as an expert agent in the data auditing process. TTPA’s
role is to retrieve a file tag, check its signature, and quit if it fails. In the same context,
G. F. Nadlamani and S. Shaikh (2016) [17] have presented a technique for encoding files
using the (AES and Blowfish) algorithms, also based on the third-party auditor TPA. In
this technique, the cloud provider (CP) stores a file in a database, and the user sends a
report to the TPA to test the validity of a particular file. TPA forwards this demand to
CP to produce a new hash for this specific file and transfer it to TPA. TPA compares each
hash. If both are equivalent to the user integrity test result, TPA sends the crash report to
CP. In [18], S. More and S. Chaudhari (2016) have suggested a new mechanism to protect
data integrity and confidentiality. This approach also utilizes user-based data encryption
and cloud third party (CTP) using a different technique. At first, the data owner must
allow some transactions on his data, including splitting the file into blocks, encrypting it,
creating a hash value for each block, concatenating it, producing a signature on it, and
finally uploading it to the cloud. Posteriorly, the responsibility of CTP appears in public
data auditing. The CTP tests the validity of the data by generating the hash value for
the encrypted blocks obtained by the provider and for each signature concatenated and
produced in the cloud environment. The third party eventually matches the two signatures
to test whether or not the encrypted data has been changed. This strategy has struggled
with some concerns about the CTP, and it also raises the consumer workload.

Another strategy for the stated security problems has been proposed by A. P. Singh
and S. K. Pasupuleti (2016) [19]. They have developed their approach based on two
sequential ways of data auditing. Firstly, during the dynamic system update process,
the client demands the data blocks from the cloud storage server (CSS). The CSS checks
the accuracy of the data for this block and whether the previous update was successful
or not. After that, the third party starts the public auditing process, called the “Third
Party Audit (TPA) process”. The TPA process is based on checking the probabilistic proof
of integrity provided by the CSS. The main security issue is identifying the TPA as an
employee, which may become a malicious insider even if it is a weak possibility. F. O. Catak
and A. F. Mustacoglu (2018) [20] have provided a private classification protocol using a
privacy-preserving protocol method for the extreme learning machine algorithm. The
suggested methods would use a distributed multi-party calculation (or cloud computing)
technique to encrypt the hidden layer output matrix H. This study illustrates how to create a
classification model with encrypted data that protects confidentiality. This strategy depends
on the user for encrypting their data input, generating arbitrary and vertically divided
data, and then uploading encrypted data to a cloud system. Another technique for the
third-party auditing process has been presented by R. Saxena and S. Dey (2016) [21]. They
have developed a strategy to check data validity and integrate auditing services to execute
load balancing functions and implement batch auditing by several third-party auditors.
Third-party auditing typically manages the original data during the process of public
auditing. Furthermore, B. Adokshaja and S. Saritha (2017) [22] have proposed a system
that is being developed to verify the accuracy of cloud data with the help of a third-party
auditor (TPA). The system can audit the data on a periodic or on-demand basis without
retrieving all the data or imposing additional online burdens on cloud users and servers.
The proposed system ensures that no data content is leaked to TPA during the auditing
process. The data blocks are encrypted by the data owner using the Advanced Encryption
Standard (AES) algorithm. Another direction to limit the role of the third party was
presented by K. M. Akhil et al., (2018) in [23]. They have developed a system that provides
secure data without interference from a third party. Data are sent to the cloud server to
be stored; it will be encrypted using the AES encryption technique. In this technique,
the third-party auditor is not aware of encryption and decryption inside the system. The
Advanced Encryption Standard (AES) is used for the encryption of data stored on servers.
Furthermore, P. Sivakumar et al., (2019) [24] have applied the AES algorithm for data
protection in the Heroku cloud. Releases from using AES require well-built security from

Cryptography 2021, 5, 37 4 of 20

third parties where the key used in the encryption process is the same as the decryption
process. This issue may make it easy to break into the original data and retrieve it. Another
strategy to present a security system that does not depend on a third party is proposed
by A. Orobosade et al., (2020) [25]. They have proposed a hybrid encryption method that
includes symmetrical and asymmetrically designed cryptographic systems to preserve the
privacy and safety of users in the cloud. They have proposed a privacy model based on
Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC). In [26], M.
Sohal and S. Sharma (2018) have presented a new symmetric-key multifold cryptography
approach based on DNA cryptography, which leverages client-side data encryption to
encrypt data before uploading it to the cloud. Another novel encryption algorithm for
improving data security on the cloud has been presented by F. Thabit et al., (2021) in [27].
They have proposed a new Lightweight Cryptographic Algorithm based on 16 bytes of a
block cipher and 16 bytes for the encryption key. This proposed algorithm is dependent on
Feistel and substitution–permutation methods to increase the encryption complexity.

From the above, we can conclude the shortcomings in the recent approaches used to
save data confidentiality in cloud environments as follows:

1- Using a single algorithm (non-hybrid methodologies) is insufficient to provide high
levels of security because, in symmetric algorithms, only one encryption key is used
to encrypt and decrypt data [28].

2- The non-automated systems that use cloud third parties must ensure that this CTP is
trustworthy and not turned into a malicious insider. This issue is challenging to be
guaranteed in actual practices.

The authors will address the data confidentiality issue from another perspective that
differs from the above studies in this paper. The proposed automatic cryptographic system
aims to curtail the role of the CTP by developing an Automated Encryption/Decryption
System for Cloud Data Storage (AEDS), which adopts a fully automated strategy for
data encryption and decryption processes. The AEDS is based on transferring all the
security operations on the data to an autonomous system, beginning with uploading the
data by the user on the cloud platform, passing through encrypting it to be ready for
storage, and ending with decrypting it when its owner asks to retrieve it. AEDS is a
hybrid cryptography framework that is implemented based on four encryption algorithms;
Twofish [29], Advance Encryption Standard (AES) [30], and Data Encryption Standard
(DES) [31] as symmetric encryption algorithms [26], and Rivest–Shamir–Adleman (RSA) as
an asymmetric encryption algorithm [32].

Table 1 summarizes the characteristics of the works mentioned above and our pro-
posed framework.

Cryptography 2021, 5, 37 5 of 20

Table 1. Comparison between the related mentioned works.

Ref. Algorithms Used Hybrid
Approach

Automated
Approach CTP

Calculate
Processing Time Lightweight

Split the Data Calculate
ThroughputEqual Size Random Size

[16] AES
√ √

[17] AES
√ √

[18] AES, RSA digital
signature and SHA-2

√ √ √

[19]

Chameleon
Authentication Tree and
Homomorphic Linear

Authenticators

√ √ √

[20] Paillier Homomorphic
Encryption

√ √

[21] Paillier Homomorphic
Cryptography

√ √ √

[22] AES
√ √

[23] AES
√

[24] AES
√

[25] AES and ECC
√ √

[26] DNA
√ √ √ √

[27] NLCA
√ √

The current
work

RSA, AES, DES,
and Twofish

√ √ √ √ √ √

Cryptography 2021, 5, 37 6 of 20

3. Materials and Methods
3.1. Twofish Algorithm

Twofish is a symmetric algorithm created by Bruce Schneier et al. [33]. It uses a
256-bit key length to encrypt a block size up to 128-bit [33]. The primary characteristic of
the Twofish method is its complicated encryption scheme, which includes pre-calculated
S-blocks that are also key-dependent. The n-bit keys are divided into two portions; half
are used as encryption keys, while the other half is utilized to change the algorithm. The
Twofish algorithm has a total of 16 rounds for any key size [34].

The design aspects of the Twofish algorithm are as follows, the input and output data
are XORed using eight sub-keys K0 to K7. Input and output whitening are the terms for
these XOR procedures. The F-function consists of five types of component operations:
fixed left rotation by 8 bits, key-dependent S-boxes, Maximum Distance Separable (MDS)
matrices, Pseudo-Hadamard Transform (PHT), and two sub-key additions modulo 232 [35].

3.2. Rivest–Shamir–Adleman (RSA) Algorithm

The RSA encryption algorithm is an asymmetric cryptography technique developed
by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977 [36]. As with any asymmetric
technique, RSA uses two key pairs for encrypting and decrypting data. The data are
encrypted with a public key shared with other users, while the private key is only used to
decrypt the data and must be secret [37]. The encryption and decryption processes in the
RSA algorithm could be calculated as follows:

1. Key generation: Select two separate prime numbers, N and M.
2. Calculate the value of L, which is the product of N and M.
3. Calculate the function of Euler’s totient ϕ by ϕ(L) = (N − 1) × (M − 1)
4. Find the value of e, under this condition: 1 < e < ϕ(L) and (e,ϕ (L)) = 1
5. Calculate p, where p = e−1 (mod ϕ(L))
6. Use this equation for encryption: C = Ke(mod L)
7. Use this equation for decryption: K = Cp(mod L)

Where C is the cipher data, K is the original data, (e, L) is the public key, and (p, L) is
the private key [38,39].

3.3. Advance Encryption Standard (AES) Algorithm

Joan Daemen and Vincent Rijmen created the AES algorithm as one of the symmetric
encryption techniques [40]. AES is generally based on a substitution–permutation net-
work. It consists of a sequence of connected processes, some of which require substituting
specified outputs for inputs (substitutions), and others involve shifting bits around (per-
mutations). In the AES algorithm, all calculations use bytes instead of bits. This means the
128 bits of plain text are treated as 16 bytes, organized into four rows and four columns to be
processed as a matrix. In AES, the number of rounds is adjustable depending on the length
of the key. It utilizes ten rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds
for 256-bit keys [41]. The encryption process of AES contains the following operations:

1. Byte substitution: These operations are based on a substitution box (S-box) created,
particularly for this purpose. This operation results in a four-by-four matrix for data.

2. Shift Rows: All of the four rows of the matrix are shifted to the left, and any items
dropped are re-inserted to the right side of the row.

3. Mix Columns: A particular mathematical function is now used to alter each column
of four bytes. This function takes four bytes from one column as input and returns
four new bytes that replace the original column. As a result, a new matrix with 16
additional bytes is created. This stage is skipped in the final round.

4. Addround Key: The 16 bytes of the four-by-four matrix are now treated as 128 bits,
then they are XORed with the round key’s 128 bits. If this round is the last one, the
output will be the ciphertext. Otherwise, the 128 bits are transformed into 16 bytes,

Cryptography 2021, 5, 37 7 of 20

and another round will begin [26,42]. Figure 1a shows the encryption process of the
AES algorithm [43].

Cryptography 2021, 5, x FOR PEER REVIEW 7 of 22

(a) (b)

Figure 1. The encryption process of AES algorithm (a) and DES (b).

3.4. Data Encryption Standard (DES) Algorithm

The DES is a symmetric key block cipher technique created by IBM [39]. This tech-

nique employs a block size of 64 bits and a key size of 56 bits and uses 16 rounds of the

Feistel structure, with a different key in every round [26]. The main phases of DES can be

discussed as follows;

1. The 56-bit key is split into two parts, with 28 bits on the left and 28 on the right. These

two parts are merged and compressed. Each half of the key is moved by one or two

bits depending on the round. In this round, the plain text block is encrypted with a

48-bit compressed key.

2. The 64-bit data are split into two halves, each of which is 32 bits long. The size of the

block is increased to 48 bits by expanding one-half of the block. Then the output is

XOR’ed with the compression key of 48 bits, which is produced in step 1.

3. The output is passed to the S-box, which changes key bits and decreases the 48-bit

block to 32-bit. The output of the S box is sent into the P-box, which permutes the

bits. The two blocks are then switched and become the following round’s input. The

key halves that were shifted in step 1 are applied [26]. Figure 1b shows the encryption

process in the DES algorithm [44].

This study has applied the AES, DES, RSA, and Twofish cryptographic algorithms

due to their proven efficiency. For instance, AES is adopted as an efficient encryption al-

gorithm for large volumes of data [23]. At the same time, the DES is known as a standard

approach for protecting confidential data [45]. Moreover, both algorithms are character-

ized by their reliability, speed, efficiency, and flexibility in encrypting the data. On the

other hand, although the RSA is slower than AES and DES algorithms in encrypting large

amounts of data, it acts as a very effective complicated algorithm used to secure data [33].

In addition, the Twofish algorithm has high processing power and is considered one of

the most highly secure techniques for data exchange [34]. Despite the benefits of the en-

cryption algorithms mentioned above, utilizing a single encryption method to protect the

confidentiality and privacy of data in public systems such as cloud environments makes

it more vulnerable to hacking and privacy violations. As a result, we present novel ap-

proaches based on the hybridization of these conventional algorithms, as discussed in the

following section.

Figure 1. The encryption process of AES algorithm (a) and DES (b).

3.4. Data Encryption Standard (DES) Algorithm

The DES is a symmetric key block cipher technique created by IBM [39]. This technique
employs a block size of 64 bits and a key size of 56 bits and uses 16 rounds of the Feistel
structure, with a different key in every round [26]. The main phases of DES can be discussed
as follows;

1. The 56-bit key is split into two parts, with 28 bits on the left and 28 on the right.
These two parts are merged and compressed. Each half of the key is moved by one or
two bits depending on the round. In this round, the plain text block is encrypted with
a 48-bit compressed key.

2. The 64-bit data are split into two halves, each of which is 32 bits long. The size of the
block is increased to 48 bits by expanding one-half of the block. Then the output is
XOR’ed with the compression key of 48 bits, which is produced in step 1.

3. The output is passed to the S-box, which changes key bits and decreases the 48-bit
block to 32-bit. The output of the S box is sent into the P-box, which permutes the bits.
The two blocks are then switched and become the following round’s input. The key
halves that were shifted in step 1 are applied [26]. Figure 1b shows the encryption
process in the DES algorithm [44].

This study has applied the AES, DES, RSA, and Twofish cryptographic algorithms due
to their proven efficiency. For instance, AES is adopted as an efficient encryption algorithm
for large volumes of data [23]. At the same time, the DES is known as a standard approach
for protecting confidential data [45]. Moreover, both algorithms are characterized by their
reliability, speed, efficiency, and flexibility in encrypting the data. On the other hand,
although the RSA is slower than AES and DES algorithms in encrypting large amounts of
data, it acts as a very effective complicated algorithm used to secure data [33]. In addition,
the Twofish algorithm has high processing power and is considered one of the most highly
secure techniques for data exchange [34]. Despite the benefits of the encryption algorithms
mentioned above, utilizing a single encryption method to protect the confidentiality and
privacy of data in public systems such as cloud environments makes it more vulnerable
to hacking and privacy violations. As a result, we present novel approaches based on the
hybridization of these conventional algorithms, as discussed in the following section.

Cryptography 2021, 5, 37 8 of 20

4. The Proposed Automated Encryption/Decryption System for Cloud Data
Storage (AEDS)

The proposed automated encryption and decryption system (AEDS) is a hybrid cryp-
tography framework that integrates four encryption algorithms to enhance cryptographic
power. It is based on two cornerstones: protecting user data and preserving encryption
keys. Regarding user data, the AEDS combines a modified dynamic version of the AES
algorithm (DAES) and DES algorithm in a novel manner to encrypt the original data. The
DES is adapted in our proposed model because it is one of the standard techniques to
protect confidential data. At the same time, AES is an effective methodology in protecting
large volumes of data [23,45]. In our proposed model, we present a novel S-dynamic box
based on a polynomial function instead of the standard static box used in the original AES
to enhance the security level of AES.

On the other hand, both RSA and Twofish algorithms are combined as a protective
approach for the generated encryption keys [33,34].

To enhance performance, accuracy, and security, the AEDS is implemented in three
versions for encrypting blocks of data; the Automated Sequential Cryptography (ASC),
the Automated Random Cryptography (ARC), and the Improved Automated Random
Cryptography based on dynamic AES (IARC) versions.

As shown in Figure 2, the proposed AEDS begins with a Random Key Generator
(RKG), responsible for creating a random key Ki for each block of data Bi, based on the RKG
function shown in Figure 3. To increase the security of these keys, two separate encryption
processes are performed on them as follows;

Cryptography 2021, 5, x FOR PEER REVIEW 8 of 22

4. The Proposed Automated Encryption/Decryption System for Cloud Data Storage

(AEDS)

The proposed automated encryption and decryption system (AEDS) is a hybrid cryp-

tography framework that integrates four encryption algorithms to enhance cryptographic

power. It is based on two cornerstones: protecting user data and preserving encryption

keys. Regarding user data, the AEDS combines a modified dynamic version of the AES

algorithm (DAES) and DES algorithm in a novel manner to encrypt the original data. The

DES is adapted in our proposed model because it is one of the standard techniques to

protect confidential data. At the same time, AES is an effective methodology in protecting

large volumes of data [23,45]. In our proposed model, we present a novel S-dynamic box

based on a polynomial function instead of the standard static box used in the original AES

to enhance the security level of AES.

On the other hand, both RSA and Twofish algorithms are combined as a protective

approach for the generated encryption keys [33,34].

To enhance performance, accuracy, and security, the AEDS is implemented in three

versions for encrypting blocks of data; the Automated Sequential Cryptography (ASC),

the Automated Random Cryptography (ARC), and the Improved Automated Random

Cryptography based on dynamic AES (IARC) versions.

As shown in Figure 2, the proposed AEDS begins with a Random Key Generator

(RKG), responsible for creating a random key Ki for each block of data Bi, based on the

RKG function shown in Figure 3. To increase the security of these keys, two separate en-

cryption processes are performed on them as follows;

Figure 2. The proposed Automated Encryption/Decryption System for Cloud Data Storage (AEDS).

Figure 3. Random Key Generator (RKG) function.

(1) The RSA algorithm is used to encrypt these generated random keys Ki producing

ciphered keys Ki, RSA, and private key (p, L), which will be used latterly to decrypt Ki,

RSA. Both the private key and ciphered keys Ki, RSA are stored in a private and secure

database.

(2) The Twofish algorithm is also used in encrypting these generated random keys. Still,

here, the produced ciphered keys Ki,Twofish are used as encryption keys to encrypt the

Figure 2. The proposed Automated Encryption/Decryption System for Cloud Data Storage (AEDS).

Cryptography 2021, 5, x FOR PEER REVIEW 8 of 22

4. The Proposed Automated Encryption/Decryption System for Cloud Data Storage

(AEDS)

The proposed automated encryption and decryption system (AEDS) is a hybrid cryp-

tography framework that integrates four encryption algorithms to enhance cryptographic

power. It is based on two cornerstones: protecting user data and preserving encryption

keys. Regarding user data, the AEDS combines a modified dynamic version of the AES

algorithm (DAES) and DES algorithm in a novel manner to encrypt the original data. The

DES is adapted in our proposed model because it is one of the standard techniques to

protect confidential data. At the same time, AES is an effective methodology in protecting

large volumes of data [23,45]. In our proposed model, we present a novel S-dynamic box

based on a polynomial function instead of the standard static box used in the original AES

to enhance the security level of AES.

On the other hand, both RSA and Twofish algorithms are combined as a protective

approach for the generated encryption keys [33,34].

To enhance performance, accuracy, and security, the AEDS is implemented in three

versions for encrypting blocks of data; the Automated Sequential Cryptography (ASC),

the Automated Random Cryptography (ARC), and the Improved Automated Random

Cryptography based on dynamic AES (IARC) versions.

As shown in Figure 2, the proposed AEDS begins with a Random Key Generator

(RKG), responsible for creating a random key Ki for each block of data Bi, based on the

RKG function shown in Figure 3. To increase the security of these keys, two separate en-

cryption processes are performed on them as follows;

Figure 2. The proposed Automated Encryption/Decryption System for Cloud Data Storage (AEDS).

Figure 3. Random Key Generator (RKG) function.

(1) The RSA algorithm is used to encrypt these generated random keys Ki producing

ciphered keys Ki, RSA, and private key (p, L), which will be used latterly to decrypt Ki,

RSA. Both the private key and ciphered keys Ki, RSA are stored in a private and secure

database.

(2) The Twofish algorithm is also used in encrypting these generated random keys. Still,

here, the produced ciphered keys Ki,Twofish are used as encryption keys to encrypt the

Figure 3. Random Key Generator (RKG) function.

(1) The RSA algorithm is used to encrypt these generated random keys Ki producing
ciphered keys Ki, RSA, and private key (p, L), which will be used latterly to decrypt
Ki, RSA. Both the private key and ciphered keys Ki, RSA are stored in a private and
secure database.

(2) The Twofish algorithm is also used in encrypting these generated random keys. Still,
here, the produced ciphered keys Ki, Twofish are used as encryption keys to encrypt
the blocks of original data using the DES and AES algorithms consecutively using

Cryptography 2021, 5, 37 9 of 20

the ASC version or randomly in ARC or DARC. The main idea is that the system
automatically disposes of the public key used in encrypting the random keys to keep
these keys safe and away from unauthorized access. Finally, all the encrypted blocks
are sent to the cloud storage, and they are now ready to be stored. Figure 4 displays a
brief scenario for the data storage process based on the proposed ADES module. It is
worth mentioning that the original data are divided into the random size of blocks by
using Equation (1).

Blenght = 64 MB× S. (1)

where S is a random number [2:4], this interval is chosen for the following reasons:

• If S < 2, the stored data will be much smaller than the usual block size, making
the performance suffer drastically.

• If S > 4, the size of data blocks will be substantially larger than the standard block
size, and therefore, it will take a long time to upload and process data.

Cryptography 2021, 5, x FOR PEER REVIEW 9 of 22

blocks of original data using the DES and AES algorithms consecutively using the

ASC version or randomly in ARC or DARC. The main idea is that the system auto-

matically disposes of the public key used in encrypting the random keys to keep these

keys safe and away from unauthorized access. Finally, all the encrypted blocks are

sent to the cloud storage, and they are now ready to be stored. Figure 4 displays a

brief scenario for the data storage process based on the proposed ADES module. It is

worth mentioning that the original data are divided into the random size of blocks

by using Equation (1).

Figure 4. The prototype of the overall storing system in AEDS.

Blenght = 64 MB × S. (1)

where S is a random number [2:4], this interval is chosen for the following reasons:

• If S < 2, the stored data will be much smaller than the usual block size, making the

performance suffer drastically.

• If S > 4, the size of data blocks will be substantially larger than the standard block

size, and therefore, it will take a long time to upload and process data.

4.1. Automated Sequential Cryptography (ASC) for Data Blocks

ASC is the sequential version for ciphering the original data blocks in our proposed

AEDS framework based on an automatic encryption operator (EO). Initially, the EO re-

ceives the encrypted random keys Ki, Twofish produced by the Twofish algorithm, and

the blocks of data Bi, which are divided in the first stage, and begins the encryption process

by switching between the two algorithms DES and AES sequentially (i.e., the first block

B1 is encrypted using the AES algorithm with an encrypted key K1,twofish, the second

block B2 is encrypted by DES by K2,twofish, etc., until the number of generated keys ends

with the end of the number of data blocks), as shown in Figure 5a.

Figure 4. The prototype of the overall storing system in AEDS.

4.1. Automated Sequential Cryptography (ASC) for Data Blocks

ASC is the sequential version for ciphering the original data blocks in our proposed
AEDS framework based on an automatic encryption operator (EO). Initially, the EO receives
the encrypted random keys Ki, twofish produced by the Twofish algorithm, and the blocks of
data Bi, which are divided in the first stage, and begins the encryption process by switching
between the two algorithms DES and AES sequentially (i.e., the first block B1 is encrypted
using the AES algorithm with an encrypted key K1, twofish, the second block B2 is encrypted
by DES by K2, twofish, etc., until the number of generated keys ends with the end of the
number of data blocks), as shown in Figure 5a.

Cryptography 2021, 5, x FOR PEER REVIEW 10 of 22

(a) (b)

Figure 5. Methodology of the Automated Sequential Cryptography (ASC) for data blocks, encryp-

tion process (a) and decryption process (b).

The decryption process in the ASC is also performed automatically as the encryption

process. The decryption operator (DO) is activated only when the authorized user re-

quests to retrieve his original data. The DO procedure passes through two main reverse

phases. The first phase begins by applying RSA as a decryption algorithm to decrypt all

the encrypted keys stored in the private database using the private decryption key (p, L),

which was previously stored in a private database. After obtaining the original keys, they

will be encrypted by the Twofish algorithm to obtain the public keys of AES and DES and

complete the decryption process, as shown in Figure 5b.

4.2. Automated Random Cryptography (ARC) for Data Blocks

The automated random cryptography technique is another novel strategy used for

data encryption in our proposed framework to enhance data security and privacy. The

novelty of this encryption strategy is to encrypt the data blocks. The ARC encrypts the

data blocks by switching the original AES and DES randomly depending on a random

integer number t, as shown in Figure 6. In more detail, for each block of data, a random

number t is generated. If divided by 2, the data block will be encrypted by AES, otherwise,

DES will encrypt the block.

Figure 6. Flow chart of the randomize procedure in the ARC technique.

As shown in Figure 7, the encryption operator uses the 𝐊𝐢, 𝐭𝐰𝐨𝐟𝐢𝐬𝐡 produced by the

Twofish algorithm as encryption keys to encrypt the blocks of data by AES or DES accord-

ing to the value of t. Finally, these data blocks are collected as an encrypted file and sent

to cloud storage.

Overall, the proposed Automated Encryption/Decryption System for Cloud Data

Storage (AEDS), whether using sequential or random manners of encrypting blocks of

Figure 5. Methodology of the Automated Sequential Cryptography (ASC) for data blocks, encryption
process (a) and decryption process (b).

Cryptography 2021, 5, 37 10 of 20

The decryption process in the ASC is also performed automatically as the encryption
process. The decryption operator (DO) is activated only when the authorized user requests
to retrieve his original data. The DO procedure passes through two main reverse phases.
The first phase begins by applying RSA as a decryption algorithm to decrypt all the
encrypted keys stored in the private database using the private decryption key (p, L),
which was previously stored in a private database. After obtaining the original keys, they
will be encrypted by the Twofish algorithm to obtain the public keys of AES and DES and
complete the decryption process, as shown in Figure 5b.

4.2. Automated Random Cryptography (ARC) for Data Blocks

The automated random cryptography technique is another novel strategy used for
data encryption in our proposed framework to enhance data security and privacy. The
novelty of this encryption strategy is to encrypt the data blocks. The ARC encrypts the
data blocks by switching the original AES and DES randomly depending on a random
integer number t, as shown in Figure 6. In more detail, for each block of data, a random
number t is generated. If divided by 2, the data block will be encrypted by AES, otherwise,
DES will encrypt the block.

Cryptography 2021, 5, x FOR PEER REVIEW 10 of 22

(a) (b)

Figure 5. Methodology of the Automated Sequential Cryptography (ASC) for data blocks, encryp-

tion process (a) and decryption process (b).

The decryption process in the ASC is also performed automatically as the encryption

process. The decryption operator (DO) is activated only when the authorized user re-

quests to retrieve his original data. The DO procedure passes through two main reverse

phases. The first phase begins by applying RSA as a decryption algorithm to decrypt all

the encrypted keys stored in the private database using the private decryption key (p, L),

which was previously stored in a private database. After obtaining the original keys, they

will be encrypted by the Twofish algorithm to obtain the public keys of AES and DES and

complete the decryption process, as shown in Figure 5b.

4.2. Automated Random Cryptography (ARC) for Data Blocks

The automated random cryptography technique is another novel strategy used for

data encryption in our proposed framework to enhance data security and privacy. The

novelty of this encryption strategy is to encrypt the data blocks. The ARC encrypts the

data blocks by switching the original AES and DES randomly depending on a random

integer number t, as shown in Figure 6. In more detail, for each block of data, a random

number t is generated. If divided by 2, the data block will be encrypted by AES, otherwise,

DES will encrypt the block.

Figure 6. Flow chart of the randomize procedure in the ARC technique.

As shown in Figure 7, the encryption operator uses the 𝐊𝐢, 𝐭𝐰𝐨𝐟𝐢𝐬𝐡 produced by the

Twofish algorithm as encryption keys to encrypt the blocks of data by AES or DES accord-

ing to the value of t. Finally, these data blocks are collected as an encrypted file and sent

to cloud storage.

Overall, the proposed Automated Encryption/Decryption System for Cloud Data

Storage (AEDS), whether using sequential or random manners of encrypting blocks of

Figure 6. Flow chart of the randomize procedure in the ARC technique.

As shown in Figure 7, the encryption operator uses the Ki, twofish produced by the
Twofish algorithm as encryption keys to encrypt the blocks of data by AES or DES according
to the value of t. Finally, these data blocks are collected as an encrypted file and sent to
cloud storage.

Cryptography 2021, 5, x FOR PEER REVIEW 11 of 22

data, is primarily based on the automated execution of the encryption and decryption

process without any interference from a third party and without any external pressure on

the user’s shoulders. The steps of the encryption and decryption processes are illustrated

in Algorithms 1 and 2.

(a) (b)

Figure 7. Methodology of the Automated Random Cryptography (ARC) for data blocks, encryption

process (a) and decryption process (b).

Algorithm 1: Encryption process.

Input: Plain text F, Random key 𝑲𝒊

Output: 𝑬𝒊 (encrypted text), private keys of RSA and 𝑲𝒊,𝑹𝑺𝑨 (encrypted keys using

RSA)

Set Y = 𝑭𝒍𝒆𝒏𝒈𝒉𝒕

While (Y! = 0) do

Set 𝑭𝒔𝒕𝒂𝒓𝒕 = 0, i = 1 as number of current block,

While (𝑭𝒔𝒕𝒂𝒓𝒕 < Y) do

Set t =0 /* in case of ASC encryption approach

Generate t as a random number /* in case of ARC encryption approach

Store t in the private database

Generate 16-byte random key according to RKG function

Use 𝑲𝒕𝒘𝒐𝒇𝒊𝒔𝒉 to encrypt the 16-byte random key

Encrypt the same 16-byte random key by𝑲𝑹𝑺𝑨

Store 𝑲𝑹𝑺𝑨 and the private key in the private database

Use the encrypted 16-byte random key to encrypt blocks of data

Determine random sizes of blocks 𝒏 according to Equation (1)

For i = 1 to n

Calculate the 𝒒𝒆𝒏𝒅 = 𝑭𝒔𝒕𝒂𝒓𝒕 + 𝑩𝒊

While (𝒒𝒆𝒏𝒅 > Y) do

𝒒𝒆𝒏𝒅 = Y

𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Read block data from file start at 𝑭𝒔𝒕𝒂𝒓𝒕 and end at 𝒒𝒆𝒏𝒅

If (t mod2==0) then

Encrypt the block 𝑩𝒊using AES algorithm by the 𝑲𝒊,𝒕𝒘𝒐𝒇𝒊𝒔𝒉,

Else

Figure 7. Methodology of the Automated Random Cryptography (ARC) for data blocks, encryption
process (a) and decryption process (b).

Overall, the proposed Automated Encryption/Decryption System for Cloud Data Stor-
age (AEDS), whether using sequential or random manners of encrypting blocks of data, is

Cryptography 2021, 5, 37 11 of 20

primarily based on the automated execution of the encryption and decryption process without
any interference from a third party and without any external pressure on the user’s shoulders.
The steps of the encryption and decryption processes are illustrated in Algorithms 1 and 2.

Algorithm 1: Encryption process.

Input: Plain text F, Random key Ki
Output: Ei (encrypted text), private keys of RSA and Ki, RSA (encrypted keys using RSA)

Set Y = Flenght
While (Y! = 0) do
Set Fstart = 0, i = 1 as number of current block,
While (Fstart < Y) do
Set t =0 /* in case of ASC encryption approach
Generate t as a random number /* in case of ARC encryption approach
Store t in the private database
Generate 16-byte random key according to RKG function
Use Ktwo f ish to encrypt the 16-byte random key
Encrypt the same 16-byte random key by KRSA
Store KRSA and the private key in the private database
Use the encrypted 16-byte random key to encrypt blocks of data
Determine random sizes of blocks n according to Equation (1)
For i = 1 to n
Calculate the qend = Fstart + Bi
While (qend > Y) do
qend = Y

End while
Read block data from file start at Fstart and end at qend
If (t mod2==0) then
Encrypt the block Bi using AES algorithm by the Ki, two f ish,
Else
Encrypt the block Bi using DES algorithm by the Ki,two f ish,
End if

t = t + 1 /* in case of ASC encryption approach
Generate new t as a random number /* in case of ARC encryption approach
Send the cipher block Ei and send it to cloud storage
End For
Set Fstart = qend
End while
End while
Store the encrypted blocks of data Ei on the cloud storage, and store the private keys p and the encrypted

keys by RSA Ki, RSA on a private database.

Algorithm 2: Decryption process.

Input: Encrypted blocks of data, Ki,RSA (encrypted keys) and the private keys by RSA
Output: The original file
For i = 1 to n /* n is the number of ciphered blocks
Select Ki, RSA and the private keys p from the private database
Decrypt Ki, RSA using RSA decryption algorithm
Read 16-byte of keys
Encrypt the 16-byte keys using the Twofish algorithm
Read the block Ei from the cloud storage and read t from the private database
If (t mod2==0) then
Decrypt the Ei by the inverse of the AES algorithm by its Ki, two f ish
Else
Decrypt the ciphertext by the inverse DES algorithm by its Ki, two f ish
Insert the decrypted block of data Bi in a file F
End if
End for

Cryptography 2021, 5, 37 12 of 20

4.3. Improved Automated Random Cryptography (IARC) for Data Blocks

A novel modified version of AES based on a dynamic S-box generator is developed in
the Improved Automated Random Cryptography technique. The original AES was based
on using a static S-box, which is the component that is responsible for the substitution
process in any symmetric algorithm [40]. The proposed novel Dynamic AES algorithm
uses a dynamic substitution box (S-box) generated randomly for each data block without
repetition to improve confidentiality and the security level.

The S-box in the proposed DAES algorithm is generated by using a polynomial
function to compute each element in the new dynamic S-box for each data block, as shown
in Equation (2):

S − box (t) =
[(

4t4 + 3t3 + 2t2 + t + 1
)

mod Nr + (Nrmod 5)
]

(2)

where t is an 8-digit random integer generated in the ARC technique’s randomize pro-
cedure, as illustrated in Figure 7, and Nr is a counter that counts down until the dy-
namic S-box from [1:257] is completed. The changing value at each location in the
dynamic S-box is determined by Nr. In many circumstances, the result of the phrase
[
(
4t4 + 3t3 + 2t2 + t + 1

)
mod Nr may be zero, thus the term (Nrmod 5) is added to limit

the result’s number of zeros. To verify that each place in the dynamic S-box has a unique
value and obtains a dynamic S-box with no repetition, we employed Algorithm 3.

Algorithm 3: S-box without repetition process.

Input: S-box (t) value
Output: S-box without repetition

Set i = 0
countval= S-box.count(S-box (t))
while(countval >= 1)do
i = i + 1
S-box (t) = S-box (t) + i
while (S-box (t) >= 256) do
S-box (t) = abs(S-box(t) − 256)
Endwhile
countval = S-box.count(S-box (t))
Endwhile

Finally, Table 2 displays the description of all the parameters utilized in the algorithms.
All the symbols and abbreviations are mentioned in Appendix A.

Table 2. Description of all the parameters used in the following algorithms.

Parameter Description

Bi Blocks of data
Ki Random key
F Plain text file

Flenght The size of the file
Fstart the start of each block
qend the end of each block

Ki, twofish Encrypted key using Twofish
Ki, RSA Encrypted key using RSA

Ei Encrypted block
i Number of checks of repetition

Countval Number of repetitions
S-box (t) The value of each place

The complexity of the proposed algorithms has been calculated by Cyclomatic com-
plexity, a standard software complexity metric for evaluating the complexity of a pro-

Cryptography 2021, 5, 37 13 of 20

gram [46]. The parameters used in this software to calculate the algorithm complexity are
the number of Line of Codes (LOC), Function Count (FC), count space token of functions
(Token), and Cyclomatic Complexity Number (CCN). Table 3 displays the values of these
parameters for the proposed cryptographic algorithms ASC, ARC, and IARC. The algo-
rithm of the ARC technique used 33 functions in 826 lines of code, resulting in a complexity
of 1.5. The ASC approach used 33 functions in 805 lines of code, resulting in a complexity
of 1.4. Finally, the IARC utilized 33 functions with 822 lines, resulting in a complexity
of 1.5.

Table 3. Comparison between the tested the complexity of the proposed approaches based on
Cyclomatic complexity.

Algorithm NLOC Avg. NLOC Avg. Token Function
Count AvgCCN

ARC 826 22.9 185.2 33 1.5
ASC 805 22.4 180.9 33 1.4
IARC 822 22.8 183.1 33 1.5

5. Experiments and Results Analysis

The proposed encryption algorithms have been implemented and tested on a private
cloud service provider using the open nebula as a cloud simulator, which provides an
infrastructure for a cloud environment. The experiments have been performed using
python as a programming language, running on VMware based on a virtual machine, Intel
(R) Core i7 2.3 GHz CPU, 32 GB of memory, and Windows 10 operating system.

5.1. Configuration of Open Nebula Cloud Simulator

In the Open Nebula Hadoop simulator, the total configured capacity for our system is
80.47 GB, split into 57.86 GB for storage space and 22.6 GB for the operating system and
other applications. We utilized 47.7 GB of the distributed file system (DFS) as the capacity
used. Regarding the master server, it has a total configured capacity of 30.19 GB, of which
15.9 GB is utilized for DFS storage. Node 1 and node 2 have a total configured capacity of
25.19 and 25.09 GB, respectively. All the configurations are displayed in Table 4.

Table 4. Configuration of the Open Nebula.

Hostname Master. Hadoop. Lan Node1 Node2

Decommission Status Normal Normal Normal
Configured capacity 30.19 GB 25.19 GB 25.09 GB

DFS Used 15.9 GB 15.9 GB 15.9 GB
Non DFS Used 8.48 GB 7.04 GB 7.08 GB
DFS Remaining 5.81 GB 2.25 GB 2.11 GB

DFS Remaining% 19.24% 8.93% 8.41%
DFS used% 52.67% 63.12% 63.37%

Cache used% 100% 100% 100%

5.2. Performance Evaluation Measures

The proposed encryption algorithms ASC, ARC, and IARC are compared to other pop-
ular encryption algorithms used in the cloud environment, including DES [44], 3DES [47],
and RC2 [48]. The experiments were implemented and tested using different sizes of stored
data; 500 MB, 730 MB, 1.2 GB, 1.7 GB, and 2.2 GB. Each file is divided into blocks of differ-
ent sizes, ranging between 128, 192, and 265 MB. To evaluate the encryption algorithms,
the statistical results for all the utilized algorithms used in the comparison are measured,
including time of encryption process, time of decryption process, time of uploading and
retrieving data, and throughput usage of both encryption and decryption files as follows:

Cryptography 2021, 5, 37 14 of 20

• Time consumption for encryption/decryption files (T): is the total time the system
takes to encrypt/decrypt all blocks of the selected file using the chosen algorithm
from the start of the encryption/decryption process to the end [48,49]. It could be
calculated by Equation (3).

T = ∑(End_time − Start_time)block (3)

• Time consumption for upload/retrieving files: is the time the system takes to send
data from the user to the server and vice versa. Generally, the server’s speed controls
the upload/retrieve time and is calculated by Equation (4) [49].

Upload/Retrieve Time = Request time of the user + PT (4)

• Overall Processing time (PT): is the system’s total time for generating random keys
and executing the encryption or decryption process. It could be calculated by Equa-
tion (5) [27].

PT = key generation time + T (5)

• Throughput: is the amount of data that can be processed in a predefined time. It is
calculated by Equation (6) [26,50]:

Throughput (MB/s) =
Size of the selected file (MB)

PT (s)
(6)

5.3. Discussion and Results Analysis

According to the comparison between the proposed cryptographic algorithms ASC
and ARC and the other state-of-the-art cryptographic algorithms used in the evaluation,
both ASC and ARC achieved better performance in encrypting and decrypting different
files of various sizes. Furthermore, ASC and ARC removed the problem of the third party
and achieved a high level of security; they performed encryption/decryption processes in
better time than other algorithms. Tables 5 and 6 show the recorded time in encrypting
and decrypting different data blocks sizes in several files of different types and sizes. For
instance, as shown in Table 6, our proposed cryptographic algorithms ASC and ARC
recorded the least time to encrypt and decrypt the various sizes of files. ARC was superior
to the other algorithms used in the comparison. It consumed 22.90, 40.99, 83.79, and
100.24 s to complete the encrypting process for 500 MB, 730 MB, 1.2 GB, and 1.7 GB
files, respectively.

In comparison, ASC recorded less time when the file sizes became 2.2 GB, consuming
127.37 s. Although ARC and ASC have complicated operations in the decryption process
and have recorded more time than recorded in the encryption process, they outperformed
the other algorithms in saving time. ARC recorded 101.27 and 158.45 s to decrypt the 500
and 730 MB files, respectively. Furthermore, ASC was better at decrypting the 1.2, 1.7, and
2.2 GB files.

Regarding time consumption in uploading and retrieving files displayed in Table 7,
ARC and ASC recorded the best average time, except in a file size of 1.2 GB. DES recorded
the least time for the file uploading process. While for the amount of data that can be
processed in a second (i.e., the throughput), ARC and ASC were the best, followed by DES,
as displayed in Table 8.

On the other hand, as IARC employed a dynamic S-box to enhance security, it defi-
nitely will enhance the security level of user data. However, as reported in the comparative
tables, its continuous calculation process to generate the dynamic s-box value took longer
to finish the encryption/decryption process.

Cryptography 2021, 5, 37 15 of 20

Table 5. Comparison between the tested algorithms based on the overall processing time for encryption/decryption.

File
Size

The Overall Time of Encryption Process/s The Overall Time Decryption Process/s

DES RC2 3DES ASC ARC IARC DES RC2 3DES ASC ARC IARC

500 MB 44.69 67.27 136.18 26.70 22.90 1092.41 115.22 139.43 243.04 103.26 101.27 1162.13

730 MB 63.24 102.81 182.84 46.72 40.99 3782.78 175.37 210.81 303.29 161.20 158.45 3972.41

1.2 GB 101.68 152.53 279.97 86.91 83.79 6157.41 285.36 325.95 469.01 264.63 267.36 6484.52

1.7 GB 152.50 236.39 406.76 104.05 100.24 1029.16 406.74 487.70 668.14 379.95 425.32 11,320.09

2.2 GB 194.00 302.07 509.57 127.37 162.76 12,702.62 521.86 620.32 831.47 465.63 486.22 14,195.37

Table 6. Comparison between the tested algorithms based on the consumed time for encrypting/decrypting a file in seconds.

File
Size

Time for Encrypting a File/s Time for Decryption a File/s

DES RC2 3DES ASC ARC IARC DES RC2 3DES ASC ARC IARC

500 MB 44.43 66.91 135.65 26.41 22.58 1092.10 42.84 63.55 139.93 25.86 21.27 1082.47

730 MB 63.11 102.62 182.33 46.29 40.47 3783.11 61.26 98.39 178.10 45.13 39.55 3637.41

1.2 GB 101.30 151.84 279.41 86.48 83.17 6157.113 103.17 151.88 284.64 74.83 82.73 6057.11

1.7 GB 151.68 235.78 406.10 103.20 99.70 10,293.96 148.07 229.56 397.59 102.45 94.40 10,211.38

2.2 GB 193.30 301.02 508.65 126.81 161.43 12,702.17 185.38 293.27 504.15 120.35 156.60 11,801.31

Table 7. Comparison between the tested algorithms based on the consumed time for uploading/retrieving a file in seconds.

File
Size

Time for Uploading a File/s Time for Retrieving a File/s

DES RC2 3DES ASC ARC IARC DES RC2 3DES ASC ARC IARC

500 MB 220.09 247.90 359.62 137.14 208.97 1285.33 115.56 139.79 243.78 103.65 101.41 1163.57

730 MB 324.31 364.12 463.90 316.50 326.18 4053.67 175.90 211.30 303.84 161.67 159.07 3297.32

1.2 GB 528.33 575.33 718.65 566.50 534.48 6601.83 286.38 327.29 469.96 265.65 266.33 5229.31

1.7 GB 768.27 850.46 1026.68 745.61 747.32 9318.29 408.43 489.39 669.88 387.36 427.82 8030.57

2.2 GB 977.90 1066.20 1291.87 937.36 966.01 13,195.55 524.35 622.51 831.47 468.13 488.45 11,059.28

Table 8. Comparison between the tested algorithms based on the throughput for encryption/decryption.

File
Size

Throughput for the Encryption Process Throughput for the Decryption Process

DES RC2 3DES ASC ARC IARC DES RC2 3DES ASC ARC IARC

500 MB 11.19 7.43 3.67 18.72 21.83 0.46 4.33 3.59 2.06 4.84 4.94 0.43

730 MB 11.54 7.10 3.99 15.62 17.81 0.19 4.16 3.46 2.40 4.52 4.61 0.18

1.2 GB 12.08 8.06 4.39 14.14 14.67 0.20 4.31 3.77 2.62 4.64 4.6 0.11

1.7 GB 11.42 7.36 4.28 16.73 17.37 0.17 4.28 3.57 2.61 4.58 4.09 0.15

2.2 GB 11.61 7.46 4.42 17.69 13.84 0.18 4.32 3.63 2.71 4.84 4.63 0.16

As shown in Figure 8, we can achieve fast big data processing, higher efficiency, and
better performance by using the proposed algorithms ASC and ARC. However, these
proposed algorithms are more complex but take less time than DES, DES3, and RC2 and
increase security and improve cloud confidentiality.

Finally, a brief overview of ACS, RCS, and IARC approaches can be summarized
in the following points to declare the novelties based on the data encryption features of
cloud storage.

• Encryption of generated keys: Since the ACS, RCS, and IARC methods use two
phases of encrypting the keys, the key generation procedure provides an efficient key
generation process that helps resist brute-force assaults. One phase is used to encrypt
the keys before encrypting the data, and another algorithm is used to safeguard the

Cryptography 2021, 5, 37 16 of 20

keys to be securely stored. Since the key generation technique is utilized in ACS and
RCS methods, the security level will be enhanced.

• Hybrid approaches: To improve security, we have combined four algorithms Twofish,
RSA, AES, and DES, in different manners according to the adopted approach.

• Improved approach: To increase the security and achieve high confidentiality, we used
a dynamic S-box without repeating the AES algorithm in the IARC approach.

• Automated approach: All encryption and storage operations are carried out without
intervention from the cloud third party or the user.

• Time complexity: Although the operations are complicated in the proposed ap-
proaches, the processing time is still acceptable.

• Storage: The ACS, RCS, and IARC approaches proposed appropriate cloud storage
data since they use concealed encryption to secure access against malicious parties.

• Security: ACS, RCS, and IARC approaches are secure algorithms because of the
complicated operation and substitution–permutation and Feistel structure.

Cryptography 2021, 5, x FOR PEER REVIEW 17 of 22

Figure 8. The comparison between the ACS, RCS, and IARC with other encryption algorithms.

Finally, a brief overview of ACS, RCS, and IARC approaches can be summarized in

the following points to declare the novelties based on the data encryption features of cloud

storage.

• Encryption of generated keys: Since the ACS, RCS, and IARC methods use two

phases of encrypting the keys, the key generation procedure provides an efficient key

generation process that helps resist brute-force assaults. One phase is used to encrypt

the keys before encrypting the data, and another algorithm is used to safeguard the

keys to be securely stored. Since the key generation technique is utilized in ACS and

RCS methods, the security level will be enhanced.

• Hybrid approaches: To improve security, we have combined four algorithms

Twofish, RSA, AES, and DES, in different manners according to the adopted ap-

proach.

• Improved approach: To increase the security and achieve high confidentiality, we

used a dynamic S-box without repeating the AES algorithm in the IARC approach.

• Automated approach: All encryption and storage operations are carried out without

intervention from the cloud third party or the user.

• Time complexity: Although the operations are complicated in the proposed ap-

proaches, the processing time is still acceptable.

• Storage: The ACS, RCS, and IARC approaches proposed appropriate cloud storage

data since they use concealed encryption to secure access against malicious parties.

• Security: ACS, RCS, and IARC approaches are secure algorithms because of the com-

plicated operation and substitution–permutation and Feistel structure.

6. Conclusions and Future Work

Increasing the volume of data has resulted in users saving data on remote access

storage media, such as cloud computing storage infrastructures. Outsourcing the data

Figure 8. The comparison between the ACS, RCS, and IARC with other encryption algorithms.

6. Conclusions and Future Work

Increasing the volume of data has resulted in users saving data on remote access
storage media, such as cloud computing storage infrastructures. Outsourcing the data
makes it beyond the user’s control and vulnerable to untrusted, anonymous operations.
In this study, we have developed an automated hybrid cryptographic system that works
without interference from cloud third parties to maintain data confidentiality and reduce
the burden on users to secure their data by themselves. We have proposed three approaches;
Automated Sequence Cryptography (ASC), Automated Random Cryptography (ARC), and
improved automated random cryptography (IARC) for data blocks. Before using the keys
to encrypt data, the keys are encrypted in two phases: initially, the keys are encrypted by
the RSA algorithm to be stored in a private and safe database to be used later in decrypting
the encrypted original data. The second phase to encrypt the keys is performed by the

Cryptography 2021, 5, 37 17 of 20

Twofish algorithm, which is used to encrypt the keys utilized in encrypting the original
data by AES and DES algorithms.

Furthermore, to increase security, data are divided into a random size of blocks and
encoded by (DES, AES, and modified DAES) algorithms sequentially in the ASC approach
and randomly in ARC and IARC approaches. To evaluate the performance of the pro-
posed approaches, they have been compared with other state-of-the-art cryptographic
algorithms, such as DES, 3DES, and RC2. This comparison has adopted various param-
eters, such as processing time, encryption/decryption time, upload/retrieve time, and
encryption/decryption throughput. Experimental results indicate that, although some
complex operations are carried out within the proposed ASC and ARC approaches, the
results’ analysis shows that our approaches have a high degree of security, more efficient
data processing, and high throughput. Significantly, the ARC approach achieves a high
level of security due to using the random manner in encrypting the blocks of data. On the
other hand, the improved version “IARC” has been developed to increase and enhance
the security level based on the dynamicity of the substitution process inside the modified
version of the AES algorithm. Unfortunately, these high calculations, which are performed
for every data block, lead to spend a lot of time the encryption and decryption processes.

Thus, in future work, we will need to employ the MapReduce programming model to
apply concurrent processing strategy in running the proposed IARC model. In addition,
an Auto Data Audits stage will be included in the proposed system to ensure the data
saved is verified and integrated without interfering with the conventional cloud third party
whenever the user wants to access it. This will ensure that the data are correctly integrated.

Author Contributions: All authors contributed equally to this paper, where D.S.E.-M. has designed
and carried out the experiment, discussed the results, and written the paper. N.E.E.-A. designed
the methodology, analyzed and discussed the results, and revised the paper. W.A.A. edited the
manuscript, analyzed the results, and revised the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Academy of Scientific Research and Technology (ASRT),
Egypt, Grant No. 6498.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Table A1. A list of abbreviations.

Abbreviation Meaning

CTP Cloud third party
AEDS Automated Encryption/Decryption System for Cloud Data Storage
ASC Automated Sequential Cryptography
ARC Automated Random Cryptography
AES Advance Encryption Standard
DES Data Encryption Standard
RSA Rivest–Shamir–Adleman
3DES Triple Data Encryption Standard
RC2 ARC2
IaaS Infrastructure as a Service
PaaS Platform as a Service

Cryptography 2021, 5, 37 18 of 20

Table A1. Cont.

Abbreviation Meaning

SaaS Software as a Service
CSP Cloud Service Provider
TTPA Trusted Third-Party Auditor
CSS Cloud Storage Server
TPA Third-Party Auditor
TTP Trusted Third Parties
MDS Maximum Distance Separable
PHT Pseudo-Hadamard Transform
RKG Random Key Generator
EO Encryption Operator
DO Decryption Operator
DFS Distributed File System

Table A2. A list of mathematical symbols.

Symbol Meaning

N and M prime numbers as random
ϕ the function of Euler’s totient
C cipher data
K original data
(e, L) public key
(p, L) the private key
Ki Random key
Ki, RSA Encrypted keys using RSA
Ki, Twofish Encrypted key using Twofish
Blenght The size of the block
S random number [2:4]
T Time consumption for encryption/decryption files
PT Overall Processing time

References
1. Mall, S.; Saroj, S.K. A new security framework for cloud data. In Proceedings of the International Conference on Advances in

Computing and Communications, Kochi, India, 19–22 September 2018; Volume 143, pp. 765–775. [CrossRef]
2. Dhanapal, R.; Tharageswari, K.; Karthik, S. A decentralized accountability framework for enhancing secure data sharing through

ICM in cloud. Innov. Technol. Explor. Eng. 2019, 8, 1505–1511, ISSN 2278-3075. [CrossRef]
3. Shahzadi, S.; Iqbal, M.; Qayyum, Z.U.; Dagiuklas, T. Infrastructure as a service (IaaS): A comparative performance analysis

of open-source cloud platforms. In Proceedings of the International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks, Lund, Sweden, 19–21 June 2017; pp. 1–6. [CrossRef]

4. Jathanna, R.; Jagli, D. Cloud Computing and security issues. Int. J. Eng. Res. Appl. 2017, 7, 31–38, ISSN 2248-9622. [CrossRef]
5. Kulkarni, G.; Waghmare, R.; Palwe, R.; Waykule, V.; Bankar, H. Cloud storage architecture. In Proceedings of the International

Conference on Telecommunication Systems, Services, and Applications, Denpasar-Bali, Indonesia, 30–31 October 2012; pp. 76–81.
[CrossRef]

6. Vurukonda, N.; Rao, B.T. A Study on data storage security issues in cloud computing. In Proceedings of the Inernational Conference
on Intelligent Computing, Communications & Convergence, Odisha, India, 24–25 January 2016; Volume 92, pp. 128–135. [CrossRef]

7. Bentajer, A.; Hedabou, M.; Abouelmehdi, K.; Elfezazi, S. CS-IBE: A data confidentiality system in a public cloud storage system.
Procedia Comput. Sci. 2018, 141, 559–564. [CrossRef]

8. Tawalbeh, L.A.; Saldamli, G. Reconsidering big data security and privacy in cloud and mobile cloud systems. Comput. Inf. Sci.
2019, 33, 810–819. [CrossRef]

9. Das, D. Secure cloud computing algorithm using homomorphic encryption and multi-party computation. In Proceedings of
the International Conference on Information Networking, Chiang Mai, Thailand, 10–12 January 2018; Volume 1, pp. 391–396.
[CrossRef]

10. Mohta, A.; Awasthi, L.K. Cloud data security while using third-party auditor. Sci. Eng. Res. 2012, 3, 1–9, ISSN 2229-5518.
11. Yusop, Z.M.; Abawajy, J.H. Analysis of insiders attack mitigation strategies. Procedia-Soc. Behav. Sci. 2014, 129, 611–618. [CrossRef]
12. Singh, S.; Thokchom, S. Public integrity auditing for shared dynamic cloud data. In Proceedings of the International Conference

on Smart Computing and Communications, Kurukshetra, India, 7–8 December 2018; Volume 125, pp. 698–708. [CrossRef]

http://doi.org/10.1016/j.procs.2018.10.397
http://doi.org/10.35940/ijitee.A1026.0881019
http://doi.org/10.1109/CAMAD.2017.8031522
http://doi.org/10.9790/9622-0706053138
http://doi.org/10.1109/TSSA.2012.6366026
http://doi.org/10.1016/j.procs.2016.07.335
http://doi.org/10.1016/j.procs.2018.10.126
http://doi.org/10.1016/j.jksuci.2019.05.007
http://doi.org/10.1109/ICOIN.2018.8343147
http://doi.org/10.1016/j.sbspro.2014.06.002
http://doi.org/10.1016/j.procs.2017.12.090

Cryptography 2021, 5, 37 19 of 20

13. Potey, M.M.; Dhote, C.A.; Sharma, D.H. Homomorphic encryption for security of cloud data. In Proceedings of the International
Conference on Communication, Computing and Virtualization, Mumbai, India, 26–27 February 2016; Volume 79, pp. 175–181.
[CrossRef]

14. El-Attar, N.E.; Awad, W.A.; Omara, F.A. Empirical assessment for security risk and availability in public cloud frameworks. In
Proceedings of the International Conference on Computer Engineering & Systems, Cairo, Egypt, 20–21 December 2016; pp. 17–25.
[CrossRef]

15. El Makkaoui, K.; Ezzati, A.; Beni-Hssane, A.; Ouhmad, S. A swift Cloud-Paillier scheme to protect sensitive data confidentiality
in cloud computing. In Proceedings of the International Conference on Mobile Systems and Pervasive Computing, Gran Canaria,
Spain, 13–15 August 2018; Volume 134, pp. 83–90. [CrossRef]

16. Chakraborty, S.; Singh, S.; Thokchom, S. Integrity Checking using third party auditor in cloud storage. In Proceedings of the
International Conference on Contemporary Computing, Noida, India, 2–4 August 2018; pp. 1–6. [CrossRef]

17. Nadlamani, G.F.; Shaikh, S. Preserving privacy using TPA for cloud storage based on regenerating code. In Proceedings of the
International Conference on Recent Trends in Information Technology, Chennai, India, 8–9 April 2016; pp. 1–5. [CrossRef]

18. More, S.; Chaudhari, S. Third party public auditing scheme for cloud storage. In Proceedings of the International Conference on
Communication, Computing and Virtualization, Mumbai, India, 26–27 February 2016; Volume 79, pp. 69–76. [CrossRef]

19. Singh, A.P.; Pasupuleti, S.K. Optimized Public auditing and data dynamics for data storage security in cloud computing. In
Proceedings of the International Conference on Advances In Computing & Communications, Cochin, India, 6–8 September 2016;
Volume 93, pp. 751–759. [CrossRef]

20. Ferhat, O.C.; Ahmet, F.M. CPP-ELM: Cryptographically Privacy-Preserving Extreme Learning Machine for Cloud Systems. Int. J.
Comput. Intell. Syst. 2018, 11, 33–44. [CrossRef]

21. Saxena, R.; Dey, S. Cloud Audit: A Data Integrity verification approach for cloud computing. Procedia Comput. Sci. 2016, 89,
142–151. [CrossRef]

22. Adokshaja, B.L.; Saritha, S.J. Third-party public auditing on cloud storage using the cryptographic algorithm. In Proceedings of
the International Conference on Energy, Communication, Data Analytics and Soft Computing, Chennai, India, 1–2 August 2017;
pp. 3635–3638. [CrossRef]

23. Akhil, K.M.; Kumar, M.P.; Pushpa, B.R. Enhanced cloud data security using AES algorithm. In Proceedings of the International
Conference on Intelligent Computing and Control, Coimbatore, India, 14–15 June 2018; pp. 1–5. [CrossRef]

24. Sivakumar, P.; NandhaKumar, M.; Jayaraj, R.; Kumaran, A.S. Securing Data and Reducing the Time Traffic Using AES Encryption
with Dual Cloud. In Proceedings of the International Conference on System, Computation, Automation and Networking,
Pondicherry, India, 29–30 March 2019; pp. 1–5. [CrossRef]

25. Orobosade, A.; Favour-Bethy, T.A.; Kayode, A.B.; Gabriel, A.J. Cloud Application Security using Hybrid Encryption. Commun.
Appl. Electron. 2020, 7, 25–31, ISSN 2394-4714. [CrossRef]

26. Sohal, M.; Sharma, S. BDNA-A DNA inspired symmetric key cryptographic technique to secure cloud computing. Comput. Inf.
Sci. 2018, 1–8. [CrossRef]

27. Thabit, F.; Alhomdy, S.; Al-Ahdal, H.A.; Jagtap, S. A new lightweight cryptographic algorithm for enhancing data security in
cloud computing. Glob. Transit. Proc. 2021, 2, 91–99. [CrossRef]

28. Maitri, P.V.; Verma, A. Secure file storage in cloud computing using hybrid cryptography algorithm. In Proceedings of the
International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 23–25 March 2016;
pp. 1635–1638. [CrossRef]

29. Hoomod, H.K.; Hussein, A.M. New Modified Twofish for Data Protection Using Salsa20 and Lü system. In Proceedings of
the International Conference on Intelligent Computing and Control Systems, Madurai, India, 15–17 May 2019; pp. 1189–1195.
[CrossRef]

30. Zodpe, H.; Sapkal, A. An efficient AES implementation using FPGA with enhanced security features. Eng. Sci. 2020, 32, 115–122.
[CrossRef]

31. Xu, X.; Tian, N. The search and improvement of DES algorithm for data transmission security in SCADA. In Proceedings of
the International Conference on Intelligent Computing, Automation and Systems, Chongqing, China, 29–31 December 2019;
pp. 275–279. [CrossRef]

32. Malgari, V.; Dugyala, R.; Kumar, A. A Novel Data Security Framework in Distributed Cloud Computing. In Proceedings of the
International Conference on Image Information Processing, Shimla, India, 15–17 November 2019; pp. 373–378. [CrossRef]

33. Gupta, P.; Kumar, D.; Kumar Singh, A. Improving RSA Algorithm Using Multi-Threading Model for Outsourced Data Security in
Cloud Storage. In Proceedings of the International Conference on Cloud Computing, Data Science & Engineering, Noida, India,
11–12 January 2018; pp. 14–15. [CrossRef]

34. Jintcharadze, E.; Iavich, M. Hybrid implementation of twofish, AES, ElGamal, and RSA cryptosystems. In Proceedings of the
IEEE East-West Design & Test Symposium, Varna, Bulgaria, 4–7 September 2020; pp. 1–5. [CrossRef]

35. Ramtri, G.; Patel, C. Secure banking transactions using RSA and two fish algorithms. In Proceedings of the International
Conference on Emerging Trends in Information Technology and Engineering, Vellore, India, 24–25 February 2020; pp. 1–5.
[CrossRef]

http://doi.org/10.1016/j.procs.2016.03.023
http://doi.org/10.1109/ICCES.2016.7821969
http://doi.org/10.1016/j.procs.2018.07.147
http://doi.org/10.1109/IC3.2018.8530649
http://doi.org/10.1109/ICRTIT.2016.7569544
http://doi.org/10.1016/j.procs.2016.03.010
http://doi.org/10.1016/j.procs.2016.07.286
http://doi.org/10.2991/ijcis.11.1.3
http://doi.org/10.1016/j.procs.2016.06.024
http://doi.org/10.1109/ICECDS.2017.8390141
http://doi.org/10.1109/I2C2.2017.8321820
http://doi.org/10.1109/ICSCAN.2019.8878749
http://doi.org/10.5120/cae2020652866
http://doi.org/10.1016/j.jksuci.2018.09.024
http://doi.org/10.1016/j.gltp.2021.01.013
http://doi.org/10.1109/WiSPNET.2016.7566416
http://doi.org/10.1109/ICCS45141.2019.9065573
http://doi.org/10.1016/j.jksues.2018.07.002
http://doi.org/10.1109/ICICAS48597.2019.00066
http://doi.org/10.1109/ICIIP47207.2019.8985941
http://doi.org/10.1109/CONFLUENCE.2018.8442788
http://doi.org/10.1109/EWDTS50664.2020.9224901
http://doi.org/10.1109/ic-ETITE47903.2020.236

Cryptography 2021, 5, 37 20 of 20

36. Hemanth, P.N.; Abhinay Raj, N.; Yadav, N. Secure message transfer using RSA algorithm and improved Playfair cipher in cloud
computing. In Proceedings of the International Conference for Convergence in Technology, Mumbai, India, 7–9 April 2017;
pp. 931–936. [CrossRef]

37. Mehmood, M.S.; Shahid, M.R.; Jamil, A.; Ashraf, R.; Mahmood, T. A comprehensive literature review of data encryption
techniques in cloud computing and IoT environment. In Proceedings of the International Conference on Information and
Communication Technologies, Karachi, Pakistan, 16–17 November 2019; pp. 54–59. [CrossRef]

38. Mittal, S.; Arora, S.; Jain, R. PData security using RSA encryption combined with image steganography. In Proceedings of the
International Conference on Information Processing, Delhi, India, 21–23 December 2017; pp. 1–5. [CrossRef]

39. Panda, M. Performance analysis of encryption algorithms for security. In Proceedings of the International Conference on Signal
Processing, Communication, Power and Embedded System, Paralakhemundi, India, 3–5 October 2016; pp. 278–284. [CrossRef]

40. Rani, K.; Sagar, R.K. Enhanced data storage security in cloud environment using encryption, compression asplitting technique. In
Proceedings of the International Conference on Telecommunication and Networks, Noida, India, 10–11 August 2017; pp. 1–5.
[CrossRef]

41. Jayant, B.; Swapnaja, U.; Subhash, P.; Kailash, K.; Sulabha, A. Developing secure cloud storage system by applying AES and RSA
cryptography algorithms with role-based access control model. Comput. Appl. 2015, 118, 46–52. [CrossRef]

42. Ametepe, A.F.; Ahouandjinou, S.A.; Ezin, E.C. Secure encryption by combining asymmetric and symmetric cryptographic method
for data collection WSN in smart agriculture. In Proceedings of the International Smart Cities Conference, Casablanca, Morocco,
14–17 October 2019; pp. 93–99. [CrossRef]

43. Fauziah, N.A.; Rachmawanto, E.H.; Moses Setiadi, D.; Sari, C.A. Design and implementation of AES and SHA-256 cryptography
for securing multimedia file over android chat application. In Proceedings of the International Seminar on Research of Information
Technology and Intelligent Systems, Yogyakarta, Indonesia, 21–22 November 2018; pp. 146–151. [CrossRef]

44. Shivhare, R.; Shrivastava, R.; Gupta, C. An enhanced image encryption technique using DES algorithm with random image
overlapping and random key generation. In Proceedings of the International Conference on Advanced Computation and
Telecommunication, Bhopal, India, 28–29 December 2018; pp. 1–9. [CrossRef]

45. Yassein, M.B.; Aljawarneh, S.; Qawasmeh, E.; Mardini, W.; Khamayseh, Y. Comprehensive study of symmetric key and asymmetric
key encryption algorithms. In Proceedings of the International Conference on Engineering and Technology, Antalya, Turkey,
21–23 August 2017; pp. 1–7. [CrossRef]

46. Subandri, M.A.; Cyclomatic, R.S. Complexity for Determining Product Complexity Level in COCOMO II. In Proceedings of
the Information Systems International Conference, Denpasar-Bali, Indonesia, 6–8 November 2017; Volume 124, pp. 478–486.
[CrossRef]

47. Reddy, I.R.; Murali, G. A novel triple DES to enhance e-governance security. In Proceedings of the International Conference on
Energy, Communication, Data Analytics and Soft Computing, Chennai, India, 1–2 August 2017; pp. 2443–2446. [CrossRef]

48. Charbathia, S.; Sharma, S. A comparative study of rivest cipher algorithms. Inf. Comput. Technol. 2014, 4, 1831–1838, ISSN 0974-2239.
49. Malviya, S.; Dave, S. Secure data sharing scheme using cryptographic algorithm for cloud storage. Appl. Eng. Res. 2018, 13,

14799–14805, ISSN 0973-4562.
50. Srilaya, S.; Velampalli, S. Performance Evaluation for DES and AES Algorithms—An Comprehensive Overview. In Proceedings

of the International Conference on Recent Trends in Electronics, Information & Communication Technology, Bangalore, India,
18–19 May 2018. [CrossRef]

http://doi.org/10.1109/I2CT.2017.8226265
http://doi.org/10.1109/ICICT47744.2019.9001945
http://doi.org/10.1109/IICIP.2016.7975347
http://doi.org/10.1109/SCOPES.2016.7955835
http://doi.org/10.1109/TEL-NET.2017.8343557
http://doi.org/10.5120/20801-3484
http://doi.org/10.1109/ISC246665.2019.9071658
http://doi.org/10.1109/ISRITI.2018.8864485
http://doi.org/10.1109/ICACAT.2018.8933591
http://doi.org/10.1109/ICEngTechnol.2017.8308215
http://doi.org/10.1016/j.procs.2017.12.180
http://doi.org/10.1109/ICECDS.2017.8389889
http://doi.org/10.1109/RTEICT42901.2018.9012536

	Introduction
	Literature Reviews
	Materials and Methods
	Twofish Algorithm
	Rivest–Shamir–Adleman (RSA) Algorithm
	Advance Encryption Standard (AES) Algorithm
	Data Encryption Standard (DES) Algorithm

	The Proposed Automated Encryption/Decryption System for Cloud Data Storage (AEDS)
	Automated Sequential Cryptography (ASC) for Data Blocks
	Automated Random Cryptography (ARC) for Data Blocks
	Improved Automated Random Cryptography (IARC) for Data Blocks

	Experiments and Results Analysis
	Configuration of Open Nebula Cloud Simulator
	Performance Evaluation Measures
	Discussion and Results Analysis

	Conclusions and Future Work
	
	References

