
cryptography

Article

Efficient Private Conjunctive Query Protocol Over
Encrypted Data †

Tushar Kanti Saha 1,* and Takeshi Koshiba 2

����������
�������

Citation: Saha, T.K.; Koshiba, T.

Efficient Private Conjunctive Query

Protocol Over Encrypted Data.

Cryptography 2021, 5, 2. https://doi.

org/10.3390/cryptography5010002

Received: 15 December 2020

Accepted: 12 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal,
Mymensingh 2224, Bangladesh

2 Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan;
tkoshiba@waseda.jp

* Correspondence: tushar@jkkniu.edu.bd
† Appeared at Progress in Cryptology-AFRICACRYPT 2017 (Africacrypt2017). We extend the contribution of

the paper by adding another efficient protocol for PCQ processing using an N-ary encoding, its
homomorphic evaluation, and showing the corresponding results.

Abstract: Conjunctive queries play a key role in retrieving data from a database. In a database, a
query containing many conditions in its predicate, connected by an “and/&/∧” operator, is called
a conjunctive query. Retrieving the outcome of a conjunctive query from thousands of records is
a heavy computational task. Private data access to an outsourced database is required to keep the
database secure from adversaries; thus, private conjunctive queries (PCQs) are indispensable. Cheon,
Kim, and Kim (CKK) proposed a PCQ protocol using search-and-compute circuits in which they
used somewhat homomorphic encryption (SwHE) for their protocol security. As their protocol is
far from being able to be used practically, we propose a practical batch private conjunctive query
(BPCQ) protocol by applying a batch technique for processing conjunctive queries over an outsourced
database, in which both database and queries are encoded in binary format. As a main technique in
our protocol, we develop a new data-packing method to pack many data into a single polynomial
with the batch technique. We further enhance the performances of the binary-encoded BPCQ protocol
by replacing the binary encoding with N-ary encoding. Finally, we compare the performance to assess
the results obtained by the binary-encoded BPCQ protocol and the N-ary-encoded BPCQ protocol.

Keywords: private conjunctive query; encrypted data; packing method; homomorphic encryption

1. Introduction

In this digital age, data are produced every day at a gigantic rate because of the use
of various types of software by hospitals, clinics, research organizations, banks, insurance
companies, e-commerce companies, and many others. These organizations do not want
their data to be vulnerable to malicious persons, but they do want their data to be available
online. They therefore either allow access to the data using queries from anywhere in
the world or apply some functions to the data for retrieving statistics on the data. Si-
multaneously, they need to protect their own sensitive data along with their customers.
Therefore, they should store data on some trusted online servers. Practically, it is hard to
find trusted online servers. Nowadays, we can achieve data privacy using some techniques
such as steganography and cryptography. Steganography is the art of hiding data in
multimedia files such as images, audio clips, and video clips. Steganography provides
privacy of embedded data, but it compromises the data size. Furthermore, protecting
data by some cryptographic techniques is another solution to data privacy. However,
conventional encryption does not support computation over the encrypted data. If we use
conventional encryption schemes to encrypt the data before storing them to the cloud, en-
crypted data need to be decrypted. To perform addition and multiplication over encrypted
data, homomorphism [1] is a solution to computation over the encrypted data. Using the

Cryptography 2021, 5, 2. https://doi.org/10.3390/cryptography5010002 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6757-7443
https://orcid.org/0000-0001-8994-729X
https://doi.org/10.3390/cryptography5010002
https://doi.org/10.3390/cryptography5010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5010002
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/5/1/2?type=check_update&version=2

Cryptography 2021, 5, 2 2 of 28

homomorphism property, Rivest et al. [1] introduced the concept of homomorphic encryp-
tion, in which they showed multiplicative homomorphism using the RSA algorithm [2].
The homomorphic encryption (HE) ensures computation over the encrypted data without
distorting their originality, i.e., any operation performed over cipher text produces the same
result after decryption if that operation is performed over the corresponding plain text.
For example, considering messages m1 and m2, we can calculate the function E(m1 + m2)
from E(m1) and E(m2) without having prior knowledge of the actual messages m1 and m2,
where E denotes an encryption function. Before Gentry’s invention [3], computation over
encrypted data was limited to either a few additions or a multiplication [4–7]. According to
the computation capability of the homomorphic encryption scheme, homomorphic encryp-
tion can be classified into three categories: partial homomorphic encryption (PHE) [1,5–8],
somewhat homomorphic encryption (SwHE) [3,9,10], and fully homomorphic encryption
(FHE) [3,11–14].

1.1. Motivation

In 2009, Gentry [3] introduced a fully homomorphic encryption scheme, which can be
constructed from SwHE by applying a bootstrapping technique to the SwHE. Bootstrap-
ping is an intermediate procedure of refreshing homomorphically operated ciphertexts,
which is a costly computation. Therefore, the performance of this FHE cannot be used
practically due to its inefficiency in processing the encrypted data [15] and producing large
ciphertexts. Later, Brakerski and Vaikuntanathan [10] proposed a ring-learning-with-errors-
based (RLWE) SwHE scheme, which allows many additions and a few multiplications over
the encrypted data. Actually, the scheme uses an n− 1 degree polynomial to pack n data
using a packing method. Because of packing many data into a single polynomial, it reduces
the ciphertext size after encryption and thus reduces the time of the computation over
those packed ciphertexts. The security of the SwHE depends on the hardness of the LWE
problems [16] on an ideal lattice, which is thought to be secure against cryptanalysis using
a quantum computer. Therefore, RLWE-based SwHE is considered a post-quantum encryp-
tion. Given this advantageous nature of RLWE-based SwHE, it is used in many applications
in the cloud such as statistics computation[17,18], genomic computations [19,20], private
equality tests [21,22], private database queries [23–25], and private inequality tests [26,27].
In these applications, data-encoding methods, also called packing methods, play an impor-
tant role in the efficiency. Therefore, RLWE-based SwHE with tailored packing methods can
be used for constructing more efficient and quantum-secure applications such as private
database queries, genomic computation, and so on.

We use database queries to directly access data from a local database and remotely
from an outsourced database in the cloud. For example, we suppose a patient table in
a hospital database. A query to access data from the table can be represented as select
* from patient. Whenever we want to access more specific data from the patient table in
the database, we need to add one or more conditional statements to the query. When we
add two or more conditions to the predicate of a query using the and/&/∧ operator, the
query is called a conjunctive query. For instance, a conjunctive query, select * from patient,
where diseases=‘cholera’ and patient_age≥12, can select the patients from the patient table
who are suffering from cholera and are 12 years of age and over. If this hospital database
is a private outsourced database, it is indispensable for database users to choose private
conjunctive queries rather than plain conjunctive queries to maintain the privacy both of
the database and the users’ queries In this paper, we focus on the private conjunctive query
(PCQ), which has two or more equality conditions in the predicate of the queries.

From the above example, the PCQ plays a significant role in securely accessing data
from an outsourced private database in reply to private queries by the users. To ensure
the privacy both of the database and queries and to support encrypted computations,
the RLWE-based SwHE [10] provides a suitable solution. To effectively use RLWE-based
SwHE in different applications, several data packing methods [17–20] have been proposed.

Cryptography 2021, 5, 2 3 of 28

In this respect, we considered developing a new packing method to efficiently solve
PCQ problems.

1.2. Problem Statements

A conventional solution for evaluating a private conjunctive query with k equality
conditions in the predicate requires evaluating k sub-queries. The expected outcome
can be determined by taking the intersection of the individual results obtained from the
sub-queries. For example, consider a database containing a table of record along with k
attributes αi and the corresponding value of each attribute is denoted by vi with 1 ≤ i ≤ k.
Then, a conjunctive query like select count(id) from record where α1 = v1 ∧ α2 = v2 ∧ · · · ∧
αk = vk contains k equality conditions in its predicate. Here, we first evaluate k sub-queries
by counting “id” for Q(αi = vi) = {id | the attribute αi of id takes vi as the value} and
then compute the intersection

⋂k
i=1 Q(αi = vi) for the conjunctive query. If we outsource

this computation to the cloud without keeping any security, it will disclose information
regarding the database records to the cloud. In 2016, Cheon et al. [28] proposed a PCQ
protocol using search-and-compute circuits in which they used SwHE for guaranteeing
their protocol security. Supplementarily, they admitted that they need to improve the
performance of their PCQ protocol for practical use. Therefore, an efficient protocol must be
designed to solve this PCQ problem in the cloud. As such, Saha and Koshiba [24] proposed
an efficient protocol for processing PCQ in the cloud. They used a fixed-length binary
data-packing method for encoding multi-dimensional data together with a concatenation
technique. Their packing method is polynomial-based, where every binary datum is
encoded as the coefficient of x with different exponents for a polynomial f (x). Therefore,
the degree of the polynomial increases with the increase in the length of the binary data to
be packed. The efficiency of the proposed protocol depends on the degree of the polynomial.
Moreover, the computational cost increases with the increase in the lattice dimension in
RLWE-based SwHE [10]. For this reason, the efficiency of the protocol could be improved
using encoding that is different from binary encoding.

1.3. System Model

A basic system model for processing three-party PCQ in the cloud is shown in Figure 1.
In this model, we suppose that Charlie is a database owner and Alice is a client who wants
to retrieve data from Charlie’s database. Here, Charlie wants to answer Alice’s query Q
by revealing as little information as possible about the database D. Alice also wants to
retrieve the required data without losing much information on the query. To process a
PCQ in this scenario, a third party like Bob in the cloud can perform their task with the
help of homomorphic encryption. For ensuring privacy, we consider securing the data in
the database and the value of each attribute existing in the predicate of the query. In the
model, Alice generates both a public key and its secret key and sends the public key to
Charlie. Alice encrypts the query Q using the public key after parsing the values and sends
the encrypted values Q′ to the cloud. Charlie sends their encrypted database D′ to the
cloud. Now, Bob homomorphically computes D′ �Q′ to decide the conjunctive equalities
between Q′ and D′ where � defines some homomorphic operations. Then, Bob sends the
result R′ back to Alice for decryption. Alice decrypts R′ by using her secret key and decides
the conjunctive equalities between Q and D.

1.4. Key Technique

For solving the PCQ problem stated in Section 1.2, we use a special method called
the concatenation technique with fixed-length data instead of the traditional technique
for comparing values in the predicate of a query with the data in the database. As shown
in Figure 1, the PCQ problem can be solved by involving a third party like Bob in the
cloud, where a database owner and a query owner are different entities. Let us consider
the conjunctive query containing k equality conditions in its predicate (select count(id) from
patientRecord where α1 = v1 and α2 = v2 and . . . and αk = vk, where k ≥ 2). If we use the

Cryptography 2021, 5, 2 4 of 28

traditional approach to decide the k equalities, we need to send k equality queries to the
cloud, which return some IDs. The expected outcome can be calculated by taking the
intersection of those IDs. In this case, information regarding the database will be revealed
to Alice. However, our goal is to process PCQ with revealing as little information to Alice
as possible. To solve this problem, Alice can encode values from the predicate of the query
as fixed-length data and pack those encoded values sequentially as the coefficients of x
with different exponents in a single polynomial and send the packed data to the cloud
after encryption. Similarly, Charlie can pack the values of k attributes of the database in
the same order and send them to the cloud. Next, Bob blindly matches them using the
Hamming distance and returns the encrypted distances to Alice. In the end, Alice decrypts
those encrypted distances and counts the Hamming distances of being zero to decide
the conjunctive equalities. Moreover, the table consists of numerous records. To process
the PCQ with k conditions, the concatenation approach needs to perform the equality
comparison many times. We can solve this problem using a batch equality technique as
mentioned in [29]. The strengths of the above technique are listed below.

• The set intersection operation can be omitted to avoid information leakage to Alice.
• The multiplication depth of the equality test can be reduced through batching.
• The number of homomorphic multiplications required for conjunctive equality tests

can be decreased using the batch technique.

Figure 1. Basic three-party system model to solve the private database queries (PCQ) problem in
the cloud.

1.5. Previous Works

Here, we review recent works on private conjunctive queries using different crypto-
graphic schemes. In 2013, Boneh et al. [30] proposed a new method to address private
conjunctive queries in the database. However, their method requires set intersection opera-
tions, which reveal some information to the user. In 2014, Pappas et al. [31] constructed
a technique called blind seer to support quite a rich query set over a private database
management system (DBMS) using Yao’s garbled circuits [32] and oblivious transfer in
the semi-honest model. Then, Fisch et al. [33] improved the security of blind seer by
making the system secure against malicious clients. However, both require a communica-
tion of non-constant rounds for searching data where they essentially use Yao’s garbled
circuits [32]. Cheon et al. [28] reported a method of conjunctive query processing. They
guaranteed the privacy of the values in the predicate. However, the performance of their
protocol was impractical. Kim et al. [34] proposed another method of evaluating private
database queries. They reduced the communication cost of accessing τ records, which was
required by previous methods. However, they required a multiplicative depth of log l to
process each l-bit data and did not provide the individual query performance. None of
these methods addressed conjunctive queries with low multiplication depth, which led to
efficient execution of the method. In 2019, Saha et al. [23] introduced a private conjunctive

Cryptography 2021, 5, 2 5 of 28

query protocol that works with the query, including k conditions in the predicate of that
query. Here, they calculated the conjunctive query by sending k sub-queries separately
to the cloud to determine the record IDs satisfying each query and then performed inter-
section of those IDs to generate the desired output of the user’s query. Here, information
leakage is caused by revealing many of the record IDs of the data owner to the user before
the intersection operation. After this, Kim et al. [35] introduced another private database
query protocol in which 0.119 s were required to process each record. They generated
random databases that consisted of 16 keyword attributes with entries with maximum sizes
of 48 or 64 bits. The testing platform was a server with 3.7 GHz Intel R© XeonTM Platinum
8170 and 192 GB RAM. In terms of efficiency, the protocol is not suitable for practical use
because it requires about 20 min to access data from a database of 10,000 records.

1.6. Our Contributions

In this paper, we affirmatively resolve the problems mentioned in Section 1.2 and
produced the following results.

1. We propose an efficient batch private conjunctive query (BPCQ) protocol with the
binary encoding, which we call the BPCQ2 protocol. Here, we use RLWE-based SwHE
for providing security for the binary-encoded values appearing in the predicate of a
query and the data in the database.

2. As a main technique in our protocol, we develop a data-packing method with a
concatenation technique to encode the binary fixed-length multi-dimensional data
appearing in the query and the database to evaluate the PCQ in a few multiplications.
Because of using this concatenation technique, our methods presented in this paper
overcome the weakness stated in Section 1.5 for conjunctive query processing.

Compared to a preliminary version [24] of this paper, we include the following
new results.

1. We propose another efficient protocol for PCQ processing using an N-ary fixed-length
encoding (N > 2), which we call the BPCQN protocol.

2. Theoretically, we are able to reduce the lattice dimension by a factor of dlog2(N)e in
the BPCQN protocol because of using N-ary fixed-length encoding rather than the
binary fixed-length data encoding used in the BPCQ2 protocol.

3. The developed data-packing method is modified to show how the Euclidean dis-
tance computation is used to decide conjunctive equality for the N-ary-encoded
BPCQN protocol.

4. Through comparative analysis, we demonstrate that the BPCQN protocol works at
least four times faster than the BPCQ2 protocol because of using N-ary data encoding.

1.7. Notations

Z denotes the ring of integers. For a prime number q, the ring of integers modulo q is
denoted by Zq. In addition, Zn defines an n-dimensional integer vector space. Z[x] denotes
the ring of polynomials over the integer coefficients. Let Rq = R/qR = Zq[x]/φ(x), where
R = Z[x]/φ(x) and φ(x) are a cyclotomic polynomial such that φ(x) = xn + 1. For a
vector A = (a0, a1, . . . , an−1), the maximum norm ‖A‖∞ is defined as max |ai|. Let 〈A, B〉
denote the inner product between two vectors A and B. The function Enc(m, pk) = ct
defines the encryption of a message m using the public key pk to produce the ciphertext
ct. The ciphertexts ctadd and ctmul denote the homomorphic addition and multiplication,
respectively, of ciphertexts ct = Enc(m, pk) and ct′ = Enc(m′, pk). s←χ indicates that s is
chosen from the Gaussian distribution χ. The distribution DZn ,δ indicates the n-dimensional
discrete Gaussian distribution for some standard deviations δ > 0.

We consider that a database is an array (or table). We call a collection of values
appearing in each row of the table a record. We call a collection of records a block. Let p, η,
and τ denote the total number of blocks, the block size, and the total number of records,
respectively. In the sequel, k denotes the number of conditions appearing in the predicate

Cryptography 2021, 5, 2 6 of 28

of a conjunctive query. vi is the ith value in the predicate, where li is the length of vi and
ωσ,d,i is the ith value in the dth record of the σth block. pow(x) denotes the exponent of x.

1.8. Outline of This Paper

This paper is structured as follows. Section 2 describes the security tool used for the
security of our protocols. Section 3 discusses the binary encoding-based BPCQ protocol
for processing the private conjunctive queries to the cloud. As a main technique in our
protocol, Section 4 outlines the data representation procedure for conjunctive query pro-
cessing; reviews an existing data-packing method, which does not make the BPCQ protocol
efficient; and discusses how our tailored packing method creates an efficient BPCQ protocol.
Section 5 highlights the technique used to improve the performance of the BPCQ protocol
with N-ary encoding, which is used to pack the data. Section 6 outlines the homomorphic
evaluation procedure of our protocols using the security tool (see Section 2) along with
our packing methods mentioned in Section 4. We evaluate the performance of the BPCQ
protocol both theoretically and practically in Section 7. We compare the performance of
the binary-encoded BPCQ protocol with the N-ary-encoded BPCQ protocol in Section 8.
Finally, Section 9 concludes this paper.

2. Security Tool

We discuss the cryptographic technique that will be used to maintain the privacy of
the proposed protocols. In 2011, Brakerski and Vaikunthanathan [10] proposed an SwHE
scheme and proved its correctness. Here, we review the asymmetric variant [17] of their
SwHE scheme. To solve the problem indicated in Section 1.2, we use this secure scheme as
an important ingredient.

2.1. Asymmetric SwHE Scheme

We consider some parameters for the SwHE scheme in [17] as follows.

• φ(x) is a cyclotomic polynomial, where φ(x) = xn + 1.
• n denotes the lattice dimension of the ring Rq = Zq[x]/φ(x), where n ∈ Z. Here, the

value of n is a power of 2, that is, n = 2Φ, where Φ ∈ Z.
• q: modulus q is an odd prime such that q ≡ 1(mod 2n) defines the ring Rq = R/qR =

Zq[x]/φ(x), which denotes a ciphertext space.
• t is an integer t < q, which defines the message space of the scheme as Rt = Zt[x]/

φ(x), the ring of integer polynomials modulo φ(x), and t.
• δ is a standard deviation, where δ = 4 ∼ 8. It is also used to represent a discrete

Gaussian error distribution χ = DZn ,δ with an n-dimensional integer vector Zn.

Now, we discuss the algorithms used for key generation, encryption, homomorphic
evaluation, and decryption in the SwHE scheme in [17] as follows.

2.1.1. Key Generation

The key generation algorithm first selects a ring element s ∈ R according to χ. Then,
it samples a uniformly random element a1 ∈ Rq and an error e ∈ R according to χ and sets
a0 = a1s + te. Finally, it outputs a secret key sk = s and its public key pk = (a0, a1).

2.1.2. Encryption

If we have a message m ∈ Rt and a public key pk = (a0, a1), the encryption algorithm
samples u, f , g ← χ, where (u, f , g) ∈ R. Then, the encryption algorithm outputs a
ciphertext (c0, c1) = ct, which is defined as

Enc(m, pk) = (c0, c1) = (a0u + tg + m,−(a1u + t f)). (1)

Here, the plaintext m ∈ Rt is in Rq because t < q.

Cryptography 2021, 5, 2 7 of 28

2.1.3. Homomorphic Evaluations

Generally, the homomorphic operation is performed between two ciphertexts ct =
(c0, . . . , cψ) and ct′ = (c′0, . . . , c′ω). The homomorphic addition (�) between ct and ct′ can
be defined as

ctadd = ct � ct′ =
(
c0 + c′0, . . . , cmax(ψ,ω) + c′max(ψ,ω)

)
.

We can also define the homomorphic subtraction that is analogous to the above
component-wise addition. For a symbolic variable z, the homomorphic multiplication (�)
between the above two ciphertexts, ct and ct′, can be defined as

ctmul = ct � ct′ =
(ψ

∑
i=0

cizi
)(ω

∑
j=0

c′jz
j
)
=

ψ+ω

∑
i=0

ĉizi ,

where {ct, ct′} ∈ Rq[z].

2.1.4. Decryption

The decryption algorithm decrypts a new or homomorphically-operated ciphertext
ct = (c0, . . . , cψ) as follows,

Dec(ct, sk) = [m̃]q mod t, (2)

where m̃ = ∑
ψ
i=0 cisi. This means the algorithm uses the secret key vector s = (1, s, s2, . . . , sψ),

such that Dec(ct, sk) = [ct, s]q mod t. For example, the decryption of a fresh ciphertext
ct = (c0, c1) generated by (1) can be written as

〈ct, s〉 = (a0u + gt + m)− (a1u + t f) · s = m + (eu + g− f s) · t (3)

in the ring Rq as a0 − a1s = te. The decryption algorithm recovers the desired plaintext
from a fresh ciphertext ct if the value m + (eu + g− f s) · t does not wrap around mod q
and all errors e, f , g, u← χ are sufficiently small. Here, the decryption algorithm recovers
the plaintext m using the mod t operation from [〈ct, s〉]q = m + (eu + g− f s) · t ∈ R. If the
wrap-around does not occur in the encrypted results after the homomorphic operations,
the decryption algorithm outputs the following for two ciphertexts ct1 and ct2:{

〈ct1 � ct2, s〉 = 〈ct1, s〉+ 〈ct2, s〉
〈ct1 � ct2, s〉 = 〈ct1, s〉 · 〈ct2, s〉. (4)

Next, we discuss the security and correctness of the mentioned encryption scheme.

2.2. Security of RLWE-Based SwHE Scheme

For the given parameters (n, q, t, δ), we demonstrate the security of the SwHE scheme
using the polynomial RLWE assumption (RLWEn,q,χ) as mentioned by Lauter et al. [17]. The
assumption holds if any polynomial number of samples of the form (ai, bi = ai · s + ei) ∈
(Rq)2 is true, where ai ∈ Rq is uniformly random and ei ← χ. As the ais are uniformly
random in Rq, bis (bi = ai · s + ei) are also uniform in Rq. For this reason, distinguishing
(ai, bi) from a uniformly random pair (ai, bi) ∈ (Rq)2 is a hard problem. Besides, the RLWE
assumption is reducible to the worst-case hardness of problems on ideal lattices that is
thought to be secure against attacks using the quantum computer [16].

Cryptography 2021, 5, 2 8 of 28

2.3. Correctness of RLWE-Based SwHE Scheme

The correctness of the SwHE scheme depends on how the decryption can recover the
original result from the ciphertext after some homomorphic operations. We can write the
decryption process as{

Dec(ctadd, sk) = Dec((ct � ct′), sk) = m + m′

Dec(ctmul , sk) = Dec((ct � ct′), sk) = m ·m′ . (5)

Section 1.1 in [10] describes the above process. Here, ciphertexts ct and ct′ come from
m ∈ Rq and m′ ∈ Rq, respectively, after encryption. The above decryption process will not
lose any information about the plaintext if the following lemma holds as mentioned in [36]:

Lemma 1. (Condition for successful decryption.) For a ciphertext ct, the decryption Dec(ct, sk)
recovers the correct result if 〈ct, s〉 ∈ Rq does not wrap around mod q, namely, if the condition
‖〈ct, s〉‖∞ < q

2 is satisfied, where ‖a‖∞ = max |ai| for an element a = ∑n−1
i=0 aixi ∈ Rq.

Specifically, for a fresh ciphertext ct, the ∞-norm ‖〈ct, s〉‖∞ is given by ‖m + t(ue + g− s f)‖∞.
For a homomorphically-operated ciphertext, the ∞-norm can be computed using Equation (4).

3. Our Protocol

When solving our problem stated in Section 1.2, we needed to construct a secure
protocol. In this section, we briefly describe the protocol scenario for PCQs and the
traditional technique for solving the PCQ problem. Then, we provide an overview of the
proposed concatenation technique for solving the PCQ problem, a batch technique for
boosting performance, and a batch private conjunctive query protocol.

3.1. Protocol Scenario

In this section, we describe how to use our protocol for private conjunctive query
processing in a real-world scenario as shown in Figure 2. As depicted in Figure 3, consider
that a hospital (Charlie) maintains a database of their admitted patients in the patientRecord
table, where Charlie has low computation capacity. A government health research institute
(Alice) wants to determine the number of male patients admitted to that hospital in the last
year who suffered from tuberculosis (TB), which is a conjunctive equality query request
to Charlie from Alice. The corresponding SQL statement of this request is select count(id)
from patientRecord where sex=“M” and dis=“TB” and year=2019. Here, Alice has a little
computation ability, which includes key generation, encryption, and decryption. Charlie
must not disclose their patients’ information to Alice. Therefore, they want to outsource
the computation to a third party like the cloud (Bob) without disclosing the query and
corresponding data to Bob.

Figure 2. Real-world scenario of private conjunctive query protocol.

Cryptography 2021, 5, 2 9 of 28

Figure 3. Sample of a patient record table.

3.2. Traditional Technique for Solving the PCQ Problem

As mentioned in the problem scenario in Section 1.2 and the real-world scenario in
Section 3.1, the PCQ problem can be solved by involving a third party like Bob in the
cloud, where the database owner and the query owner are different entities. Note that we
need to solve this problem with leaking as little information to Alice about the database as
possible. Here, the query includes k (k = 3) equality conditions connected by conjunction
operators. If we use the traditional method for solving this conjunctive query problem,
which contains three equality conditions in its predicate, Alice needs to send three equality
requests separately to Bob, which returns some distances for each record after processing
the equality blindly using the Hamming distance. Now, Alice finds the record IDs that
contain Hamming distances of zero. Then, Alice finds the number of male patients by
counting the number of IDs appearing in the intersection of those IDs, as shown in Figure 4.

Figure 4. Traditional technique to solve the PCQ problem when k = 3.

3.3. Proposed Concatenation Technique for Solving PCQ Problem

If we use the traditional method to solve many equality conditions, more IDs that
Alice should not have will be revealed to her. Ase k conditions are conjunctive, every value
in each condition can be encoded as a fixed-length record. Then, Alice can concatenate
k values sequentially, and sends the concatenated values as a single query to the cloud
after encryption, as shown in Figure 5. Moreover, Charlie sends the corresponding k values
from each record of the table of the database to the cloud after encryption using the same
approach as Alice. Then, Bob blindly performs the matching blindly using the Hamming
distance and returns the distances. In the end, Alice decrypts the result and counts the
Hamming distances that are zero to obtain her desired result.

Cryptography 2021, 5, 2 10 of 28

Figure 5. Concatenation technique to solve the PCQ problem when k = 3.

For the protocol scenario mentioned in Section 3.1, Alice owns a conjunctive query that
has k equality conditions connected by the “and” operator appearing in its predicate. For
example, select count(id) from patientRecord where α1 = v1 and α2 = v2 and . . . and αk = vk,
where k ≥ 2. For the security of this conjunctive query, we take care about only security
of the value vi (1 ≤ i ≤ k) appearing in the predicate of the query. Now, we form a set
V = {v1, . . . , vk} from the values of k attributes {α1, . . . , αk}, which exist in the predicate
of the query. Here, we consider vi = (ai,0, . . . , ai,li−1) a binary vector of length li with
1 ≤ i ≤ k. In the hospital database, Charlie owns τ records {R1, . . . ,Rτ} in their patient
record table, which consists of (k + λ) attributes. For evaluating the conjunctive query, we
need only the k attributes from (k + λ) attributes and their values in each record. From k
values, we form a record Rµ = {wµ,1 . . . , wµ,k}. Here, each value wµ,i is represented as a
binary vector wµ,i = (bµ,i,0, . . . , bµ,i,li−1), such that |wµ,1| = li with 1 ≤ i ≤ k and 1 ≤ µ ≤ τ.
To determine the conjunctive equality of V andRµ, we generate a large binary vector from
the set V as A = (v1, . . . , vk) by concatenating k binary vectors sequentially in the set V.
Similarly, we generate another large binary vector from the setRµ as Bµ = (wµ,1, . . . , wµ,k).
Here, |A| = |Bµ| = ∑k

i=1 li = L. We calculate the conjunctive equality between two sets V
andRµ using the following equation,

Hµ =
k

∑
i=1

li−1

∑
j=1
|ai,j − bµ,i,j|

= ∑k
i=1 ∑li−1

j=1 (ai,j + bµ,i,j − 2ai,jbµ,i,j),

(6)

where the Hamming distance between two binary vectors A and Bµ is denoted by Hµ. In
Equation (6), if Hµ = 0 for any µ, A = Bµ; otherwise, A 6= Bµ. Then, count the number of
zeros for some positions µ to determine the total number of records matched with the given
query. If the values in the query and database are encrypted here using the encryption
algorithm of RLWE-based SwHE, Alice can securely verify her conjunctive equality query
with the help of Bob and using the homomorphism property of the RLWE-based SwHE.

Here, the computation will be inefficient if we calculate the Hamming distance Hµ for
all τ records one by one instead of processing many records at a time. Therefore, a technique
is needed to improve the performance of the required protocol for conjunctive query
processing. A database consists of some tables, and each table contains numerous records.
To process the PCQ with k conditions, the concatenation approach needs to perform the
equality comparison many times. Therefore, the problem requires determining many
equalities. We can solve this problem using the batch equality technique, as mentioned
in [29].

3.4. Batch Technique for Boosting Performance

The method of running a single instruction on multiple data is called batching. We can
enhance the performance of the required PCQ protocol using this batch technique within
the lattice dimension n, which is called the batch private conjunctive query (BPCQ) protocol.

Cryptography 2021, 5, 2 11 of 28

3.4.1. Batching for Traditional Methods

The performance of our techniques can be enhanced using the batch technique since
we use RLWE-based SwHE for the homomorphic computation in which the performance
mostly depends on the ring size, i.e., the lattice dimension n. Using the batch technique,
each value vi of the attribute αi should be compared with τ values of the corresponding
attribute in the table of a database. If the length of each record is l, the total length of the
records will be τ · l. In addition, n should be at least τ · l to process all records at a time
for batch computation. We know that any high lattice dimension requires large amounts
of memory, which may cause a sudden failure in the computation. Instead of τ, say t′

data can be processed within the lattice dimension, i.e., n ≥ t′ · l. Then, τ records of each
attribute j can be divided into Ω = dτ/t′e blocks. Here, t′ records from a column of a table
comprise a block.

3.4.2. Batching for Concatenation Method

Suppose that the length of each vi and corresponding values wi in the database is li,
i.e., the records are variable in length, as k values will be compared with the corresponding
k values of each record from the table of a database to decide the conjunctive equality. τ
equality tests require processing the query over τ records. We use RLWE-based SwHE
for the homomorphic calculation in the cloud in our protocol, in which the performance
depends on the lattice dimension n, as mentioned in Section 3.4.1. Consider that the total
length of k values in the query is L = ∑k

i=1 li. If we want to support batch processing of
the PCQ problem, similar to the private batch equality test (PriBET) protocol as mentioned
in [29], we need to compare many records from the database with our conjunctive query of
length L. We already assumed that we have τ records in the table. If we want to process all
τ records at a time, n should be equal to τ · L. Running the batch computation may create
a large lattice dimension, which requires large memory in the system in the cloud. This
massive memory requirement can surpass a regular machine’s capacity in the cloud. To
reduce the usage of memory, a block of data is processed at a time instead of all records,
where all records of a table are split into blocks. For the given records, let η denote the total
number of records accessed within the lattice dimension n such that η = bn/Lc. In addition,
we split the total records τ into p blocks such that p = dτ/ηe. Here, individual access
of the τ-record of the table requires τ-round communication between Charlie and Bob.
Conversely, the required BPCQ protocol will be able to access η records {R1, . . . ,Rη} at a
time, which reduces the rounds of communication between Charlie and Bob. Theoretically,
we can decrease the communication complexity from τ to dτ/ηe because of using the batch
technique when sending records to the cloud. Now, we can encode the η records of each
block as the coefficients of x with different exponents in a single polynomial to support the
batch computation.

3.5. Batch Private Conjunctive Query Protocol

In this section, we discuss the required protocol for private conjunctive queries with
the batch technique, which we name the batch private conjunctive query (BPCQ) protocol.
Here, we consider the same scenario as mentioned in Section 3.1 to discuss the BPCQ
protocol. In the given scenario, consider the same query vector A = (v1, . . . , vk) owned
by Alice, where vi = (ai,0, . . . , ai,li−1), as mentioned in Section 3.3. Charlie owns a patient
record table, which contains τ records. For 1 ≤ σ ≤ p and 1 ≤ d ≤ η, each record of the
patient record table with k elements is represented by Rσ,d = {wσ,d,1, . . . , wσ,d,k}, where
wσ,d,i = (bσ,d,i,0, . . . , bσ,d,i,li−1). To support batch computation in the protocol, we create a
block as βσ = {Rσ,1, . . . ,Rσ,η} containing η records, where 1 ≤ σ ≤ p. Then, we form
another batch binary vector from all records for each block βσ as Bσ = (Bσ,1, . . . , Bσ,η)
where Bσ,d = (wσ,d,1, . . . , wσ,d,k). The length of A (resp., Bσ) is L (resp., η · L). Here, multiple

Cryptography 2021, 5, 2 12 of 28

Hamming distance helps Bob to decide conjunctive equality between two vectors A and
Bσ, which can be expressed as

Hσ,d =
k

∑
i=1

li−1

∑
j=1
|ai,j − bσ,d,i,j|

= ∑k
i=1 ∑li−1

j=1 (ai,j + bσ,d,i,j − 2ai,jbσ,d,i,j) ,

(7)

where 1 ≤ σ ≤ p and 1 ≤ d ≤ η. In the above equation, the Hamming distance between
two binary vectors A and Bσ,d is denoted by Hσ,d. Here, the dth sub-vector of the vector
Bσ is Bσ,d = (wσ,d,1, . . . , wσ,d,k). If Hσ,d = 0 in Equation (7) for some (d, σ), A = Bσ,d;
otherwise, A 6= Bσ,d. As such, one can verify their conjunctive equality query and count
the number of zeros for some (d, σ) to determine the total number of records satisfying the
given conjunctive query. With the help of the above technique, the required BPCQ protocol
is described by the following steps:

Inputs: A = (v1, . . . , vk), Bσ = (Bσ,1, . . . , Bσ,η) where vi = (ai,0, . . . , ai,li−1) and Bσ,d =
(wσ,d,1, . . . , wσ,d,k) for 1 ≤ d ≤ η and 1 ≤ σ ≤ p.
Output: |{(σ, d)|A = Bσ,d}|
BPCQ protocol:

1. Alice uses the key generation algorithm of the RLWE-based SwHE to generate the
public key and private key, and she keeps them secure.

2. Then, she transmits the public key to Charlie. She transmits conjunctive attributes
information {α1, . . . , αk} appearing in the query to Charlie.

3. Then, she forms a vector A = (v1, . . . , vk) using all vi in the predicate of her query
with a predefined order and length, where vi = (ai,0, . . . , ai,li−1). Next, she uses the
encryption algorithm to produce ciphertext of A using her public key and transmits
the ciphertext to Bob.

4. Charlie first generates another binary vector Bσ,d = (wσ,d,1, . . . , wσ,d,k) by taking the
same k elements from each record and keeping the same order and length as Alice’s
query, which then form a large binary vector Bσ = (Bσ,1, . . . , Bσ,η) by merging η
vectors of each block σ, where 1 ≤ σ ≤ p.

5. Then, Charlie employs the same encryption algorithm to encrypt Bσ using Alice’s
public key and sends the ciphertext to Bob.

6. According to batch equality tests in Equation (7), Bob performs the homomorphic
evaluation and sends the encrypted result ct(Hσ,d) to Alice to determine the number
of records satisfying the query.

7. Alice engages the decryption algorithm to decrypt ct(Hσ,d) using her secret key
and counts the number of zeros appearing in the value ct(Hσ,d) for 1 ≤ σ ≤ p
and 1 ≤ d ≤ η, and thus determines the total number of records that satisfies the
given query.

3.6. Security of the Protocol

We demonstrate the security of our BPCQ protocol using the following theorem along
with its proof, as mentioned in [23].

Theorem 2. The BPCQ protocol is secure respecting the assumption that Bob is a semi-honest
party, i.e., no probabilistic polynomial time (PPT) algorithm can obtain any information about the
values existing in the predicate of a conjunctive query and the data in the database on the basis of
exploiting an IND-CPA-secure RLWE-based SwHE applied to the protocol.

Proof. In our BPCQ protocol, Bob in the cloud is a semi-honest (also known as honest-
but-curious) party, i.e., he always follows the protocol but tries to gain information from
the protocol. In the semi-honest model, the BPCQ protocol is IND-CPA-secure if it attains

Cryptography 2021, 5, 2 13 of 28

indistinguishability against chosen-plaintext attack (CPA) by any PPT adversary. As the
BPCQ protocol uses the RLWE-based SwHE scheme mentioned in Section 2, it generates
a ciphertext pair (c0, c1) for every message m ∈ Rt according to Equation (1). In a CPA
attack, any adversary has access to the encryption algorithm and can choose the messages.

For each value v∗i with 1 ≤ i ≤ k appearing in the predicate of a query, a challenger
generates the ciphertext pair (v̂∗i1 , v̂∗i2) using the encryption algorithm of the RLWE-based
SwHE scheme and sends them to the PPT adversary. The PPT adversaries randomly
choose the query values v̄i and send them to the challenger for encryption. For input v̄i,
the challenger outputs the ciphertext pair (v̄i1 , v̄i2) and sends the pair to the adversary.
According to the RLWE assumption mentioned in Section 2.2,

(v̂∗i1 , v̂∗i2)
c≈ (v̄i1 , v̄i2),

where c≈ denotes computational distinguishable between (v̂∗i1 , v̂∗i2) and (v̄i1 , v̄i2). There-

fore, the adversary cannot distinguish the two ciphertext pairs (v̂∗i1 , v̂∗i2) and (v̄i1 , v̄i2) ac-
cording to the RLWE assumption. In this situation, we affirm, in the semi-honest adversary
model, that the BPCQ protocol is IND-CPA-secure under the RLWE assumption, which
completes the proof.

4. Data Representation and Its Packing Method

In this section, we discuss the data representation procedure and the required packing
methods for conjunctive query processing.

4.1. Data Representation for Conjunctive Query Processing

Depending on the dimension, data can be classified into two types: one-dimensional
data and multi-dimensional data, as shown in Figure 6. All the values of an attribute
appearing in the single column of a table in the database define one-dimensional data.
For instance, one-dimensional data can be presented by a data set denoting the sex of
the hospital’s patients for a particular disease in 2014 as shown in Figure 6a. In contrast,
all the values of several attributes appearing in the multiple columns of a table defines
multi-dimensional data. For instance, multi-dimensional data compose a data set defining
the sex of the patients with various diseases over several years, as shown in Figure 6b.
However, we do not require one-dimensional data for evaluating our conjunctive query
with the help of the batch technique. For evaluating the BPCQ protocol, we require a
tailored packing method to efficiently process the multi-dimensional data, in which data
security is ensured by the RLWE-based SwHE.

4.2. Packing Methods

The data packing method is the technique of binding the many bits in a single polyno-
mial f (x) as the coefficient of x with any exponent. From the existing literatures [17,18,36],
a packing method can help make efficient protocols using the RLWE-based SwHE scheme.
Now, we discuss the earlier packing methods used for secure computation with RLWE-
based SwHE and their weaknesses, our tailored packing method, and the inner product
property of the tailored packing method in the next subsections.

Cryptography 2021, 5, 2 14 of 28

(a) (b)

Figure 6. (a) One-dimensional data and (b) multi-dimensional data.

4.3. Existing Packing Method

Several packing methods [17,18,36] can be used in different applications along with
RLWE-based SwHE for secure computation in the cloud. Lauter et al. [17] applied a
packing method to sum 100 128-bit integers. They encoded every integer in a single
polynomial f (x) of degree n by embedding every bit as the coefficient of x with different
exponents. For instance, if we want to encode an n-bit integer, we need to make an n-bit
binary vector A = (a0, a1, . . . , an−1), which can be represented by a polynomial using their
packing method as follows,

Poly(A) =
n−1

∑
i=0

aixi.

Lauter et al. [17] used the above packing method to encode every integer and encrypt
them as ctpack(A) = Enc(Poly(A), pk) using the RLWE-based SwHE. Then, they sent those
encrypted vectors to the cloud to perform the required addition homomorphically. The
homomorphic evaluation of many arithmetic requires many additions and multiplications.
The addition of two vectors such as A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bn−1) is eas-
ily computed using the above packing method. However, the homomorphic multiplication
of A and B will increase the degree of the polynomial if we use the above packing method
to encode these two vectors. If we want to keep the degree of the polynomial within n and
perform ∆ (1 ≥ ∆ ∈ Z) multiplications, we need to reduce the degree of the polynomial to
(n/∆).

To overcome the weakness of reducing the degree of polynomial and performing
many multiplications within the degree of n, Yasuda et al. [36] proposed another packing
method within the polynomial degree of n, which helps privacy-preserving computation
of the Hamming distance and Euclidean distance. For their packing method, they took
two vectors A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bn−1) of length n and define the
packing as 

Polya(A) =
n−1

∑
i=0

aixi

Polyb(B) = −
n−1

∑
i=0

aixn−i .
(8)

For the above pair of packing methods, the second method is new, whereas the first
method is the same as the packing method in [17]. However, the above packing methods

Cryptography 2021, 5, 2 15 of 28

are helpful for packing one-dimensional data. For processing our conjunctive query, we
needed to design a packing method suitable for packing multi-dimensional data. Besides,
we needed to introduce batching over the batch technique for the efficient computation of
multiple Hamming distances in Equation (7). To increase the efficiency of calculation, our
goal was to calculate multiple Hamming distances in a few multiplications. For this reason,
a new packing method was needed to encode the multi-dimensional data within a single
polynomial of degree n.

4.4. Our Packing Method

To decide the conjunctive equality between the query values and the data in the
database using the multiple Hamming distance, we needed to encode the multi-dimensional
data shown in Figure 6b. Here, we aimed to calculate this multiple Hamming distance with
a few multiplications using the batch technique. To measure the Hamming distance be-
tween the query vector and each record of the σth block, let us form an integer vector A =
(v1, . . . , vk) ∈ Rt from the set V of length L, where vi = (ai,0, . . . , ai,li−1). Then, we form
another integer block vector Bσ = (Bσ,1, . . . , Bσ,η) ∈ Rt, where Bσ,d = (wσ,d,1, . . . , wσ,d,k)
and |Bσ| = η · L. Here, the vector Bσ,d is formed from each record Rσ,d of the σth block.
The multiple Hamming distance means the distances between the vector A and each sub-
vector in Bσ. The multiple Hamming distance in Equation (7) can be obtained by the inner
product 〈A, Bσ〉. To measure this 〈A, Bσ〉 securely with RLWE-based SwHE in Section 2,
we constructed a different packing method than the packing methods in Equation (8). To
produce the inner product 〈A, Bσ〉 within degree n, we encoded the vectors A and Bσ,d
using such polynomials so that the inner product does not wrap around a coefficient of
x with any exponent. By modifying the packing in [36], the desired packing methods to
encode A and Bσ,d can be formed in the same ring R = Z[x]/(xn + 1) with n ≥ η · L and
1 ≤ σ ≤ p as follows,

Poly1(A) =
k

∑
i=1

li−1

∑
j=0

ai,jx
∑i−1

γ=0 lγ+j

Poly2(Bσ) =
η

∑
d=1

k

∑
i=1

li−1

∑
j=0

bσ,d,i,jx
d·L−(∑i−1

γ=0 lγ+j) ,

(9)

where l0 = 0. Now, we can obtain the desired inner product 〈A, Bσ〉 after multiplying
the above two polynomials, which later helps the multiple Hamming distance calculation
between A and Bσ. Here, each Hamming distance appears as a coefficient of x with
different exponents after multiplying the polynomials Poly1(A) and Poly2(Bσ), which
produces multiple inner products, as described in the next subsection.

4.5. Obtaining the Multiple Inner Products

From the work in [36], the Hamming distance between two vectors can be calculated
by the inner product of those two vectors. To obtain multiple inner products, consider
the above two vectors A and Bσ again. For 1 ≤ σ ≤ p, multiplication of the polynomials
Poly1(A) and Poly2(Bσ) in Equation (9) can be presented as(

∑k
i=1

li−1
∑

j=0
ai,jx

∑i−1
γ=0 lγ+j

)
×(

∑
η
d=1 ∑k

i=1

li−1
∑

j=0
bσ,d,i,jx

d·L−(∑i−1
γ=0 lγ+j)

)
= ∑

η
d=1 ∑k

i=1

li−1
∑

j=0
ai,jbσ,d,i,jxd·L

= ∑
η
d=1〈A, Bσ,d〉xd·L + ToHD + ToLD,

(10)

Cryptography 2021, 5, 2 16 of 28

where Poly1(A)× Poly2(Bσ) ∈ R. In the above equation, A is a binary vector and Bσ,d
defines the dth sub-vector of the binary vector Bσ, where |A| = |Bσ,d| = L. ToHD defines
the terms of higher degree with pow(x) > d · L and the ToLD defines the terms of lower
degrees with pow(x) < d · L. Equation (10) shows that a single multiplication Poly1(A)×
Poly2(Bσ) produces η inner products of A and Bσ,d. To complete the private computation
in the cloud using RLWE-based SwHE, we can encrypt the polynomials Polyi(A) ∈ R in
Equation (9) with i = {1, 2, 3, 4} as

cti(A) = Enc(Polyi(A), pk) ∈ (Rq)
2 , (11)

where cti(A) defines the packed ciphertext of Polyi(A). To obtain multiple inner products
〈A, Bσ,d〉 over packed ciphertexts, the following proposition needs to be true:

Proposition 1. Suppose A = (v1, . . . , vk) ∈ Rt is an integer vector, where vi = (ai,0, . . . , ai,li−1)
and |A| = L. Let Bσ = (Bσ,1, . . . , Bσ,η) ∈ Rt be another integer vector where Bσ,d =
(wσ,d,1, . . . , wσ,d,k) and |Bσ| = η · L. For 1 ≤ d ≤ η, the vector Bσ includes η sub-vectors,
where the length of each sub-vector is L. These vectors A and Bσ are encoded as polynomials
Poly1(A) and Poly2(Bσ), respectively, by Equation (9). From Equation (11), if we represent the
ciphertexts of Poly1(A) and Poly2(Bσ) as ct1(A) ∈ (Rq)2 and ct2(Bσ) ∈ (Rq)2, respectively,
the decryption of the result obtained from ct1(A)� ct2(Bσ) ∈ (Rq)3 will output a polynomial in
Rt including coefficients 〈A, Bσ,d〉 of xd·L under the condition of Lemma 1.

Proof. Poly1(A) and Poly2(Bσ) are constructed from the vectors A and Bσ, respectively, us-
ing the packing method in Equation (9). By applying RLWE-based SwHE to the polynomials
Poly1(A) and Poly2(Bσ), the ciphertexts ct1(A) and ct2(Bσ) are produced, respectively, by
Equation (11). By the correctness in Equation (5) and Lemma 1, the homomorphic multipli-
cation of ct1(A) and ct2(Bσ) corresponds to the multiplication of the polynomials Poly1(A)
and Poly2(Bσ) in the ring Rt. From the multiple inner products in Equation (10), the multi-
plication of the polynomials Poly1(A) and Poly2(Bσ) outputs η inner products 〈A, Bσ,d〉 as

the coefficients of xd·L, which equals ∑
η
d=1 ∑k

i=1

li−1
∑

j=0
ai,jbσ,d,i,j for 1 ≤ σ ≤ p. Consequently,

the homomorphic multiplication of the packed ciphertexts ct1(A) and ct2(Bσ) simultane-
ously computes the multiple inner products for 1 ≤ σ ≤ p and 1 ≤ d ≤ η. For this reason,
Proposition 1 holds under the correctness in Equation (5) and Lemma 1.

5. Improving the Batch Private Conjunctive Query Protocol

In this section, we briefly discuss another encoding technique used to improve the
performance of our BPCQ protocol mentioned in Section 3.5. Next, we demonstrate the
improved protocol using the encoding technique, the required packing methods, and the
multiple inner products obtained from the packing methods.

5.1. Binary vs. Nary Encoding

Binary encoding refers to the technique of converting an l-bit integer into binary over
{0, 1}l . We already used binary data encoding for the BPCQ protocol, which is mentioned in
Section 3.5. As mentioned in Section 4, the packing method allows encoding many data in
a single polynomial of degree n. We know from the works in [21,22] that the computational
cost of an RLWE-based protocol increases with the increase in the lattice dimension n.
Therefore, if we can exploit the lattice dimension, we can reduce the computational cost
of the BPCQ protocol. In contrast, the N-ary (N ≥ 2) encoding refers to the technique of
converting data into N-ary-encoded numbers. Yasuda et al. [18] employed N-ary encoding
for their efficient statistical computation in the cloud. In this paper, we consider exploiting
the N-ary fixed-length data encoding [22] rather than the naive N-ary encoding to improve
the performance of the BPCQ protocol. In N-ary fixed-length encoding, the most significant
digit is zero if the length of the encoded number is less than estimated length of an N-

Cryptography 2021, 5, 2 17 of 28

ary-encoded number. Furthermore, data are encoded over {0, 1, . . . , N − 1}l′ , in which l′

denotes the length of the N-ary-encoded number. If we encode an l-bit integer Z into an
l′-digits N-ary-encoded number, then

l′ = dl/ log2(N)e .

From the above equation, we achieve a lattice reduction factor of dlog2(N)e when
processing the BPCQ protocol using N-ary encoding rather than binary encoding.

5.2. Private Conjunctive Query Protocol Using N-ary Encoding

From RLWE-based homomorphic encryption, the computational cost mostly depends
on the lattice dimension required for the computation. If we can reduce the lattice dimen-
sion by keeping the message space and security at an acceptable level, we can reduce the
cost of the homomorphic computation. Saha and Koshiba [22] noted a lattice reduction
factor of log2(N) by employing N-ary fixed-length encoding. They used the encoding in
their PriBET protocol to improve the protocol’s efficiency. To use the same encoding in our
BPCQ protocol, we modified our multiple Hamming distance computation and packing
method as follows.

Let us consider the same l-bit integers vi and wσ,d,i (see Section 3.5), which appear in
the query and database, respectively. By applying N-ary encoding to vi and wσ,d,i, they
can be represented by vectors v′i = (ai,0, . . . , ai,l′i−1) and w′σ,d,i = (bσ,d,i,0, . . . , bσ,d,i,l′i−1),
respectively. We want to measure the distance between two N-ary-encoded vectors v′i and
w′σ,d,i. To apply the batch technique, we make two large batch vectors, such as a query
vector A = (v′1, . . . , v′k) ∈ Rt of length LN = ∑k

i=1 l′i and record vector Bσ = (Bσ,1, . . . ,Bσ,η)
where Bσ,d = (w′σ,d,1, . . . , w′σ,d,k) with |Bσ| = η · LN . As the Hamming distance only works
for binary data, we need a different distance measurement technique than the multiple
Hamming distance in Equation (7) to measure the conjunctive equality between query
vector A and record vector Bσ. Here, we can use the square Euclidean distance (SED)
technique to measure the distance between A and Bσ as follows,

Eσ,d =
k

∑
i=1

l′i−1

∑
j=1

(ai,j − bσ,d,i,j)
2

=
k

∑
i=1

l′i−1

∑
j=1

(a2
i,j + b2

σ,d,i,j − 2ai,jbσ,d,i,j) , (12)

where 1 ≤ σ ≤ p and 1 ≤ d ≤ η. In the above equation, Eσ,d denotes the Euclidean
distance between two N-ary-encoded vectors A and Bσ,d. Here, Bσ,d is the dth sub-vector
of Bσ. For some positions d in the block σ in Equation (12), if Eσ,d = 0, A = Bσ,d; otherwise,
A 6= Bσ,d. Then, count the number of zeros for some positions d in the σth block to decide
the total number of records satisfying the given query, which, in turn, helps to evaluate the
conjunctive equality query.

In particular, consider the same integer vectors A ∈ Rt from the set V of length LN and
Bσ in which length of each element of the vectors is l′. In addition, we make the following
subtle change in the packing methods in Equation (9),

Poly3(A) =
k

∑
i=1

l′i−1

∑
j=0

ai,jx
∑i−1

γ=0 lγ+j

Poly4(Bσ) =
η

∑
d=1

k

∑
i=1

l′i−1

∑
j=0

bσ,d,i,jx
d·LN−(∑i−1

γ=0 lγ+j) ,

(13)

where l′0 = 0 and LN = ∑k
i=1 l′i . Let us name the binary encoding-based BPCQ protocol in

Section 3.5 the BPCQ2 protocol. We needed to make some changes to the BPCQ2 protocol

Cryptography 2021, 5, 2 18 of 28

to comply with N-ary encoding. That means Bob computes ct(Eσ,d) using Equation (12)
and sends the encrypted result to Alice to determine the batch equalities. Here, we name
the BPCQ protocol with N-ary encoding the BPCQN protocol.

Inputs: A = (v′1, . . . , v′k), Bσ = (Bσ,1, . . . ,Bσ,η), where vi = (ai,0, . . . , ai,l′i−1) and Bσ,d =

(w′σ,d,1, . . . , w′σ,d,k) for 1 ≤ d ≤ η and 1 ≤ σ ≤ p.
Output: |{(σ, d)|Bσ,d = A}|
BPCQN protocol:

1. First, Alice generates the public and private keys. She transmits the public key and
conjunctive attributes information {α1, . . . , αk} to Charlie.

2. By preserving a predefined order, she makes a vector A = (v′1, . . . , v′k) by including
the k values, which appear in the predicate of her conjunctive query. Here, v′i =
(ai,0, . . . , ai,l′i−1) and its length is l′i . After encrypting A using her public key, she
transmits the ciphertext to Bob.

3. By maintaining the same order as Alice, Charlie also makes another vector Bσ =
(Bσ,1, . . . ,Bσ,η) from η records of each block σ, where Bσ,d = (w′σ,d,1, . . . , w′σ,d,k) with
1 ≤ σ ≤ p. Charlie uses Alice’s public key to encrypt Bσ and delivers the correspond-
ing ciphertext to Bob.

4. For each block σ, Bob employs Equation (12) to perform the homomorphic evaluation
of the conjunctive batch equality test instead of Equation (7), and transmits the
encrypted result ct(Eσ,d) to Alice to retrieve the number of zeros appearing for some
positions d in each σ-block.

5. For 1 ≤ σ ≤ p and 1 ≤ d ≤ η, Alice engages the decryption algorithm and her secret
key to decrypt ct(Eσ,d) and produces the polynomial Poly(Eσ,d). Then, she counts the
number of zeros appearing in the coefficients of polynomial Poly(Eσ,d) for deciding
the conjunctive equalities, and thus counts the total number of records satisfying the
given query.

Remark 1. We can prove the security of the above protocol in a similar fashion to that mentioned
in Theorem 2. This means the above protocol is secure with respect to the assumption that Bob is
semi-honest, i.e., they follow the protocol always. However, Bob tries to acquire as much information
as possible from the protocol.

5.3. Obtaining Multiple Inner Products

Here, we take the same vectors A and Bσ. To obtain the required multiple inner
products, we exploit the multiplication of the polynomials Poly3(A) and Poly4(Bσ), which
can be presented as (

∑k
i=1

l′i−1

∑
j=0

ai,jx
∑i−1

γ=0 lγ+j

)
×(

∑
η
d=1 ∑k

i=1

l′i−1

∑
j=0

bσ,d,i,jx
d·LN−(∑i−1

γ=0 lγ+j)

)

= ∑
η
d=1 ∑k

i=1

l′i−1

∑
j=0

ai,jbσ,d,i,jxd·LN

= ∑
η
d=1〈A,Bσ,d〉xd·LN + ToHD + ToLD,

(14)

where Poly3(A) × Poly4(Bσ) ∈ R. Here, Bσ,d is the dth sub-vector of record vector Bσ,
where 1 ≤ d ≤ η and 1 ≤ σ ≤ p. The length of both vectors A and Bσ,d is LN . ToHD means
pow(x) > d · LN and ToLD means pow(x) < d · LN . The result in Equation (14) shows
that one multiplication Poly3(A)× Poly4(Bσ) produces η inner products 〈A,Bσ,d〉. Saha
and Koshiba [22] showed that the inner product helps to calculate the square Euclidean

Cryptography 2021, 5, 2 19 of 28

distances. The following proposition must be satisfied to calculate multiple Euclidean
distances using the inner product.

Proposition 2. Let A = (v′1, . . . , v′k) ∈ Rt be an N-ary-encoded integer vector, where v′i =
(ai,0, . . . , ai,l′i−1) and |A| = LN . Let Bσ = (Bσ,1, . . . ,Bσ,η) ∈ Rt be another N-ary-encoded
integer vector of length η · LN , where Bσ,d = (w′σ,d,1, . . . , w′σ,d,k). For 1 ≤ d ≤ η, the vector
Bσ contains η sub-vectors, where |Bσ,d| = LN . Now, encode the vectors A and Bσ as polynomi-
als Poly3(A) and Poly4(Bσ), respectively, using Equation (13). If the ciphertexts of Poly3(A)
and Poly4(Bσ) can be represented as ct3(A) ∈ (Rq)2 and ct4(Bσ) ∈ (Rq)2, respectively, by
Equation (11), the decryption of the homomorphic multiplication ct3(A)� ct4(Bσ) ∈ (Rq)3 will
produce a polynomial in Rt with coefficients 〈A,Bσ,d〉 of xd·LN with respect to Lemma 1.

Proof. We pack the vectors A and Bσ to form polynomials Poly3(A) and Poly4(Bσ), re-
spectively, using the packing method in Equation (13). In addition, the ciphertexts ct3(A)
and ct4(Bσ) are generated from Poly3(A) and Poly4(Bσ), respectively, by Equation (11). By
the correctness in Equation (5) and Lemma 1, the homomorphic multiplication of ct3(A)
and ct4(Bσ) corresponds to the polynomial multiplication of Poly3(A) and Poly4(Bσ) in
the ring Rt. From the inner product in Equation (10), the polynomial multiplication of
Poly3(A) and Poly4(Bσ) produces the inner products 〈A,Bσ,d〉 as the coefficients of xd·LN ,

which equals ∑
η
d=1 ∑k

i=1

l′i−1

∑
j=0

ai,jbσ,d,i,j for 1 ≤ σ ≤ p. The homomorphic multiplication

of ct3(A) and ct4(Bσ) concurrently produces multiple inner products for 1 ≤ d ≤ η and
1 ≤ σ ≤ p. For this reason, Proposition 2 holds under the correctness in Equation (5) and
Lemma 1.

6. Homomorphic Evaluation of Private Conjunctive Query Protocols

In the following subsections, we demonstrate the process of homomorphic evaluation
of the batch private conjunctive query (BPCQ) protocols (see Sections 3 and 5.2 for details)
in the cloud.

6.1. Homomorphic Evaluation of the BPCQ2 Protocol

We performed the homomorphic evaluation of our BPCQ2 protocol using the RLWE-
based SwHE scheme in Section 2, the packing method in Equation (13), and the multiple
inner products in Equation (??), along with Proposition 1. For 1 ≤ d ≤ η and 1 ≤ σ ≤
p, Bob needs to determine the values of the Hamming distance Hσ,d as mentioned in
Equation (7).

6.1.1. Evaluation Over Packed Ciphertext

In the BPCQ2 protocol, Bob needs to determine the Hamming distance Hσ,d between
two integer vectors A and Bσ (see Section 4.4 for details) in an encrypted manner. To
provide security for the protocol, we use the RLWE-based SwHE in which the encryption
and decryption algorithms work on polynomials rather than integer vectors. For this
reason, Alice (resp., Charlie) encodes the integer vector A (resp., Bσ) as Poly1(A) (resp.,
Poly2(Bσ)) using the packing methods in Equation (9). They also encrypt Poly1(A) and
Poly2(Bσ)) using Equation (11) to produce packed ciphertext vectors ct1(A) ∈ (Rq)2 and
ct2(Bσ) ∈ (Rq)2, respectively, and send these packed ciphertexts to Bob in the cloud. The
Hamming distance can be calculated by the inner products. Now, Bob can determine
multiple Hamming distances Hσ,d in an encrypted manner using the multiple inner prod-
ucts property in Equation (10), which produces the output ct(Hσ,d). With the help of the
homomorphic property of RLWE-based SwHE, Bob calculates ct(Hσ,d) over the packed
ciphertexts as

ct1(A)� ct2(VB)� ct2(Bσ)� ct1(VL)� (−2ct1(A)� ct2(Bσ)) , (15)

Cryptography 2021, 5, 2 20 of 28

where ct(Hσ,d) is obtained by only three homomorphic multiplications along with two
homomorphic additions for packed ciphertexts. In the above equation, VB (resp., VL)
defines the integer vector of length η · L (resp., L) in which every element of the vector is
1 such as (1, . . . , 1). According to the multiple inner products property, ct(Hσ,d) contains
the desired Hamming distances as the coefficients of xd·L. Then, Bob transmits ct(Hσ,d)
to Alice to recover the actual Hamming distances that are zeros to decide the equality
between vector A and the sub-vectors of Bσ. According to Proposition 1 and the BPCQ2
protocol, Alice engages the decryption algorithm to decrypt ct(Hσ,d) using her secret key
in the ring Rq and obtains all Hσ,d as the coefficients of xd·L from the plaintext of ct(Hσ,d).
Then, Alice counts the number of Hσ,d = 0 for some 1 ≤ d ≤ η and 1 ≤ σ ≤ p. As such,
Alice determines the total number of records that satisfies the conjunctive conditions in the
given query of the BPCQ2 protocol.

6.1.2. Solving Additional Information Leakage Problem of the BPCQN Protocol

As Alice obtains the packed ciphertext ct(Hσ,d) from Bob for decryption in the BPCQ2
protocol and checks every coefficient to find Hσ,d = 0, she may learn more information
than her required information from the protocol. According to Proposition 1, Alice must
only check the coefficients of xd·L. To solve this problem, we use a random polynomial
r(x) ∈ R in which every coefficient is random except when the coefficient of xd·L is zero. In
the BPCQ2 protocol, Bob adds r(x) to ct(Hσ,d). This random polynomial r(x) in the ring R
can be defined as

r(x) = r0 +
n/L

∑
d=0

L−1

∑
i=1

rd·L+ixd·L+i .

We know that ct(Hσ,d) includes three ciphertext components as (c0, c1, c2). Here, Bob
adds the random polynomial r(x) to ct(Hσ,d), which produces another ciphertext ct(H′σ,d)

such that ct(H′σ,d) = ct(Hσ,d)� r(x) = (c0 � r(x), c1, c2). Using this randomization, Bob
hides all coefficients of the polynomial ct(Hσ,d)� r(x) from Alice except some coefficients
with xd·L. As such, the mentioned information leakage problem is solved in the BPCQ2
protocol.

6.2. Homomorphic Evaluation of the BPCQN Protocol

In this subsection, we discuss the homomorphic evaluation of the BPCQN protocol
mentioned in Section 5.2. We evaluate the BPCQN protocol with the help of the RLWE-based
SwHE scheme in Section 2, the packing methods in Equation (13), multiple inner products
property in Equation (14), and Proposition 2. For this protocol, we need to determine Eσ,d,
as mentioned in Equation (12), which defines the Euclidean distance between the vector
A and each sub-vector of Bσ. We know that the encryption and decryption algorithms
of RLWE-based SwHE scheme work on polynomials. In our protocol, Alice encodes the
vector A as the polynomial Poly3(A) using the packing methods in packing methods in
Equation (13). Using Equation (11), she encrypts the polynomial Poly3(A) as ct3(A) ∈
(Rq)2 and ct3(A2) ∈ (Rq)2 and transmits them to Bob in the cloud. Similarly, Charlie
encodes Bσ as the polynomial Poly4(Bσ) using the same packing methods and transmits
ct4(Bσ) ∈ (Rq)2 and ct4(B2

σ) ∈ (Rq)2 to Bob after encryption using Equation (11). We
know that the Euclidean distance can be computed by three homomorphic multiplications
and two homomorphic additions. Similar to the BPCQ2 protocol, we homomorphically
evaluate ct(Eσ,d) as

ct3(A2)� ct4(VB)� ct4(B2
σ)� ct3(VL)� (−2ct3(A)� ct4(Bσ) , (16)

where VB (resp., VL) defines the integer vector of length η · LN (resp., LN), which forms
as (1, . . . , 1). The ciphertext ct(Eσ,d) contains the desired Euclidean distances Eσ,d. Now,
Bob sends ct(Eσ,d) to Alice for decryption. Similar to the BPCQ2 protocol, Alice decrypts
ct(Eσ,d) in the ring Rq with her secret key and extracts Eσ,d as a coefficient of xd·LN from the

Cryptography 2021, 5, 2 21 of 28

plaintext of ct(Eσ,d) by Proposition 2. As such, Alice estimates the total number of records
satisfying the conjunctive conditions in the given query.

Similar to the BPCQ2 protocol, the BPCQN protocol also suffers from the information
leakage problem because of revealing the whole polynomial ct(Eσ,d) to Alice, as Alice only
need to verify the coefficients of xd·LN to decide the conjunctive equalities. We can solve
this information leakage problem by using an analogous technique applied to the BPCQ2
protocol as indicated in Section 6.1.2. We use the following random polynomial in the ring
R as

rN(x) = r0 +
n/LN

∑
d=0

LN−1

∑
i=1

rd·LN+ixd·LN+i .

Owing to the single homomorphic multiplication in the Euclidean distance com-
putation by Bob, the ciphertext ct(Eσ,d) is composed of three components: c′0, c′1, and
c′2. To prevent information leakage, Bob adds rN(x) to the ciphertext ct(Eσ,d) such that
ct(E′σ,d) = ct(Eσ,d)� rN(x) = (c′0 � rN(x), c′1, c′2). In this case, the resulting ciphertext
ct(E′σ,d) contains all the conjunctive equality information between the vector A and each
sub-vector of Bσ as the coefficients of xd·LN , and conceals all other coefficients using the
mentioned randomization. With this technique, the information leakage from the decryp-
tion of the polynomial ct(E′σ,d) is suppressed excluding the coefficients of xd·LN .

Remark 2. Here, the coefficients of xd·L (resp., xd·LN) are leaked to Alice during checking the zero
values despite addressing the information leakage problems in the BPCQ2 (resp., BPCQN) protocol.
However, it does not reveal any information regarding actual values in the database along with
record indexes.

7. Performance Analysis

In this section, we briefly discuss the security weaknesses of the proposed protocols
and their possible countermeasures. Then, we compare the performance of our BPCQ2
protocol with that of Cheon et al.’s protocol [28] (in short, CKK protocol) when processing
the private conjunctive query. Here, the BPCQ2 protocol scenario is different from that
of the CKK protocol [28], though both protocols process private conjunctive query. First,
we discuss the theoretical evaluation of the protocol along with its correctness and the
experimental settings of the used parameters in the protocol. Then, we analyze the security
of the BPCQ2 protocol using an experimental evaluation to show its practical performance
using RLWE-based SwHE.

7.1. Security Weaknesses and Countermeasures

Here, we describe the probable weaknesses related to security that may arise in our
proposed protocols and their possible countermeasures.

7.1.1. Security Weaknesses

In this paper, we propose the BPCQ2 and BPCQN protocols, and we use RLWE-based
SwHE in the semi-honest model. Here, we ensure the security of the values appearing
in the predicate of the queries and the data in the database. Both of our protocols are
CPA-secure, i.e., secure against attacks using quantum computers. We consider following
two weaknesses for our protocols.

• When Charlie encrypts and sends Bob all the encrypted data with an insecure channel,
Alice can eavesdrop. Alice provides Charlie with a public key and has a private key
for it, so if Alice obtains Charlie’s encrypted data, Alice can obtain all the database’s
information. This will compromise the basic security of the cryptographic protocol.

• Our protocols are unable to prevent real-world attacks by malicious adversaries
because we followed the semi-honest model for protocol security.

Cryptography 2021, 5, 2 22 of 28

7.1.2. Countermeasures Against the Weaknesses

To mitigate against eavesdropping attacks during data transmission between Charlie
and Bob, we can use a standard encryption that was used in an earlier work [37]. In our
protocols, Charlie encrypts his database using the public key provided by Alice. Then,
Charlie re-encrypts the encrypted data using the secret key shared by Charlie and Bob.
Now, Alice will not be able to eavesdrop during the data transmission from Charlie to Bob.
Here, encryption will ensure data secrecy during transmission through an insecure channel.
To resolve the next problem, we can convert our protocol from the semi-honest model to
malicious model. If we want to convert the protocols from the semi-honest model to the
malicious model, existing works [38,39] support the conversion, but the efficiency of our
protocols will be decreased by this conversion. We used the semi-honest model to ensure
the efficiency of the designed protocols.

7.2. Theoretical Evaluation

In this subsection, we theoretically compare the CKK [28] protocol with our BPCQ2
protocol in terms of the multiplication depth of the equality computation. We determine
the conjunctive equality using the Hamming distance in Equation (7). As indicated in
Equation (15), three polynomial multiplications are required for the homomorphic evalua-
tion of this Hamming distance. As shown in Table 1, the CKK protocol needs a multiplica-
tion depth of log l for their equality circuit for comparing two l-bit integers. Conversely,
due to using our tailored packing method, our method requires a multiplication depth of
log 3 for the conjunctive equality circuit, which compares two l-bit integers. The communi-
cation complexity of the BPCQ2 protocol is O(m · L log q). Now, we discuss the correctness
of the homomorphic evaluation of the BPCQ2 protocol.

Table 1. Theoretical performance comparison between BPCQ2 method and Cheon et al.’s method [28].

Operation Data Size Depth of Multiplication

Cheon et al.’s
method [28]

Our
method

Equality l-bit log l log 3

7.3. Correctness

The ciphertext ct(Hσ,d) in Equation (15) generates a correct result if it satisfies the
condition ‖〈ct(Hσ,d), s〉‖∞ < q

2 according to Lemma 1. In case of any fresh ciphertext
ct ∈ (Rq)2, U defines the upper bound for the ∞ norm ‖〈ct, s〉‖∞, where U = 2tδ2√n (see
Theorem 3.3 in [17]). Now, we define the ∞-norm size of ct(Hσ,d) with the inequality as
‖〈ct(Hσ,d), s〉‖∞ < 2nU + 2nU2 ≈ 8n2t2δ4 (see [36] for details). We achieve the correctness
of ciphertext ct(Hσ,d) if q > 16n2t2δ4.

7.4. Experimental Settings

In the experiment using the BPCQ2 protocol, the database settings for Charlie were
the same as in the CKK protocol, but our protocol scenario is different from theirs. The
conjunctive query of the BPCQ2 protocol contains equality as a comparison operator, which
is the same as the CKK protocol for conjunctive query processing. Table 2 shows the
parameter settings used for the experiment with the BPCQ2 protocol. We used k = 2 and
k = 4 to represent the number of equality conditions in the query. The data size and block
size were set to 15 ∼ 16-bits and η = 100, respectively. For successful decryption, we set
appropriate values of (n, q, t, δ) to help attain a certain security level. According to the
BPCQ2 protocol mentioned in Section 4.4, we need to have n ≥ η · L. As a result, we set
n = 3000 ∼ 6400. For all experiments, we chose t = 2048. Furthermore, we set δ = 8 and
chose q ≥ 16n2t2δ4 = 24·222·222·212 = 260 for the ciphertext space Rq. For this reason, we
set (n, q, t, δ) = (3000 ∼ 6400, 61 ∼ 63 bits, 2048, 8). In the next subsection, we analyze the
security of the BPCQ2 protocol.

Cryptography 2021, 5, 2 23 of 28

Table 2. Parameter settings in the experiment using the BPCQ2 protocol.

Index Parameters (n, q, t, δ) Data Size Block Size
(η)

1 (3000, 61 bits, 2048, 8) 15 bits

100

2 (6000, 63 bits, 2048, 8) 15 bits
3 (3200, 61 bits, 2048, 8) 16 bits
4 (6400, 63 bits, 2048, 8) 16 bits
5 (3200, 61 bits, 2048, 8) 16 bits
6 (6400, 63 bits, 2048, 8) 16 bits

7.5. Security Analysis

In this subsection, we analyze the security to determine the security level provided by
our protocols. The NIST [40] declares the strength of many security algorithms by showing
their achieved security levels and corresponding validity periods. Usually, the strength
of a cryptographic algorithm depends on the data owner or the organization using that
algorithm. For instance, the U.S. federal government accepts a security algorithm with
a security level of 112 bits [41]. After the introduction of post-quantum cryptographic
algorithms, NIST noted that a security algorithm with 112 bit security is acceptable up
to 2030. They stated that any security algorithm will require at least the 128 bit security
level after 2030. For RLWE-based SwHE, we considered defending our protocols against
two attacks: distinguishing attack [42] and decoding attack [43]. We chose our parameter
settings according to the settings in [43] to achieve a security level of greater than 128 bits.
We also considered the security of our protocols in defending against distinguishing and
decoding attacks with the advantage Â = 2−64. To attain the 80 bit security level, Chen and
Nguyen [44] estimated that lattice-based cryptographic schemes require the root Hermite

factor H < 1.0050 where c · q/σ = 22
√

n·log(q)·log(H) . As mentioned in [17], the running
time tadv is defined as

log(tadv) = 1.8/ log(H)− 110 .

7.6. Experimental Evaluation of the BPCQ2 Protocol

The practical performance of our BPCQ2 protocol is compared with that of the CKK
protocol in Figures 7 and 8 with six different settings. In our implementation of the BPCQ2
protocol, the required code was written in C programming language using the Pari library
(version 2.7.5) in [45]. Then, we ran the code on a single machine (3.6 GHz Intel core-i7
CPU and 8 GB RAM) in the Linux environment. We then analyzed and compared the
performance between our BPCQ2 protocol and the CKK protocol [28] for three different
data sets of 100, 1000, and 10,000 records. In addition, the same indexing is used for
Figures 7 and 8 as in the first column of Table 2 to show the relationship between parameter
settings and the corresponding performance. Figure 7 shows that the workability of the
BPCQ2 protocol is faster than that of the CKK protocol [28] for conjunctive query processing.
Our developed system worked noticeably faster than the CKK propocol because of using a
low multiplicative-depth equality circuit along with the batch technique. Our developed
system required less RAM than that of CKK protocol [28]. In addition, our BPCQ2 protocol
attained thef 257 ∼ 698 bit security level, whereas CKK protocol [28] attained a security
level of 80 bits, as shown in Figure 8.

Cryptography 2021, 5, 2 24 of 28

Figure 7. Performance comparison between the CKK protocol and BPCQ2 protocol in terms of
computational time.

Figure 8. Comparison of the security level between the CKK and BPCQ2 protocols.

8. Comparative Performance Analysis with the Latest Research Methods

Herein, we describe the comparative performance analysis between the BPCQ2 and
BPCQN protocols along with their parameter settings.

8.1. Correctness

The correctness of the BPCQN protocol is similar to that mentioned in Section 7.3. The
ciphertext ct(Eσ,d) in Equation (15) generates a correct result if it satisfies the condition
‖〈ct(Eσ,d), s〉‖∞ < q

2 according to Lemma 1. In addition, we achieve the correctness of
ciphertext ct(Eσ,d) if the following relation holds,

q > 16n2t2δ4 . (17)

t ≥ N2 due to using N-ary encoding in the BPCQ protocol instead of binary encoding.

8.2. Parameter Settings

The parameter settings used for comparing the BPCQ2 and BPCQN protocols are
shown in Table 3. We considered the same scenario mentioned in Section 3, which used

Cryptography 2021, 5, 2 25 of 28

three conjunctive equality conditions of 19 bits. We set δ = 8 for all three comparative
experiments for the two protocols. We set the value of t to 2048 (resp., 65,536) for the BPCQ2
(resp., BPCQN) protocol. We set the value of N as 2 (resp., 256) for binary (resp., N-ary)
encoding since we attained a lattice reduction factor of dlog2(N)e = dlog2(256)e = 8,
which is obvious from the value of n in Table 3.

Table 3. Parameter settings between BPCQ2 and BPCQN protocols.

Index δ Query Size
Lattice Dimension (n) Modulas (q) Plaintext Space (t)

(bits) BPCQ2 BPCQN BPCQ2 BPCQN BPCQ2 BPCQN

1 8 19 32,768 4096 69 bits 73 bits 2048 65,536
2 8 19 65,536 8192 71 bits 75 bits 2048 65,536
3 8 19 131,072 16,384 73 bits 77 bits 2048 65,536

8.3. Performance Comparison

As shown in Figures 9 and 10, we performed a comparative analysis of the BPCQ2
and BPCQN protocols using experiments with the same machine mentioned in Section 7.6.
To process a conjunctive query with three conditions upon 1000 (resp., 2000) records, the
BPCQ2 protocol required 3.953 s (resp., 4.562 s) whereas the BPCQN protocol required
0.251 s (resp., 0.937 s). The BPCQ2 protocol required 7.437 s, whereas BPCQN protocol
required 0.938 s to determine the conjunctive equality among 4000 records. With our
settings, the BPCQ2 protocol achieved a security level of 3419 bits and the BPCQN protocol
achieved a security level of more than 306 bits. The BPCQN protocol required at about
0.304 ms, on average, to process each record of the database, whereas the BPCQ2 protocol
required 2.279 ms. Here, the security of the BPCQ2 protocol is higher than that of the
BPCQN protocol; however, the security level of BPCQN exceeds the minimum 128-bit
security level mentioned in Section 7.5. Therefore, from these findings, it is evident that
BPCQN protocol performs at least four times faster than the BPCQ2 protocol.

Figure 9. Performance comparison between BPCQ2 and BPCQN protocols in terms of computa-
tional time.

Cryptography 2021, 5, 2 26 of 28

Figure 10. Comparison of security level between BPCQ2 and BPCQN protocols.

9. Conclusions

In this paper, we proposed a BPCQ protocol using RLWE-based SwHE for answering
private conjunctive queries to a private database outsourced in the cloud. To ensure the
efficiency of the protocol, we also proposed a data-packing method to pack many binary-
encoded data within a single polynomial. We call this protocol the BPCQ2 protocol. We
demonstrated an implementation of our protocol using C programming with the Pari
library. We evaluated our protocol using random data and measured its performance.
From the performance of BPCQ2 protocol, our protocol works 50 times faster than that
of Cheon et al. [28]. Here, we assessed our technique in a different setting than theirs.
We further improved the efficiency of the BPCQ protocol using the N-ary data encoding,
which we call the BPCQN protocol. We were able to reduce the lattice dimension by a
factor of dlog2(N)e because of using N-ary encoding rather than binary data encoding.
We also compared the performance of the BPCQ2 and BPCQN protocols using the same
settings, which verified the performance improvement provided by the BPCQN protocol
when applying N-ary encoding to the BPCQ protocol. We think that our packing method
along with N-ary encoding is expandable to processing many new queries. In the future,
we will investigate private disjunctive and threshold queries, which are used for obtaining
data from a private outsourced database in the cloud.

Author Contributions: Conceptualization, T.K.S.; Funding acquisition, T.K.; Investigation, T.K.S.;
Methodology, T.K.S.; Project administration, T.K.; Writing—original draft, T.K.S.; Writing—review
and editing, T.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by KAKENHI grant number JP16H0175.

Acknowledgments: The authors would like to thank all the anonymous reviewers for their comments
and suggestions, which helped us to improve the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On Data Banks and Privacy Homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
2. Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-key Cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
3. Gentry, C. Fully Homomorphic Encryption using Ideal Lattices. In Proceedings of the Forty-First Annual ACM Symposium

Theory Computimg (STOC), Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
4. Cohen, J.D., Fischer, M.J. A Robust and Verifiable Cryptographically Secure Election Scheme. In Proceedings of the 26th Annual

Symposium on Foundations of Computer Science, Portland, OR, USA, 21–23 October 1985; pp. 372–382.

http://doi.org/10.1145/359340.359342

Cryptography 2021, 5, 2 27 of 28

5. ElGamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Proceedings of the Crypto
1984, Santa Barbara, CA, USA, 19–22 August 1984; Volume 196, pp. 10–18.

6. Goldwasser, S.; Micali, S. Probabilistic Encryption & How to Play Mental Poker Keeping Secret All Partial Information. In Pro-
ceedings of the Fourteenth Annual ACM Symposium Theory Computing, San Francisco, CA, USA, 1982; pp. 365–377.

7. Paillier, P. Public-key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the International
Conference Theory Application of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; Volume 1592, pp. 223–238.

8. Benaloh, J. Dense Probabilistic Encryption, In Proceedings of the Workshop on Selected Areas of Cryptography, Kingston, ON,
Canada, 5–6 May 1994; pp. 120–128.

9. Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF Formulas on Ciphertexts. In Proceedings of the 2nd TCC, Cambridge, MA,
USA, 10–12 February 2005; Volume 3378, pp. 325–341.

10. Brakerski, Z.; Vaikuntanathan, V. Fully Homomorphic Encryption from ring-LWE and Security for Key Dependent Messages. In
Proceedings of the 31st Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; Volume 6841, pp. 505–524.
[CrossRef]

11. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster Fully Homomorphic Encryption: Bootstrapping in Less than 0.1
Seconds. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, 4–8 December 2016; Volume 10031, pp. 3–33. [CrossRef]

12. Ducas, L.; Micciancio, D. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second. In Proceedings of the Eurocrypt
2015, Sofia, Bulgaria, 26–30 April 2015; Volume 9056, pp. 617–640.

13. Van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully Homomorphic Encryption Over the Integers. In Proceedings of the
Eurocrypt 2010, Nice, France, 30 May–3 June 2010; Volume 6110, pp. 24–43.

14. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) Fully Homomorphic Encryption Without Bootstrapping. ACM Trans.
Comput. Theory 2014, 6, 1–36. [CrossRef]

15. Hu, Y. Improving the Efficiency of Homomorphic Encryption Schemes. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester,
MA, USA, 2013.

16. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors over Rings. In Proceedings of the Eurocrypt
2010, Nice, France, 30 May–3 June 2010; Volume 6110, pp. 1–23. [CrossRef]

17. Naehrig, M.; Lauter, K.; Vaikuntanathan, V. Can Homomorphic Encryption be Practical? In Proceedings of the 3rd ACM
Workshop Cloud Computing Security Workshop, Chicago, IL, USA, 21 October 2011; pp. 113–124.

18. Yasuda, M.; Shimoyama, T.; Kogure, J.; Yokoyama, K.; Koshiba, T. Secure Statistical Analysis Using RLWE-based Homomorphic
Encryption. In Proceedings of the ACISP 2015, Brisbane, QLD, Australia, 29 June–1 July 2015; Volume 9144, pp. 471–487.
[CrossRef]

19. Saha, T.K.; Koshiba, T. An Enhancement of Privacy-preserving Wildcards Pattern Matching. In Proceedings of the International
Symposium on Foundations and Practice of Security—FPS 2016, Québec City, QB, Canada, 24–26 October 2016; Volume 10128,
pp. 145–160.

20. Yasuda, M.; Shimoyama, T.; Kogure, J.; Yokoyama, K.; Koshiba, T. Secure Pattern Matching Using Somewhat Homomorphic
Encryption. In Proceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop, Berlin, Germany, 8 November
2013; pp. 65–76.

21. Saha, T.K.; Koshiba, T. Outsourcing Private Equality Tests to the Cloud. J. Inf. Secur. Appl. 2018, 43, 83–98. [CrossRef]
22. Saha, T.K.; Koshiba, T. Privacy-preserving Equality Test towards Big Data. In Proceedings of the International Symposium on

Foundations and Practice of Security—FPS 2017, Nancy, France, 23–25 October 2017; Volume 10723, pp. 95–110. [CrossRef]
23. Saha, T.K.; Rathee, M.; Koshiba, T. Efficient Private Database Queries Using Ring-LWE Somewhat Homomorphic Encryption. J.

Inf. Secur. Appl. 2019, 49, 102406. [CrossRef]
24. Saha, T.K.; Koshiba, T. Private Conjunctive Query over Encrypted Data. In Proceedings of the Africacrypt 2017, Dakar, Senegal,

24–26 May 2017; Volume 10239, pp. 149–164. [CrossRef]
25. Saha, T.K.; Mayank; Koshiba, T. Efficient Protocols for Private Database Queries. In Proceedings of the 31st Annual IFIP WG 11.3

Conference on DBSec 2017, Philadelphia, PA, USA, 19–21 July 2017; Volume 10359, pp. 337–348.
26. Saha, T.K.; Koshiba, T. An Efficient Privacy-preserving Comparison Protocol. In Proceedings of the NBiS 2017, Toronto, ON,

Canada, 24–26 August 2017; Volume 7, pp. 553–565.
27. Wang, L; Saha, T.K.; Aono, Y.; Koshiba, T.; Moriai, S. Enhanced Secure Comparison Schemes Using Homomorphic Encryption.

In Proceedings of the Advances in Networked-Based Information Systems—NBiS 2020, Victoria, BC, Canada, 31 August–2
September 2020; Volume 1264, pp. 211–224. [CrossRef]

28. Cheon, J.H.; Kim, M.; Kim, M. Optimized Search-and-compute Circuits and Their Application to Query Evaluation on Encrypted
Data. IEEE Trans. Inf. Forensics Secur. 2016, 11, 188–199. [CrossRef]

29. Saha, T.K.; Koshiba, T. Private Equality Test Using Ring-LWE Somewhat Homomorphic Encryption. In Proceedings of the 2016
3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 5–6 December 2016; pp. 1–9.
[CrossRef]

30. Boneh, D.; Gentry, C.; Halevi, S.; Wang, F.; Wu, D.J. Private Database Queries Using Somewhat Homomorphic Encryption. In
Proceedings of the ACNS 2013, Banff, AB, Canada, 25–28 June 2013; Volume 7954, pp. 102–118.

http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-319-19962-7_27
http://dx.doi.org/10.1016/j.jisa.2018.09.002
http://dx.doi.org/10.1007/978-3-319-75650-9_7
http://dx.doi.org/10.1016/j.jisa.2019.102406
http://dx.doi.org/10.1007/978-3-319-57339-7_9
http://dx.doi.org/10.1007/978-3-030-57811-4_20
http://dx.doi.org/10.1109/TIFS.2015.2483486
http://dx.doi.org/10.1109/APWC-on-CSE.2016.013

Cryptography 2021, 5, 2 28 of 28

31. Pappas, V.; Krell, F.; Vo, B.; Kolesnikov, V.; Malkin, T.; Choi, S.G.; George, W.; Keromytis, A.; Bellovin, S. Blind Seer: A Scalable
Private DBMS. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014; pp. 359–374.
[CrossRef]

32. Yao, A.C. Protocols for Secure Computations. In Proceedings of the 23rd Annual Symposium Foundations Computing Science,
Chicago, IL, USA, 3–5 November 1982; pp. 160–164.

33. Fisch, B.A.; Vo, B.; Krell, F.; Kumarasubramanian, A.; Kolesnikov, V.; Malkin, T.; Bellovin, S.M. Malicious-client Security in Blind
Seer: A Scalable Private DBMS. In Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA,
18–20 May 2015; pp. 395–410.

34. Kim, M.; Lee, H.T.; Ling, S.; Wang, H. On the Efficiency of FHE-based Private Queries. IACR Cryptol. ePrint Arch. 2015, 2015, 1176.
[CrossRef]

35. Kim, M.; Lee, H.T.; Ling, S.; Ren, S.Q.; Tan, B.H.M.; Wang, H. Search Condition-hiding Query Evaluation on Encrypted Databases.
IEEE Access 2019, 7, 161283–161295. [CrossRef]

36. Yasuda, M.; Shimoyama, T.; Kogure, J.; Yokoyama, K.; Koshiba, T. Practical Packing Method in Somewhat Homomorphic
Encryption. In DPM/SETOP-2013; Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W. M., Eds;
Springer: Heidelberg, Germany, 2014; Volume 8247, pp. 34–50. [CrossRef]

37. Kandah, F.; Singh, Y.; Zhang, W. Mitigating Eavesdropping Attack Using Secure Key Management Scheme in Wireless Mesh
Networks. J. Commun. 2012, 7, 596–605. [CrossRef]

38. Goldreich, O.; Micali, S.; Wigderson, A. How to Play Any Mental Game. In Proceedings of the 19th annual ACM Symposium
Theory Computing, New York, NY, USA, 25–27 May 1987; Aho, A., Ed.; ACM Press: New York, NY, USA, 1987; pp. 218–229.

39. Ishai, Y.; Prabhakaran, M.; Sahai, A. Founding Cryptography on Oblivious Transfer–Efficiently. In Proceedings of the CRYPTO
2008, Santa Barbara, CA, USA, 17–21 August 2008; Volume 5157, pp. 572–591.

40. Barker, E. NIST Special Publication 800-57—Part 1 Revision 4; Recommendation for Key Management—Part 1: General, Dept.
Commerce; National Institute of Standard and Technology: Gaithersburg, MD, USA, 2016. [CrossRef]

41. Barker, E.; Roginsky, A. Transitioning the Use of Cryptographic Algorithms and Key Lengths; Technical Report; National Institute of
Standards and Technology: Gaithersburg, MA, USA, 2018.

42. Micciancio, D.; Regev, O. Post-Quantum Cryptography; Springer: Heidelberg, Germany, 2009; pp. 147–191. ISBN 978-3-540-88701-0.
43. Lindner, R.; Peikert, C. Better Key Sizes (and Attacks) for LWE-based Encryption. In Proceedings of the CT-RSA 2011, San Fran-

cisco, CA, USA, 14–18 February 2011; Volume 6558, pp. 319–339.
44. Chen, Y.; Nguyen, P. Q. BKZ 2.0: Better Lattice Security Estimates. In Proceedings of the ASIACRYPT 2011, Seoul, Korea,

4–8 December 2011; Volume 7073, pp. 1–20.
45. PARI Group, PARI/GP Version 2.7.5, Bordeaux, 2014. Available online: https://pari.math.u-bordeaux.fr/archives/pari-

announce-15/msg00004.html (accessed on 24 August 2018)

http://dx.doi.org/10.1109/SP.2014.30
http://dx.doi.org/10.1109/TDSC.2016.2568182
http://dx.doi.org/10.1109/ACCESS.2019.2951695
http://dx.doi.org/10.1007/978-3-642-54568-9_3
http://dx.doi.org/10.4304/jcm.7.8.596-605
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
https://pari.math.u-bordeaux.fr/archives/pari-announce-15/msg00004.html
https://pari.math.u-bordeaux.fr/archives/pari-announce-15/msg00004.html

	Introduction
	Motivation
	Problem Statements
	System Model
	Key Technique
	Previous Works
	Our Contributions
	Notations
	Outline of This Paper

	Security Tool
	Asymmetric SwHE Scheme
	Key Generation
	Encryption
	Homomorphic Evaluations
	Decryption

	Security of RLWE-Based SwHE Scheme
	Correctness of RLWE-Based SwHE Scheme

	Our Protocol
	Protocol Scenario
	Traditional Technique for Solving the PCQ Problem
	Proposed Concatenation Technique for Solving PCQ Problem
	Batch Technique for Boosting Performance
	Batching for Traditional Methods
	Batching for Concatenation Method

	Batch Private Conjunctive Query Protocol
	Security of the Protocol

	Data Representation and Its Packing Method
	Data Representation for Conjunctive Query Processing
	Packing Methods
	Existing Packing Method
	Our Packing Method
	Obtaining the Multiple Inner Products

	Improving the Batch Private Conjunctive Query Protocol
	Binary vs. Nary Encoding
	Private Conjunctive Query Protocol Using N-ary Encoding
	Obtaining Multiple Inner Products

	Homomorphic Evaluation of Private Conjunctive Query Protocols
	Homomorphic Evaluation of the BPCQ2 Protocol
	Evaluation Over Packed Ciphertext
	Solving Additional Information Leakage Problem of the BPCQN Protocol

	Homomorphic Evaluation of the BPCQN Protocol

	Performance Analysis
	Security Weaknesses and Countermeasures
	Security Weaknesses
	Countermeasures Against the Weaknesses

	Theoretical Evaluation
	Correctness
	Experimental Settings
	Security Analysis
	Experimental Evaluation of the BPCQ2 Protocol

	Comparative Performance Analysis with the Latest Research Methods
	Correctness
	Parameter Settings
	Performance Comparison

	Conclusions
	References

