
cryptography

Article

Optimized CSIDH Implementation Using a
2-Torsion Point

Donghoe Heo 1 , Suhri Kim 1, Kisoon Yoon 2, Young-Ho Park 3 and Seokhie Hong 1,*
1 Graduate School of Information Security, Institute of Cyber Security and Privacy (ICSP), Korea University,

Seoul 02841, Korea; dong5641@korea.ac.kr (D.H.); suhrikim@gmail.com (S.K.)
2 NSHC Inc., Seoul 08502, Korea; kisoon.yoon@gmail.com
3 Department of Information Security, Graduate School of Information Security, Sejong Cyber University,

Seoul 05000, Korea; youngho@sjcu.ac.kr
* Correspondence: shhong@korea.ac.kr; Tel.: +82-10-6201-6348

Received: 29 June 2020; Accepted: 28 July 2020; Published: 29 July 2020
����������
�������

Abstract: The implementation of isogeny-based cryptography mainly use Montgomery curves, as
they offer fast elliptic curve arithmetic and isogeny computation. However, although Montgomery
curves have efficient 3- and 4-isogeny formula, it becomes inefficient when recovering the coefficient
of the image curve for large degree isogenies. Because the Commutative Supersingular Isogeny
Diffie-Hellman (CSIDH) requires odd-degree isogenies up to at least 587, this inefficiency is the main
bottleneck of using a Montgomery curve for CSIDH. In this paper, we present a new optimization
method for faster CSIDH protocols entirely on Montgomery curves. To this end, we present a
new parameter for CSIDH, in which the three rational two-torsion points exist. By using the
proposed parameters, the CSIDH moves around the surface. The curve coefficient of the image
curve can be recovered by a two-torsion point. We also proved that the CSIDH while using the
proposed parameter guarantees a free and transitive group action. Additionally, we present the
implementation result using our method. We demonstrated that our method is 6.4% faster than the
original CSIDH. Our works show that quite higher performance of CSIDH is achieved while only
using Montgomery curves.

Keywords: post-quantum cryptography; isogeny; Montgomery curves; two-torsion points;
Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

1. Introduction

With the evolution of a quantum computing environment, currently used public key
cryptosystems based on factorization and discrete logarithm problems, such as RSA and ECC, will not
be able to guarantee their security in the near future. This has led to the need for post-quantum
cryptography (PQC) that is secure, even in quantum computing environments. The National Institute
of Standards and Technology (NIST) opened the PQC standardization project, which is now in Round
2. Among the PQC categories, isogeny-based cryptography interests many researchers, as it offers
smaller key sizes than any other PQC candidates. The isogeny-based cryptography is based on the
difficulty of finding a specific isogeny between two elliptic curves defined on the same finite field.
Despite having a fairly small key size, isogeny-based cryptography has the disadvantage of being
considerably slower than most of the PQC candidates.

The isogeny-based cryptography was first proposed by Couveignes in 2006 [1]. This is a
non-interactive key exchange protocol, which uses a set of Fq-isomorphism classes of ordinary elliptic
curves that are defined on Fq. The endomorphism ring between these curves is given by the orderO in
an imaginary quadratic field. Subsequently, the ideal class group cl(O) acts freely and transitively on

Cryptography 2020, 4, 20; doi:10.3390/cryptography4030020 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0001-9300-2985
https://orcid.org/0000-0001-7506-4023
http://dx.doi.org/10.3390/cryptography4030020
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/4/3/20?type=check_update&version=2

Cryptography 2020, 4, 20 2 of 13

this endomorphism ring through an isogeny operation. Couveignes designed the Diffie-Hellman style
key exchange protocol using the commutativity of cl(O). This method was rediscovered by Rostovtsev
and Stolbunov and is called CRS-scheme. On the other hand, the underlying problem of CRS-scheme
can be classified as an abelian hidden-shift problem. It is shown by Childs et al. that there is a
subexponential quantum attack algorithm with time complexity of Lq[1/2] [2]. When considering that
RSA is widely used, even in subexponential complexity in classical computers this was not considered
to be a big problem. However, very slow execution time was pointed out as the biggest problem, as it
took several minutes for a single key exchange.

The isogeny-based cryptography was noticed again with a rapid speed improvement by
De Feo et al. [3]. They proposed a new key exchange protocol, called SIDH, while using a supersingular
curve. As Childs-Jao-Soukharev’s attack exploits the commutativity of cl(O) of an ordinary curve,
their attack cannot be applied to SIDH since it uses supersingular curves, which have non-commutative
full endomorphism ring. Until now, the best known attacks against SIDH have exponential time
complexity, even in quantum computing environments.

SIKE (Supersingular Isogeny Key Encapsulation), which is based on SIDH, is currently on the
NIST PQC standardization Round 2 [4]. On the other hand, in the case of SIDH-based scheme,
the key validation problem could not be efficiently solved. To solve this problem, SIKE applied a
transformation that was similar to the Fujisaki–Okamoto transformation proposed in [5].

In the CRS-scheme, efficient key validation is possible, so that CCA-secure encryption can only be
achieved by the basic algorithm itself, without the need of applying FO-transformation. This allows
for a non-interactive key exchange, where several of the previously proposed PQC algorithms do not
efficiently provide this property. With this in mind, De Feo et al. proposed a method to efficiently
perform CRS-schemes on ordinary curves in [6]. However, there was still a problem that it was difficult
to select parameters that satisfy a certain condition because of the characteristics of ordinary curves.
Independently, Castryck et al. proposed CSIDH (Commutative Supersingular Isogeny Diffie-Hellman),
an algorithm that increases efficiency over conventional techniques by using the supersingular curve
defined over a prime field Fp in the CRS-scheme [7]. By using supersingular curves, CSIDH solved the
parameter selection problem of ordinary curves in the algorithm proposed by De Feo et al.

CSIDH uses a subring that consists of Fp-rational endomorphisms instead of using a full
endomorphism ring, and it uses the commutativity of cl(O) and has the same protocol as CRS-scheme.
The CSIDH-512 provides a key size of 64 bytes, which is smaller than SIKE for the same security
level. Even when considering the subexponential time attack, the key size is expected to be relatively
smaller than SIKE. Recently, various papers that were related to CSIDH have been submitted to
PQCrypto 2019 and Eurocrypt 2019, and the various researches, such as digital signature, efficient
implementation techniques, various attack techniques, and side-channel resistant implementations,
have been conducted [8–11].

However, one disadvantage of CSIDH is that it has a slower execution speed than the
state-of-the-art implementation of SIKE. On the other hand, since the key validation can be performed
efficiently, a non-interactive key exchange can be provided, and a smaller key size and a simpler
algorithm can be designed. In addition, when considering a more efficient digital signature scheme
than SIDH can be derived, it is possible to say that CSIDH has more potential for developing various
cryptographic applications. Hence, various studies are being actively conducted to improve the speed
of CSIDH [8,9].

The original implementation of CSIDH in [7] uses Montgomery curves, as they were known to
provide efficient isogeny computation. However, one drawback of using Montgomery curves is that
the computational cost for recovering the coefficient of the image curve is higher than Edwards curves
for large degree isogenies. Because tge CSIDH protocol uses large odd-degree isogenies, this can be an
obstacle for CSIDH to entirely implement on Montgomery curves.

Cryptography 2020, 4, 20 3 of 13

In this paper, we apply an optimization technique that was proposed by Costello and Hisil in
CSIDH in order to obtain image curve coefficients during isogeny computations [12]. The following
are the main contributions of this work.

• We present a new initial curve and a new prime of the form 8k + 7, enabling the use of the
two-torsion method by Costello and Hisil [12]. In the parameter presented in the original CSIDH,
Fp-rational two-torsion points do not exist, except for (0, 0), so that this method cannot be used
for recovering the coefficient of the image curve in CSIDH. Compared to Meyer’s method [8],
computing the coefficient of the image curve is the main bottleneck for implementing faster
CSIDH entirely on Montgomery curves. By using our prime, Fp-rational two-torsion points exist,
so that the coefficient can be efficiently computed.

• We also prove that our algorithm assures one-to-one correspondence between image curves and
elliptic curve isomorphism classes. Given a Montgomery curve MA : y2 = x3 + Ax2 + x on the
surface with curve coefficient A and base field prime p, we prove that the ideal-class group cl(O)
acts freely and transitively on the set S+

p,Z[(1+√−p)/2],i in [13]. The details of our proof are denoted
in Section 4.

• We present the implementation results of our proposed method. The group action of our
implementation is about 7.1% faster than the original CSIDH. The entire key exchange is about
6.4% faster than the original CSIDH. Although the proposed CSIDH implementation is slower
than [8], we stress the fact that we provide the fastest performance using only Montgomery curves.
Section 5 denote details of our implementation and results.

This paper is organized, as follows. In Section 2, we review on background of elliptic curves and
CSIDH key exchange. In Section 3, we introduce the various way of odd-degree isogeny computations.
In Section 4, we present a new parameter that makes the use of the two-torsion point and our
optimization methods. Section 5 describes the specific implementation process and the result of
comparing the costs and speed. We draw our conclusions and future work in Section 6.

2. Preliminary

In this section, we describe the background knowledge needed to develop this paper. First,
we review some properties of elliptic curves. Subsequently, we introduce the CSIDH protocol.

2.1. Elliptic Curves and Isogenies

2.1.1. Montgomery Curves

Let K be a field with the characteristic not equal to 2 or 3. The Montgomery elliptic curves over K
are expressed by the following equation:

Ma,b : by2 = x3 + ax2 + x,

where b(a2− 4) 6= 0. We shall write Ma when b = 1 throughout the paper. For efficient implementation
of isogeny operation, we use the projective coordinate and projective curve coefficient to avoid
inversions. Because Montgomery curve arithmetic can only be constructed with the x-coordinate,
XZ-coordinate system is mainly used for implementing isogeny-based cryptography. Now, we write a
point P = (x, y) on Ma,b and coefficient a as P = (X : Z) and a = (A : C), respectively, where x = X/Z
and a = A/C.

2.1.2. Isogeny

Let OE be the group identity of a group of an elliptic curve E. Given two elliptic curves E and E′,
we define an isogeny φ between E and E′ by φ : E→ E′ satisfying φ(OE) = OE′ , where φ is a morphism.

Cryptography 2020, 4, 20 4 of 13

Because φ is group homomorphism between E and E′, ker(φ) is a subgroup of E. Given any finite
subgroup K of E, we use Velu’s formula to compute an isogeny φ : E→ E′. Subsequently, we obtain
an isogeny φ : E→ E′ satisfying ker(φ) = K and denote deg(φ) = |K|.

2.1.3. Supersingularity

Given a prime p, let E be an elliptic curve defined over Fp. Afterwards, E is a supersingular curve
if and only if

#E(Fp) = p + 1

Otherwise, E is an ordinary curve. Let End(E) be a full endomorphism ring of E and EndFp(E) be
an Fp-rational endomorphism ring defined over Fp. A full endomorphism ring of an ordinary curve is
isomorphic to an order in an imaginary quadratic field. On the other hand, A full endomorphism ring
End(E) of a supersingular curve E is isomorphic to an order in a quaternion algebra. Additionally,
Fp-rational endomorphism ring EndFp(E) of supersingular curve E is isomorphic to an order in an
imaginary quadratic field Q(

√−p). Now, denote an order O for EndFp(E).

2.1.4. Ideal Class Group

Given an order O, the ideal class group cl(O) is defined by a quotient group

cl(O) = I(O)/P(O)

Note that I(O) is the set of invertible fractional ideals and P(O) is the set of principal fractional
ideals.

Let π ∈ O be the Fp-Frobenius endomorphism of E and E``p(O, π) be the set of elliptic curves
E defined over Fp satisfying O = EndFp(E). Afterwards, the ideal-class group cl(O) acts freely and
transitively on E``p(O, π) by

cl(O)× E``p(O, π) −→ E``p(O, π)

([a], E) −→ E/a

2.2. Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

2.2.1. CSIDH Protocol

CSIDH is an isogeny-based Diffie-Hellman protocol proposed by Castryck et al. [7] using
supersingular curves defined over Fp and commutative group action. The prime p of the base field is
of the form p = 4 ∏n

i=1 `i − 1, where `i’s are odd primes. For an order O = EndFp(E), it is well-known
that the class group cl(O) acts freely and transitively on E``p(O). This group action is represented
by [a]E, where E ∈ E``p(O) and an ideal class [a] ∈ cl(O). Since E is a supersingular curve with
#E(Fp) = p + 1 = 4 · `1 · · · `n, for each i, there is Fp-rational subgroup of order `i. Additionally,
let π =

√−p be the Fp-Frobenius endomorphism of E. Subsequently, since p = −1 mod `i, for a
prime `i, it is well-known that `iO splits into two prime ideals li = (`i, π − 1) and l−1

i = (`i, π + 1).
Using Velu’s formula, we compute [li]E through the isogeny φli defined over Fp and compute [l−1

i]E
through the isogeny φ

l−1
i

defined over Fp2 .
Assume that Alice and Bob execute a key exchange. Alice and Bob randomly select each secret

key [a] and [b] in cl(O), respectively. Next, Alice sends EA = [a]E to Bob, Bob sends EB = [b]E to
Alice. Upon the receipt of EB from Bob, Alice computes [a]EB and obtains EAB = [a]EB. Similarly,
Bob obtains EBA = [b]EA. The EAB = EBA is the shared secret between Alice and Bob.

Cryptography 2020, 4, 20 5 of 13

2.2.2. CSIDH Group Action

An element of the ideal-class group cl(O) is of the form ∏n
i=1 l

ei
i (li = (`i, π − 1)) for small ei ∈

[−m, m]. Accordingly, in CSIDH protocol, Alice and Bob randomly select a vector (e1, e2, · · · , en) ∈ Zn

and consider it as a secret key. Thus, a group action [a]E can be computed by applying `i-isogeny
operation ei times for a = ∏n

i=1 l
ei
i ∈ cl(O).

If ei > 0, `i-isogeny is applied with the kernel generated by a point in E(Fp) of order `i. If ei < 0,
`i-isogeny is applied with the kernel generated by a point in E(Fp2\Fp) of order `i. As `is are all primes,
this means that efficient odd-degree isogeny formula at least up to 587 for CSIDH-512 is required
for implementation. For Montgomery curves, Costello and Hisil proposed an efficient method for
computing odd-degree isogenies [12]. For twisted Edwards curves, Moody and Shumow proposed
generalized odd-degree isogeny formula [14]. In [15], they optimized the Moody and Shumow formula
by using the w-coordinate on Edwards curves.

3. Odd-Degree Isogenies

Generally, an isogeny operation is divided into two parts—evaluation of an isogeny and
coefficients computation of an image curve. In this section, we shall briefly introduce the formula
in [12] for point evaluations. For coefficient computations, we introduce various methods that can
be used to implement CSIDH. From this section, M, S, and a refer to a field multiplication, squaring,
and addition, respectively.

3.1. Point Evaluation

In [12], Costello and Hisil proposed a simple formula for computing arbitrary degree isogenies
on Montgomery curves. Their formula can be summarized as follows.

Theorem 1. For a field K, whose characteristic is not 2, let P be a point of order ` = 2d + 1 on the Montgomery
curve Ma,b/K : by2 = x3 + ax2 + x. Writing σ = ∑d

i=1 x[i]P, σ̃ = ∑d
i=1 1/x[i]P and π = ∏d

i=1 x[i]P,
let `-isogeny φ : Ma,b → Ma′ ,b′ with ker(φ) = 〈P〉, where Ma′ ,b′/K : b′y2 = x3 + a′x2 + x. Then,

a′ = (6σ̃− 6σ + a) · π2 and b′ = b · π2 (1)

φ : (x, y) 7→ (f (x), y f ′(x)), (2)

where f (x) = x ∏d
i=1(

x·x[i]P−1
x−x[i]P

)2 and f ′(x) is its derivative.

As mentioned earlier, because the Montgomery curve arithmetic can only be constructed with the
x-coordinate, the function f (x) is of our main interest in (2).

Let P be a point on a Montgomery curve having order ` = 2d + 1. Subsequently, in projective
XZ-coordinate we express P as P = (X : Z), where x = X/Z. Let φ be an isogeny `-isogeny,
where ker φ = 〈P〉. From the formula proposed in [12], P′ = φ(P) = (X′ : Z′) is computed as

X′ = X

(
d

∏
i=1

[(X− Z)(Xi + Zi) + (X + Z)(Xi − Zi)]

)2

, (3)

Z′ = Z

(
d

∏
i=1

[(X− Z)(Xi + Zi)− (X + Z)(Xi − Zi)]

)2

(4)

For `-isogeny evaluaton, the computational cost is (4d)M + 2S + (4d + 2)a.
As denoted in (1), the computation of the image curve using Theorem 1 in [12] is somewhat

complicated. Therefore, an alternate way to recover the coefficient of the image curve is presented
in [12]. The first method is to use a two-torsion point of a Montgomery curve, and another is to use two

Cryptography 2020, 4, 20 6 of 13

points and its differential of a Montgomery curve. We shall call the former method as a two-torsion
method and the later as a differential method. As the two-torsion method is of our primary interest in
this paper, we shall only describe the details of the two-torsion method in this paper. Additionally, we
provide two other ways to compute the coefficient of the image curve that is presented in [7,8], in the
following subsection.

Remark 1. Using the differential method, we can alternatively compute the image curve coefficient with the
cost 8M + 5S + 11a [12]. However, unlike SIDH, as CSIDH does not require such three points, additional point
evaluation is required when this method is used. Thus, when the differential method is used, CSIDH will have
inefficient speed and large key size when compared to the original method. Therefore, we exclude the use of the
differential method in this paper.

3.2. Coefficients Computations

3.2.1. The 2-Torsion Method

In [12], the main idea is to use two-torsion points for coefficient computation, as pushing a
2-torsion point through an odd-degree isogeny preserves their order on the image curve.

For a Montgomery curve defined over K, it is well-known that the two-torsion point has
the following form—(0, 0), (α, 0), (α−1, 0) for α ∈ K̄. If we know α of the two-torsion point on a
Montgomery curve, then we can recover the coefficient of a Montgomery curve. For a given elliptic
curve Ma, since α3 + aα2 + α = 0, we can calculate the coefficient a of Ma by

a = −(α2 + 1)/α (5)

Let φ : Ma → Ma′ be an isogeny of odd-degree ` = 2d + 1, and P = (α, 0) be a two-torsion point
on Ma. Subsequently, it is clear that φ(P) is two-torsion point on Ma′ . Using this fact, we can recover
the coefficient of the image curve by first, evaluating φ(P) and obtaining the coefficient by using (5).
More precisely, assuming that φ(P) = (α′, 0), we obtain a′ = −((α′)2 + 1)/α′. In projective coordinate,
let P = (Xα, Zα), where α = Xα/Zα. Subsequently, projective curve coefficient of the image curve is
derived by using the following equation.

a′ = (A′ : C′) = (X2
α′ + Z2

α′ : −Xα′Zα′),

where φ(P) = (Xα′ : Zα′) and a′ = A′/C′. This computation cost is 2S + 5a. Using the two-torsion
method, the cost of calculating a coefficient of ` = 2d + 1-isogeny image curve is (4d)M+ 4S+ (4d + 7)a.

Remark 2. Recently, in [13], Castryck and Decru proposed the CSURF algorithm using the tweaked
Montgomery curve Mt

a : y2 = x3 + ax2 − x and it is about 5.68% faster than the original CSIDH. CSURF can
also use the two-torsion method because three two-torsion points are on Mt

a(Fp). If (α, 0) is a two-torsion point
on a tweaked Montgomery curve Mt

a for α 6= 0, then since α2 + aα− 1 = 0, we can reconstruct the tweaked
Montgomery coefficient a by a = (A : C) = −(α2 − 1)/α = (Z − X)(Z + X)/XZ, where α = X/Z.
So, we can compute an image curve coefficient by one additional point evaluation and 2M + 2a. Using the
two-torsion method, CSURF will might be more efficient in computing odd-degree isogeny parts.

3.2.2. Optimization by Castryck et al.

They [7] optimize (1) to compute the coefficient of the image curve, as Fp-rational two-torsion
point does not exist for the original parameters of CSIDH.

Cryptography 2020, 4, 20 7 of 13

For a point P of order ` on E and k ∈ {1, · · · , `− 1}, let (Xk : Zk) be the projective x-coordinate of
[k]P. Define ci ∈ Fp, such that

`−1

∏
i=1

(Ziw + Xi) =
`−1

∑
i=0

ciwi

as polynomials in w, and define τ, σ by

τ =
`−1

∏
i=1

Xi
Zi

, σ =
`−1

∑
i=1

(
Xi
Zi
− Zi

Xi

)
Subsequently, coefficient (a′ : 1) of image curve of `-isogeny with the kernel 〈P〉 is computed by

(a′ : 1) = (τ(a− 3σ) : 1) r

= (ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2
`−1) (6)

Using this method, the cost of calculating curve coefficient is (6d − 2)M + 3S + 4a
in implementation.

3.2.3. Exploiting Twisted Edwards Curves

In [8], Meyer and Reith proposed a Montgomery–Edwards hybrid method for implementing
CSIDH. They exploited the fact that recovering the coefficient of the image curve is more efficient
on twisted Edwards curves than Montgomery curves. By using the efficiency of the birational map
between Montgomery curves and twisted Edwards curves, they used Montgomery curves for scalar
multiplication and isogeny evaluation and used twisted Edwards curves for recovering the coefficient
of the image curve.

The outline of the process is summarized in the equation below. In the equation, φ denotes an
isogeny on a twisted Edwards curve, ι denotes conversion from Montgomery to twisted Edwards
curves, and ι−1 denotes conversion from twisted Edwards to Montgomery curves.

M ι−→ E
ψ−→ E′ ι−1

−→ M′

By composing the functions φ = ι−1 ◦ ψ ◦ ι, one can obtain the coefficient of a Montgomery curve.
Using this method, the computational cost of recovering the curve coefficient is (2d)M + 6S + 6a +

2c(`), where c(`) is the cost for computing r` for a constant r ∈ Fp. Details of this method can be found
in [8].

4. Proposed Method

In this section, we present the optimized algorithms for CSIDH group action. First, we briefly
state our motivation for this paper. The idea is to use the two-torsion method to recover the coefficient
of the image curve. To use the two-torsion method in [12], we adjust the prime, so that the rational
two-torsion points exist on Fp. The CSIDH using the proposed parameter is performed on the surface.
We provide two versions of our modified CSIDH, where one exchanges the two-torsion points, and the
other calculates the two-torsion point for a given elliptic curve.

4.1. Motivation

Although there is an efficient way for computing 3- and 4- isogeny on Montgomery curves,
the original formula presented in [12] for computing the coefficient of the image curve is inefficient for
large odd-degree isogenies. Therefore, Costello and Hisil proposed alternate methods for computing
the curve coefficient of the image curve. However, these methods unfit in the CSIDH protocol, as there

Cryptography 2020, 4, 20 8 of 13

is no rational two-torsion point, nor do they use the difference of two points, as in SIDH. Hence,
Castryck et al. compute the coefficient of the image curve by using (6).

On the other hand, Meyer et al. exploit the twisted Edwards curve for computing the coefficients
of the image curve, as there is a simple formula for recovering the coefficient proposed by Moody and
Shomow in [14]. Combining Montgomery and twisted Edwards curves, Meyer’s method led to speed
up of CSIDH protocol. In [15], using Edwards w-coordinate, Kim et al. proposed optimized isogeny
formula on Edwards curves, which can be used to implement CSIDH fully on Edwards curves.

To summarize, unlike SIDH, using only Montgomery curves might be an inefficient choice for
implementing CSIDH protocol. However, associated in Table 1, if the application of the two-torsion
method is possible, then we can implement CSIDH entirely on Montgomery curves efficiently.
Therefore, we provide the way to use the two-torsion method for computing the coefficients in
CSIDH by tailoring the primes used in the base field. The proposed parameter executes CSIDH on the
surface. We prove that our method also provides free and transitive group action.

Table 1. Computation costs of the coefficient of image curve in three methods.

Degree Montgomery [7] Hybrid Method [8] 2-Torsion Method [12]

3 7 M 10 M 8 M
5 13 M 12 M 12 M
7 19 M 14 M 16 M

11 31 M 18 M 24 M
13 37 M 20 M 28 M

Note that we assume 1S = 1M based on Table 2.

4.2. Proposed Method

We define a new prime and a new base curve in order to have a rational two-torsion point other
than (0, 0) in order to use the two-torsion method. By doing so, we can construct more efficient
Montgomery-only CSIDH.

4.2.1. New Parameters

Let Ma be a Montgomery curve defined over finite field Fp where p ≡ 3 mod 4. If E has a
2-torsion point on Fp except for (0, 0), then the 2-torsion subgroup Ma(Fp)[2] satisfy |Ma(Fp)[2]| = 4.
In this situation, the supersingular elliptic curve Ma/Fp is on the surface satisfying EndFp(Ma) ∼=
Z [(1 +

√−p)/2] [13]. Note that the original CSIDH uses p ≡ 3 mod 8, so that the supersingular
curve Ma/Fp exists on the floor satisfying EndFp(Ma) ∼= Z[√−p]. Thus, in order to have two-torsion
points on Fp, we must use a prime of the form p ≡ 7 mod 8. Following the notation presented in [13],
we define the set S+

p = {a ∈ Fp | y2 = x3 + ax2 + x is supersingular} and the set of an elliptic curves
satisfying EndFp(Ma) = Z [(1 +

√−p)/2] is defined by S+
p,Z[(1+

√−p)/2] = {a ∈ S+
p | EndFp(Ma) ∼=

Z [(1 +
√−p)/2]}. This set splits into two partitions, as follows.

S+
p,Z[(1+

√−p)/2],1 = {a ∈ S+
p,Z[(1+

√−p)/2] | (0, 0) /∈ 2Ma(Fp)},

S+
p,Z[(1+

√−p)/2],2 = {a ∈ S+
p,Z[(1+

√−p)/2] | (0, 0) ∈ 2Ma(Fp)}.

Because S+
p,Z[(1+

√−p)/2] consists of two orbits, the group action

cl(O)× S+
p,Z[(1+

√−p)/2] → S+
p,Z[(1+

√−p)/2]

is free and not transitive group action on S+
p,Z[(1+

√−p)/2]. In order to have transitive group action,
we refer to the following lemma.

Cryptography 2020, 4, 20 9 of 13

Lemma 1. Let p ≡ 7 mod 8 and supersingular Montgomery curve Ma : y2 = x3 + ax2 + x be on the
surface. Subsequently, there exists P = (x, y) ∈ Ma(Fp), such that [2]P = (0, 0) if and only if a± 2 are both
square in Fp.

Proof. Because Ma is on the surface, there exists a two-torsion point (α, 0) 6= (0, 0) in Ma(Fp).
Accordingly, a2 − 4 must be square in Fp. Subsequently, a± 2 are both square or both not square in
Fp. From [2]P = ((X + Z)2(X − Z)2 : −) where x = X/Z, [2]P = (0, 0) if and only if X = ±Z.
i.e., P = (±1,−). Because P is on the curve Ma, at least one of 13 + a · 12 + 1 = a + 2 and
(−1)3 + a · (−1)2 + (−1) = a− 2 must be square in Fp. Therefore, a± 2 are both square in Fp.

Using this lemma, we can prove the following theorem.

Theorem 2. Let φ be an odd isogeny from Ma to Ma′ , where a, a′ ∈ S+
p,Z[(1+

√−p)/2]. Subsequently

a, a′ ∈ S+
p,Z[(1+

√−p)/2],1 or a, a′ ∈ S+
p,Z[(1+

√−p)/2],2

Proof. Let P = (X : Z) be a 2-torsion point in Ma(Fp). Afterwards, P′ = (X′ : Z′) = φ(X : Z)
is a 2-torsion point in Ma′ . Since two-torsion point of the Montgomery curve is of the form (α, 0),
a = −(X2 + Z2)/XZ, where α = X/Z. Hence, a ± 2 = (X ∓ Z)2/(−XZ). Similarly, a′ ± 2 =

(X′ ∓ Z′)2/(−X′Z′). Afterwards, squareness of a± 2 (resp. a′ ± 2) and −XZ (resp. −X′Z′) is the
same. Additionally, by applying (3) and (4), we can know that the squareness of −XZ and −X′Z′ is
the same. Following the proof of Lemma 1, a± 2 and a′ ± 2 are all squares in Fp or not squares in Fp.
Therefore, Theorem 2 holds by Lemma 1.

By Theorem 2, we consider free and transitive group action

cl(O)× S+
p,Z[(1+

√−p)/2],i → S+
p,Z[(1+

√−p)/2],i (7)

A two-torsion point P on a Montgomery curve is always of the form (α, 0). Since α2 + aα + 1 = 0,
α ∈ Fp or α ∈ Fp2 . The initial curve of the original CSIDH is y2 = x3 + x, whose x-coordinate of the
two-torsion point is on Fp2 , extension field of Fp. Accordingly, we need new parameters that offer
2-torsion points in Ma(Fp) except for (0, 0). The followings are those parameters.

p = 24 · 33 · 5 · 7 · 112 · 13 · . . . · 373− 1 ≈ 2510.1 (8)

a = 0x2C36E679F542D63441367BC57EFA26639FA0EE9EA65967F55F9D9BAAE672F82

BFB429BD324D738568EF225AAA1E9F32F8056B55B9833D048EE2D99131D655918 (9)

We use the prime p ≡ 7 mod 8 and the Montgomery curve Ma satisfying |Ma(Fp)[2]| = 4.
Accordingly, we can apply free and transitive group action presented in (7). Note that using the above
73 consecutive odd primes starting at 3, this parameter provides less security level than the parameters
of CSIDH-512. Note that the proposed parameter in this paper is just an example parameter to apply
two-torsion method on CSIDH.

Remark 3. Since ((a± 2)/p) = −1, this parameters correspond to S+
p,Z[(1+

√−p)/2],1.

4.2.2. First Method—Exchanging the Two-Torsion

The first method is to exchange two-torsion points when exchanging a curve. Alice and Bob
calculate curve coefficients of image curves using a two-torsion point when computing the group
action and pass it along with the image curve to each other.

Alice computes her secret isogeny φA : E → EA with her secret key [a], and compute the
coefficient of EA through φA(T). Upon receiving Bob’s public key EB, Alice also receives φB(T) in

Cryptography 2020, 4, 20 10 of 13

order to compute the proceeding phase. Likewise, Bob must also receive Alice’s public key EA and
φA(T). As they need to send the image of two-torsion point in projective coordinate as well as the
curve, the key size will be 3bp bits, where bp is the number of bits of p.

4.2.3. Second Method—Computing the 2-Torsion

Note that when using the first method, the key size is tripled to 3bp bits, where bp bits is the key
size of the original CSIDH protocol. This is a huge loss as compared to a little increase in speed.

Because a two-torsion point on a Montgomery curve is of the form (α, 0), we can calculate α

through solving a quadratic equation modulo p. Also, as TA = φA(T) is a 2-torsion point in EA(Fp)

and TB = φB(T) is a two-torsion point in EB(Fp), Alice and Bob can directly calculate the two-torsion
point upon the receipt of the image curve computed through each other’s secret isogeny.

For p ≡ 3 mod 4, if a is a quadratic residue modulo p, then the square root of a modulo p is
computed by x = a(p+1)/4 mod p. Using this equation, we can find a two-torsion point for a given
elliptic curve E. Also, by precomputing 2−1 mod p, we can obtain a two-torsion point with less
computation. Note that the cost of computing a(p+1/4) mod p for a ∈ Fp is very small compared to
the total CSIDH algorithm. Additionally, computing the square root occurs only two times throughout
the total protocol.

When the second method is used, the key size decreases to bp bits again, so we can preserve the
key size and improve speed. Summing up the whole process, a class group action by computing the
two-torsion point is presented in Algorithm 1. The public key validation can also be performed as
in [7] for both methods.

Alternatively, one can also exchange the image of the two-torsion point in affine coordinate,
instead of the coefficient of the image curve. In this case, the coefficient of the image curve can be easily
recovered from the received 2-torsion point, and the key size will be decreased to bp again. However,
this requires two Fp-inversions—one for recovering the affine public key and another for computing
the affine two-torsion point. Thus, there is no difference between the cost of exchanging the affine
image two-torsion point and our second method, and we do not explicitly consider the case.

Algorithm 1 Evaluating the class group action using the second method—Computing the two-torsion

Require: a ∈ Fp such that Ma : y2 = x3 + ax2 + x is supersingular curve over Fp and an integer

vector (e1, e2, · · · , en) for ei ∈ [−m, m]
Ensure: a′ such that Ma′ : y2 = x3 + a′x2 + x where Ma′ = [le1

1 le2
2 · · · l

en
n]Ma

1: Compute a two-torsion point T in Ma(Fp) // This step is omitted in the initial group action
2: while some ei 6= 0 do
3: Sample a random point P = (x : 1) where x ∈ Fp
4: Set s← +1 if there exist y ∈ Fp satisfying y2 = x3 + ax2 + x
5: Otherwise, s← −1
6: Let S = {i | ei 6= 0, sign(ei) = s}
7: if S = ∅ then
8: go to line 3
9: else

10: k← ∏i∈S `i
11: Q← [(p + 1)/k]P
12: for i ∈ S do
13: R← [k/`i]Q
14: if R 6= ∞ then
15: Compute an isogeny φ : Ma → Ma′ with ker φ = R
16: a← a′, T ← φ(T), Q← φ(Q), k← k/`i, ei ← ei − s
17: end if
18: end for
19: end if
20: end while
21: return a′

Cryptography 2020, 4, 20 11 of 13

5. Implementation

In this section, we provide the implementation results and analysis. For clear expression, we shall
denote the first method as Ours_Exchange and the second method as Ours_Compute.

5.1. Parameter and Implementation Setup

5.1.1. Parameter Setting

For implementation, we used the finite field Fp, where p is the prime presented in (8), and we
used the Montgomery coefficient of the initial curve presented in (9) for both CSIDH and our methods.
To make an exact comparison, we use the field operations that were implemented in [7] for both CSIDH
and our methods.

For a more accurate comparison, we first measured the field operations over Fp to examine the
ratio between each operation. To this end, each field operation was repeated 109 times for Fp. Table 2
summarizes the average cycle counts of Fp-operations and p+1

4 -power of field elements.

Table 2. Cycle counts of the field operations over Fp.

Addition Subtraction Multiplication Squaring a(p+1)/4

pours 26 25 196 197 147,965

5.1.2. Further Modification

Let Ma be a Montgomery curve. In [12], the coefficient of the Montgomery curve is presented
as (Â : Ĉ) = (a + 2 : 4) instead of (A : C) = (a : 1) for accelerating the doubling (DBL) and
differential addition (DBL&ADD) computation. The cost of DBL&ADD decreases from 8M + 4S + 11a
to 8M + 4S + 8a and the cost of DBL decreases from 4M + 2S + 7a to 4M + 2S + 4a, when we used the
transformed coefficient. Additionally, the cost of recovering the coefficient from a two-torsion point
decreases from 2S + 5a to 2S + 3a.

The original CSIDH implementation in [7] does not use this transformed coefficient. Although
there is an additional cost for converting the form of the coefficients, we can save the cost of scalar
multiplication in all `i-isogeny operation. As this optimization also holds in our proposed method,
we applied this technique for both CSIDH and our method. The transformations (A : C)↔ (Â : Ĉ)
occurs before and after the group action, where the elliptic curve arithmetic is used.

Additionally, we noticed that the optimized point evaluation that is presented in (3) and (4) are
not used in the implementation of the original CSIDH. For a reasonable comparison, we apply (3)
and (4) to the original CSIDH. To summarize, by using the transformed curve coefficient and additional
optimization of the point evaluation in CSIDH, the difference in the performance lies purely in the
computation of recovering the curve coefficient.

5.2. Implementation Result

The algorithms are implemented in C language to evaluate the performance of each algorithms.
All cycle counts were obtained on one core of an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz,
running Ubuntu 18.04.1 LTS. For compilation, we used GNU GCC version 7.5.0 with compile option
-O3 using the benchmark provided by [7]. The running time and clock cycles of the group action and
the entire key exchange of the original CSIDH, Ours_Exchange, Ours_Compute, and Meyer’s hybrid
method are as in Table 3.

Cryptography 2020, 4, 20 12 of 13

Table 3. Wall-clock time and clock cycles of group action and full key exchange.

Group Action Key Exchange
Wall-Clock Time Clock Cycles Wall-Clock Time Clock Cycles Key Size

CSIDH [7] 31.12 ms 106,067,352 cc 132.36 ms 451,109,078 cc bp bits
Ours_Exchange 29.03 ms 98,935,429 cc 124.38 ms 423,909,009 cc 3bp bits
Ours_Compute 29.05 ms 98,994,091 cc 124.39 ms 423,956,423 cc bp bits

Hybrid [8] 28.04 ms 95,557,448 cc 119.52 ms 407,342,736 cc bp bits

Because each algorithm is implemented with a non-constant time, we report the average of
one-million runs. As shown in Table 3, the group action using Ours_Compute is about 7.1% faster
than the original algorithm, and the entire key exchange is about 6.4% faster than the original CSIDH.
The main operation for recovering a two-torsion point is computing the p+1

4 -power. The cost of
recovering the two-torsion point is small compared to the cost of the entire group action, as shown in
Table 2. Thus, the difference between Ours_Exchange and Ours_Compute is negligible.

Meanwhile, optimized CSIDH using twisted Edwards curves is proposed in [8,15], and using the
Edwards curve is more efficient than using the two-torsion method to computing the coefficient of
the image curve for higher odd-degree isogenies. However, by using the two-torsion method, we can
simplify the implementation as transformations between Montgomery curves and Edwards curves are
not required. Moreover, by using our method, we provide the fastest performance among the CSIDH
implementation, while only using Montgomery curves.

Remark 4. Recently, in [16], Bernstein et al. proposed a new odd-degree isogeny evaluation algorithm,
called VeluSqrt algorithm, using only Õ(

√
`) Fp-operations, where the Õ is uniform in p. Because this

algorithm impacts on evaluating isogenies only, it can be applied to all methods in Table 3.

6. Conclusions

In this paper, we proposed the optimized method for improving the performance of CSIDH and
provided a new parameter to use our method. We set the parameters, so that the three two-torsion
points on a Montgomery curve are all in E(Fp). Therefore, by using a two-torsion point, we optimized
the cost of computing the coefficient of the image curve of odd-degree isogeny required in the group
action. When our algorithm is used, the group action is about 7.1% faster than the original CSIDH and
the entire key exchange is about 6.4% faster than the original CSIDH.

As mentioned before, the proposed method in this paper is still slower than the
Montgomery–Edwards hybrid method presented in [8]. However, we examined that Montgomery-only
implementation is still competitive enough through various studies, like [16].

To apply our method, the prime of the base field and the initial elliptic curve must be well-selected
for a target security level. If we choose the parameter, which enables applying the two-torsion method,
then CSIDH will be optimized further by studying the application of two-isogeny as in [13].

Author Contributions: Conceptualization, D.H. and S.K.; Data curation, D.H. and K.Y.; Formal analysis, D.H.;
Methodology, D.H., S.K. and Y.-H.P.; Project administration, S.K. and S.H.; Resources, D.H., K.Y. and S.H.; Software,
D.H.; Supervision, S.K. and S.H.; Validation, D.H. and Y.-H.P.; Writing—original draft, D.H.; Writing—review and
editing, D.H. and S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. NRF-2020R1A2C1011769).

Acknowledgments: We thank the anonymous reviewers for their useful and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2020, 4, 20 13 of 13

References

1. Couveignes, J.-M. Hard Homogeneous Spaces. 2006. Available online: https://eprint.iacr.org/2006/291
(accessed on 6 June 2020).

2. Childs, A.; Jao, D.; Soukharev, V. Constructing elliptic curve isogenies in quantum subexponential time.
J. Math. Cryptol. 2014, 8, 1–29. [CrossRef]

3. Feo, L.D.; Jao, D.; Plût, J. Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. J. Math. Cryptol. 2014, 8, 209–247.

4. Azarderakhsh, R.; Campagna, M.; Costello, C.; De Feo, L.; Hess, B.; Jao, D.; Koziel, B.; LaMacchia,
B.; Longa, P.; Naehrig, M. et al. Supersingular Isogeny Key Encapsulation. Submission to the NIST
Post-Quantum Standardization Project. 2017. Available online: https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions (accessed on 6 June 2020).

5. Hofheinz, D.; Hövelmanns, K.; Kiltz, E. A modular analysis of the Fujisaki-Okamoto transformation.
In Proceedings of the 15th International Conference TCC 2017, Baltimore, MD, USA, 12–15 November 2017;
pp. 341–371.

6. Feo, L.D.; Kieffer, J.; Smith, B. Towards practical key exchange from ordinary isogeny graphs. In Proceedings
of the International Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, Australia, 2–6 December 2018; pp. 365–394.

7. Castryck, W.; Lange, T.; Martindale, C.; Panny, L.; Renes, J. CSIDH: An efficient post-quantum commutative
group action. In Proceedings of the 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, Australia, 2–6 December 2018; pp. 395–427.

8. Meyer, M.; Reith, S. A faster way to the CSIDH. In Proceedings of the 19th International Conference on
Cryptology in India, New Delhi, India, 9–12 December 2018; pp. 137–152.

9. Meyer, M.; Campos, F.; Reith, S. On Lions and Elligators: An efficient constant-time implementation
of CSIDH. In Proceedings of the 10th International Conference PQCrypto 2019, Chongqing, China,
8–10 May 2019; pp. 307–325.

10. Beullens, W.; Kleinjung, T.; Vercauteren, F. CSI-FiSh: Efficient isogeny based signatures through class group
computations. In Proceedings of the 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; pp. 227–247.

11. Cervantes-Vázquez, D.; Chenu, M.; Chi-Domínguez, J.-J.; Feo, L.D.; Rodríguez-Henríquez, F.; Smith, B.
Stronger and faster side-channel protections for CSIDH. In Proceedings of the 6th International Conference
on Cryptology and Information Security in Latin America, Santiago de Chile, Chile, 2–4 October 2019;
pp. 173–193.

12. Costello, C.; Hisil, H. A simple and compact algorithm for SIDH with arbitrary degree isogenies.
In Proceedings of the 23rd International Conference on the Theory and Application of Cryptology and
Information Security, Hong Kong, China, 3–7 December 2017; pp. 303–329.

13. Castryck, W.; Decru, T. CSIDH on the surface. In Proceedings of the 11th International Conference PQCrypto
2020, Paris, France, 15–17 April 2020; pp. 111–129.

14. Moody, D.; Shumow, D. Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves.
Math. Comp. 2016, 85, 1929–1951. [CrossRef]

15. Kim, S.; Yoon, K.; Park, Y.H.; Hong, S. Optimized method for computing odd-degree isogenies on Edwards
curves. In Proceedings of the 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, 8–12 December 2019; pp. 273–292.

16. Bernstein, D.J.; Feo, L.D.; Leroux, A.; Smith, B. Faster Computation of Isogenies of Large Prime Degree. 2020.
Available online: https://eprint.iacr.org/2020/341 (accessed on 24 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://eprint.iacr.org/2006/291
http://dx.doi.org/10.1515/jmc-2012-0016
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://dx.doi.org/10.1090/mcom/3036
https://eprint.iacr.org/2020/341
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Elliptic Curves and Isogenies
	Montgomery Curves
	Isogeny
	Supersingularity
	Ideal Class Group

	Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
	CSIDH Protocol
	CSIDH Group Action

	Odd-Degree Isogenies
	Point Evaluation
	Coefficients Computations
	The 2-Torsion Method
	Optimization by Castryck et al.
	Exploiting Twisted Edwards Curves

	Proposed Method
	Motivation
	Proposed Method
	New Parameters
	First Method—Exchanging the Two-Torsion
	Second Method—Computing the 2-Torsion

	Implementation
	Parameter and Implementation Setup
	Parameter Setting
	Further Modification

	Implementation Result

	Conclusions
	References

