
cryptography

Article

On the Performance and Security of Multiplication
in GF(2N)

Jean-Luc Danger 1, Youssef El Housni 2,* , Adrien Facon 2,3, Cheikh T. Gueye 4,
Sylvain Guilley 1,2,3, Sylvie Herbel 2, Ousmane Ndiaye 4, Edoardo Persichetti 5,*
and Alexander Schaub 1

1 LTCI, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France;
jean-luc.danger@TELECOM-ParisTech.fr (J.-L.D.); sylvain.guilley@secure-ic.com (S.G.);
alexander.schaub@telecom-paristech.fr (A.S.)

2 Secure-IC S.A.S., 35510 Cesson-Sévigné, France; adrien.facon@secure-ic.com (A.F.);
sylvie.herbel@secure-ic.com (S.H.)

3 Département d’Informatique, École Normale Supérieure, CNRS, PSL Research University,
75005 Paris, France

4 Département Mathématique et Informatique, Université Cheikh Anta Diop, Dakar 5005, Senegal;
cheikht.gueye@ucad.edu.sn (C.T.G.); ouzdeville@gmail.com (O.N.)

5 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
* Correspondence: youssef.housni21@gmail.com or youssef.elhousni@secure-ic.com (Y.E.H.);

epersichetti@fau.edu (E.P.)

Received: 2 August 2018; Accepted: 13 September 2018; Published: 18 September 2018
����������
�������

Abstract: Multiplications in GF(2N) can be securely optimized for cryptographic applications when
the integer N is small and does not match machine words (i.e., N < 32). In this paper, we present a
set of optimizations applied to DAGS, a code-based post-quantum cryptographic algorithm and one
of the submissions to the National Institute of Standards and Technology’s (NIST) Post-Quantum
Cryptography (PQC) standardization call.

Keywords: finite field arithmetic; tower fields; post-quantum cryptography; code-based cryptography;
cache-timing attacks; secure implementation

1. Introduction

Arithmetic in GF(2N) is very attractive since addition is carry-less. This is why it is adopted in
many cryptographic algorithms, which are thus efficient both in hardware (no carry means no long
delays) and in software implementations.

In this article, we focus on software multiplication in GF(2N), and more specifically for small
N. When N is smaller than a machine word size (that is, N < 32 or 64, on typical smartphones
or desktops), all known window-based computational optimizations become irrelevant.

Our goal is to compute fast multiplications (since sums are trivially executed with the native XOR
operation of computer instruction sets) that are secure with respect to cache-timing attacks. Therefore,
we look for regular multiplication algorithms, that is, algorithms whose control flow does not depend
on the data. Our method is not to come up with novel algorithms for multiplication, but to organize the
computations in such a way that the resources of the computer are utilized optimally. Our contribution
is thus to explore the way to load the machine in the most efficient way while remaining regular.
We leverage the fact that regular algorithms can be executed SIMD (Single Instruction Multiple Data),
hence they are natural candidates for bitslicing or similar types of parallel processing of packed
operations. We compare these operations with those which are insecure and those which resort to
special instructions (such as Intel Carry-Less MULtiplication, PCLMULQDQ). We conclude that the

Cryptography 2018, 20, 25; doi:10.3390/cryptography2030025 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0003-2873-3479
https://orcid.org/0000-0003-2873-3479
http://dx.doi.org/10.3390/cryptography2030025
http://www.mdpi.com/journal/cryptography
http://www.mdpi.com/2410-387X/2/3/25?type=check_update&version=2

Cryptography 2018, 20, 25 2 of 21

most efficient implementations are SIMD, and hence benefit at the same time of performance and
security, at no extra overhead. On top of that, we show that computations can be faster when mapping
elements from tower fields GF((2`)m) to isomorphic fields GF(2N), where N = `m. Previously, Paar [1]
proposed an exhaustive research method to map elements of fixed isomorphic representations, and
Sunar et al. [2] suggested a towering construction, from GF(2N) to GF((2`)m). In this paper, we show
a use-case where subsuming GF((2`)m) into GF(2N) is beneficial to computation speed.

In the next section, we will show that computation in fields of characteristic two is a key
building block for a wide array of cryptographic algorithms, and then cover some mathematical
aspects related to computation in GF(2N) (where all computations are checked with SAGE).
Our contribution is presented in Section 3. We also provide an application of our techniques to
the DAGS Key Encapsulation Mechanism. DAGS was submitted to NIST [3] as one of the candidates
for Post-Quantum Standardization, and so all the relative documentation (including reference code) [4].
Finally, we conclude in Section 5. The algorithms tested in this paper are given in C language in
Appendix A.

2. The Field GF(2N) in Cryptography: Arithmetic and Suitability

2.1. Application to Block Ciphers

Block ciphers are the most important and most used symmetric cryptographic algorithms.
Since 2001, the Advanced Encryption Standard (AES) [5] has become the most popular block cipher.
AES is based on computations over the finite field GF(2N) with N = 8, which maps naturally
to computer architectures. Representing bytes as elements of GF(28) allows for expressing the
confusion operation (named SubBytes) thanks to a multiplicative inverse in the finite field. This has
the necessary properties to thwart differential and linear cryptanalyses, as well as attacks that use
algebraic manipulations such as interpolation attacks.

2.2. Application to Classical Public-Key Cryptography

Elliptic curve cryptography can be executed efficiently on fields of characteristic two NIST
standardizes Koblitz curves K-163, K-233, K-283, K-409, and K-571.

2.3. Application to Post-Quantum Public-Key Cryptography

As quantum systems start surfacing on the horizon, the importance of Post-Quantum
Cryptography (PQC) is being recognized globally, to the point that NIST has launched a call for
Post-Quantum Standardization [3]. Due to its inherent resistance to attacks by quantum computers,
code-based cryptography is one of the main candidates for the task, alongside multivariate and
lattice-based schemes. Although the original McEliece cryptosystem [6] is almost as old as RSA [7] and
Diffie–Hellman [8], it has never been largely deployed, mainly due to large key sizes. There is thus an
opportunity to revive and refine the area by developing more memory efficient primitives. However,
multiple variants of the McEliece cryptosystem have been broken so far, as recalled by Bardet et al.,
in [9], and in practice the secure schemes are restricted to just a few families of codes, like Goppa and
Generalized Srivastava codes. These schemes, by definition, need to handle elements in an extension
of the base field GF(2), and are thus of interest to us.

Among the candidates accepted for the first round [10] of the PQC competition, there are several
schemes which perform operations in GF(2N) and fail to do so in a side-channel resistant way, at least
in their reference implementation. The exhaustive list is given in Table 1.

Note that most fields GF(2N) have N smaller than the typical size of machine words.
The vulnerability to side-channel attacks mainly stems from two aspects. For small extensions

(up to N = 8 or slightly higher), multiplication of elements in GF(2N) is implemented using log-antilog
tables, using the fact that a× b = log−1(log(a) + log(b)), for a, b 6= 0. The logarithm and antilogarithm
of all elements in GF(2N) are tabulated, and a multiplication merely consists in three table accesses

Cryptography 2018, 20, 25 3 of 21

(two in the log table, one in the antilog table, or vice versa). However, this creates a data-dependent
table access, and the operands could potentially be recovered using standard side-channel attacks
such as FLUSH+RELOAD [11]. For big extensions, computing these tables is too costly and the
implementation of operations in GF(2N) is handled differently. However, the multiplications are
executed by taking data-dependent branches; which branch is taken could be recovered via similar attack
techniques, thereby revealing once again the operands of the multiplication.

Table 1. PQC submissions at NIST [3] using vulnerable GF(2N) operations.

Submission Type Finite Field Tower Fields Used

BIG QUAKE Code-based GF(2N), N = 12, 18 No
DAGS Code-based GF((25)2), GF((26)2) Yes
EdonK Code-based GF(2N), N = 128, 192 No

Ramstake Code-based GF(28) No
RLCE Code-based GF(2N), N = 10, 11 No
LAC Lattice-based GF(2N), N = 9, 10 No
DME Multivariate GF(2N), N = 24, 48 No

HIMQ-3 Multivariate GF(28) No
LUOV Multivariate GF(28), GF((216)`), ` = 3, 4, 5 Yes

We checked for these kinds of potential leaks using a static analysis tool [12] specifically developed
for tracking microarchitectural side-channels, including data-dependent table accesses and data-dependent
branches. This tool requires the user to specify which variables are sensitive, such as the secret key or
the randomness used during signature or encryption. It then performs a dependency analysis and
determines whether any variable depending on sensitive values is used as an index for table access
or as the condition variable of a branching operation (If, While, Switch or the stop condition in a
For loop).

2.4. Arithmetic in Extensions of GF(2)

Let GF(2N) denote the extension field of order N defined over GF(2). Let α be a primitive element
of GF(2N). The set

B = {1, α, α2, . . . , αN−1}

is a basis of GF(2N) over GF(2), referred to as a polynomial basis. Thus, given an element A ∈ GF(2N),
we can write

A =
N−1

∑
i=0

aiα
i,

where the coefficients a0, a1, . . . , aN−1 ∈ GF(2) = {0, 1}. Then, the field arithmetic can be derived
using the chosen basis.

2.5. Tower Fields Representation

Depending on the choice of the basis B, the elements of GF(2N) can be defined differently. If N is
the product of two integers ` and m, then GF(2N) can be defined over GF(2`). In the rest of the paper,
we call GF((2`)m) a composite field and GF(2`) the ground field. Note that GF((2`)m) and GF(2N) refer
to the same field although their representation methods are different.

Given two representations of the finite field GF(2N), it is possible to map one to the other, thanks
to a conversion matrix. The first representation is GF(2N) as an extension of GF(2) and the second
representation is GF(2N) as an extension of GF(2`) where N = m` for `, m ∈ N. Here, the elements
of GF(2N) are polynomials whose coefficients are in GF(2) = {0, 1} of degree at most N − 1 and
the elements of GF((2`)m) are polynomials whose coefficients are in GF(2`) of degree at most m− 1.
Hence, we write in Kronecker style

Cryptography 2018, 20, 25 4 of 21

GF(2`) = GF(2)[γ]/P,

GF((2`)m) = GF(2`)[β]/Q,

GF(2N) = GF(2)[α]/D,

where:

• P(x) = x` + . . . + p1x + 1 is an irreducible polynomial over GF(2) of degree `,
• Q(x) = xm + . . . + q1x + 1 is an irreducible polynomial over GF(2`) of degree m,
• D(x) = xN + . . . + d1x + 1 is an irreducible polynomial over GF(2) of degree N,

and where γ, β and α are their respective roots. Thus, the elements of GF(2`), GF((2`)m) and GF(2N)

are the residue classes modulo of their respective irreducible polynomials. Such polynomials always
exist [13]. In general, the number of irreducible polynomials of degree N with coefficients in GF(q) is
given by

Lq(N) =
1
N ∑

d|N
qdµ
(N

d

)
,

where µ(k) is the Möbius function defined by

µ(k) =


0, if k has one or more repeated prime factors,
1, if k = 1,
(−1)n , if k is a product of n distinct primes.

For instance, the number of irreducible polynomials of degree 12 in GF(212) (field used
in DAGS) is

L2(12) =
1

12 ∑
d|12

2dµ(
12
d
) = 335

and thus multiple representations can be derived for the same element in the field.

2.6. Composite Fields and Fields Mapping

Since GF((2`)m) and GF(2N) refer to the same field, they are isomorphic [13]. However,
although two fields’ representations are isomorphic, the algorithmic complexity of their field operations
may differ, depending on the polynomials Q and D. A binary N × N matrix T can be derived to
map elements of GF(2N) to elements of GF((2`)m). The inverse of T, denoted T−1, will perform the
mapping the other way around. The conversion problem was addressed by Paar in [1]. In this work,
conversion matrices are derived from GF(2N) and GF((2`)m) that are already fixed by their generating
polynomials. The construction is based on finding a relation between the primitive elements γ and α

such that

• αr = γ is known for some integer r and;
• D(αr) ≡ 0 (mod P, Q).

Since there is no established mathematical connection between α and γ an exhaustive search is
needed. In a related work [2], Sunar et al. redefined the problem. Instead of finding a conversion
matrix, the paper proposes to construct the composite field given the field of characteristic two.
Here, we recall the results and examine the problem in a slightly different way: our aim is to find a
suitable isomorphic representation to construct the field of characteristic two given the ground and
extension fields.

Theorem 1. For β ∈ GF(2m`) and γ = βr where r = 2m`−1
2`−1

,

Cryptography 2018, 20, 25 5 of 21

1. βr ∈ GF(2`),
2. if β is a primitive element, then γ is primitive in GF(2`).

Proof. Chapter 2, [13].

Let GF(2`) = GF(2)[γ]/P be the ground field. The extension field GF((2`)m) can be constructed
using the polynomial

Sβ(x) = (x + β)(x + β2`)(x + β22`
) . . . (x + β2`

m−1
)

= smxm + . . . + s1x + s0.

Noting that sm = 1 and using Vieta’s formulas, we obtain

sm−1 = −β− β2` − β22` − . . .− β2`
m−1

sm−2 = (ββ2` + ββ22`
+ . . . + ββ2(m−1)`

)+

+(β2` β22`
+ β2` β23`

+ . . . + β2` β2(m−1)`
) + . . . + β2(m−2)`

β2(m−1)`

...

s0 = (−1)mββ2` β22`
. . . β2`

m−1

or, equivalently, the (m− k)-th coefficient sm−k is related to a signed sum of all possible subproducts
of roots, taken k-at-a-time:

sm−k = (−1)k ∑
1≤i1≤i2≤...≤ik≤m

βi1 β2`
i2 β22`

i3 . . . β2`
m−1

im .

Thus, given a ground field GF(2`) and its extension field GF((2`)m), we are looking for a field
GF(2N) with primitive element α such that:

• P(αr) = 0 where r = (2m` − 1)/(2` − 1), hence αr = γ,

• Q(x) = Sα(x) hence, qm−k = (−1)k ∑1≤i1≤i2≤...≤ik≤m αi1 α2`
i2

α22`

i3
. . . α2`

m−1

im .

Once we find the suitable representation of GF(2N), we derive the conversion matrix as follows.
Any element A in GF(2N) has two representations:

A = ∑N−1
i=0 aiα

i = ∑m−1
j=0 a′jβ

j, ai ∈ GF(2), a′j ∈ GF(2`).

We showed that our construction allows βr to be primitive in GF(2`). Thus,
{1, βr, β2r, . . . , β(m−1)r} is a basis in GF(2`) and we can write

a′j =
`−1

∑
i=0

ajiβ
ri.

Thus, A = ∑m−1
j=0 a′jβ

j = ∑m−1
j=0 ∑`−1

i=0 ajiβ
riβj = ∑m−1

j=0 ∑`−1
i=0 ajiβ

ri+j.

Then, the terms βri+j are reduced using the generating polynomial P(x)

βri+j =
`−1

∑
f=0

t f β f , t f ∈ GF(2).

These are the coefficients of the conversion matrix. In the end, we will have

A =
m−1

∑
j=0

`−1

∑
i=0

N−1

∑
f=0

ajit f β f . (1)

Cryptography 2018, 20, 25 6 of 21

The N × N conversion matrix T with coefficients in GF(2) is obtained from Equation. (1): a0
...

am`−1

 = T


a00
...

a(m−1)(`−1).


The conversion matrix from the field to the composite field is then T−1.

Example 1. Let the ground and extension fields be

GF(26) = GF(2)[γ]/〈γ6 + γ + 1〉,
GF((26)2) = GF(26)[β]/〈β2 + γ34β + γ〉.

The field GF(212) = GF(2)[α]/P with (α65)6 + α65 + 1 = 0 and α65 = γ and α64 + α = γ34 is
GF(2)[α]/〈α12 + α11 + α8 + α6 + 1〉. Now, we show the construction of the conversion matrices. An element
A in GF((26)2) is expressed as

A = a0 + a1α,

where aj ∈ GF(26). We can express aj in GF(26) using γ = α65 as the basis element

aj = aj0 + aj1γ + aj2γ2 + aj3γ3 + aj4γ4 + aj5γ5

= aj0 + aj1α65 + aj2α130 + aj3α195 + aj4α260 + aj5α325,

where aji ∈ GF(2) for j ∈ {0, 1} and i ∈ {0, 1, 2, 3, 4, 5}. Thus, the representation of A in the composite field is

A = a00 + a01α65 + a02α130 + a03α195 + a04α260 + a05α325+

+ a10α + a11α66 + a12α131 + a13α196 + a14α261 + a15α326. (2)

The next step is to reduce the terms α65i+j for j = {0, 1} and i = {0, 1, 2, 3, 4, 5} using the generating
polynomial p(x). This will give terms of Equation (2) with α exponent between 0 and 11. The reduction modulo
p(x) is done by using successively the relation α12 = α11 + α8 + α6 + 1. We then obtain the representation of
A in the field GF(212) using the basis {1, α, α2, . . . , α11} as

A = b0 + b1α + b2α2 + . . . + b11α11.

The entries of the 12 × 12 matrix T are determined by the relationship between the term bh for
h = 1, 2, . . . , 11 and aji for j = {0, 1} and i = {0, 1, 2, 3, 4, 5}. Gathering all the terms of {1, α, α2, . . . , α11},
we obtain

T =



1 0 0 0 1 0 0 0 1 1 1 1
0 0 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 1 1 1 1 0
0 1 0 0 1 0 0 1 1 1 1 0
0 0 0 1 1 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 1 1
0 1 1 1 1 1 0 1 0 1 0 1
0 0 1 1 1 1 0 1 0 0 0 0



, (3)

Cryptography 2018, 20, 25 7 of 21

T−1 =



1 0 0 1 1 1 1 1 0 0 1 1
0 0 1 1 1 1 0 0 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 1 0 1 1 1
0 1 0 0 0 1 1 1 0 0 0 1
0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 1 1 1 0 1 1 1 0
0 0 1 1 1 1 1 0 0 1 1 1



. (4)

The matrix T gives the representation of an element in the field GF(212) given its representation in
the composite field GF((26)2). The inverse transformation, i.e., the conversion from GF(212) to GF((26)2),
requires the computation of T−1.

3. Results and Discussion

We start by presenting state-of-the-art multiplication algorithms in GF(2N) for small values of N,
i.e., when N is smaller than the machine word. Those algorithms are insecure. Then, we present secure
variants with respect to cache timing attacks.

3.1. Multiplication in GF(2N)

Fast implementation techniques for GF(2N) arithmetic have been studied intensively by
researchers. Among various arithmetic operations, GF(2N) multiplications gained the most attention.

For small N, the multiplication is usually carried out using look-up tables, called log-antilog tables.
Algorithms of tables initialization and the derived tabulated multiplication are given in Algorithm 1
and Algorithm 2 and in Algorithms A1 and A2 in Appendix A as C code. This method (Algorithm A3
in Appendix A) presents a testing vulnerability. Indeed, 0 is always mapped to −1 and never used;
furthermore, this method is vulnerable anyways to cache-timing attacks such as PRIME+PROBE
[14], and FLUSH+RELOAD [11] that targets the Last-Level-Cache. In a cryptographic scheme where
critical operations such as key generation or encryption use log-antilog multiplication over GF(2N),
the difference in memory access time to lookup tables caused by the cache may leak information
about the secret key. These attacks first completely fill the cache with the attacker’s data. The critical
operation is run, and, as it is running, the parts of tables that it uses are loaded from main memory
into the cache. Since the cache is full of attacker’s data, some of it will have to be evicted to make place.
Once the operation is done, the attacker analyses which parts of his data have been evicted and this
tells him which table indexes were used, leaking information about the secret key.

Algorithm 1 Initialization of the antilog table

Require: The finite field GF(2n) and its generator polynomial P.
Ensure: The antilog table.

1: antilog[0]= 0
2: for i in range(1, 2n) do
3: antilog[i]=antilog[i− 1]<< 1 . Shift to the left
4: if antilog[i− 1]= 2n−1 then
5: antilog[i]=antilog[i]⊕P . XOR with the generator polynomial

6: antilog[2n − 1]= 1

Cryptography 2018, 20, 25 8 of 21

Algorithm 2 Initialization of the log table

Require: the antilog table.
Ensure: the log table.

1: log[0]= −1
2: log[1]= 0
3: for i in range(1, 2n) do
4: log[antilog[i]]= i

The implementation of the tabulated method may be sometimes too costly for large N and the
multiplication is then handled differently. One may use tower field arithmetic and store lookup tables
for GF(2`) where ` is taken small such as ` | N (Algorithm A4 in Appendix A). Tower field arithmetic
is slow, but we can perform conversions both ways with respect to the theory presented in Section 2
(Algorithm 3).

Algorithm 3 Multiplication in the tower field in GF((26)2)

Require: two polynomials x = {xi}, y = {yi} and an extension polynomial p of order 2
Ensure: polynomial r = x.y = {ri}

1: a1 = x >> 6
2: a2 = y >> 6
3: b1 = x&63
4: b2 = y&63
5: tmp1 = mult(a1, a2)

6: a3 = mult(tmp1, p1)⊕mult(a1, b2)⊕mult(b1, a2) . p1 the coefficient of x in p
7: b3 = mult(tmp1, p0)⊕mult(b1, b2) . p0 the constant term in p
8: r = (a3 << 6)⊕ b3

A straightforward alternative method is iterative multiplication. This is done performing
polynomial multiplication and conditional reduction modulo the generator polynomial (Algorithm 4
and Algorithm A5 in Appendix A as C code). Iterative methods cannot be executed without taking
data-dependent branches and thus are vulnerable to branch prediction analysis [15,16]. In fact, the
information leakage is based on the timing differences produced by the branch prediction unit (BPU).

Algorithm 4 Iterative multiplication with conditional reduction

Require: Two polys X = {xi}, Y = {yi} of orders at most n and a reduction polynomial P of order n
Ensure: Polynomial R = X.Y = {ri} of order n

1: R← 0
2: for i in range(n) do
3: if yi = 1 then
4: ri = ri + xi
5: if order(R)> n then
6: reduce R by P . polynomial division

3.2. Secure Computation in GF(2N)

There are many countermeasures to prevent cache-timing attacks, but they may affect the
computation performance. Here, we propose a trade-off between secure and fast GF(2N) computation.
One countermeasure is the constant time implementation where the execution time does not depend

Cryptography 2018, 20, 25 9 of 21

on the secret key or input data. In case of tabulated multiplication, this cannot be achieved, but, in case
of iterative methods, we replace conditional reduction by unconditional reduction. This means that
the reduction modulo the generator polynomial is performed at each iteration and therefore no timing
information is leaked (Algorithm 5 and Algorithm A6 in Appendix A as C code).

Algorithm 5 Iterative multiplication with unconditional reduction

Require: Two polynomials X = {xi}, Y = {yi} of orders at most n and a reduction polynomial P of

order n
Ensure: Polynomial R = X.Y = {ri} of order n

1: R← 0
2: for i in range(n) do
3: m← −yi . the mask
4: ri = ri + xm

5: m← −xn . the mask
6: reduce R by P . polynomial division

Basically, this code adds the term xiXi if yi is one (where xi and yi are the polynomials to multiply).
Note that, because of the two’s complement representation, −0 is 0000000000000000 over 16 bits and
−1 is 1111111111111111. We can, thus, use −yi as a mask in the first branch. We follow the same idea
in the second branch shifting the condition by `. Another constant time countermeasure is the bitsliced
implementation [17,18] that uses SIMD architecture to perform the same operation on multiple data
points simultaneously. In fact, we convert 64 N-bit words into N 64-bit words and multiply the 64-bit
words in a single generation (Algorithm 6 and Algorithm A7 in Appendix A as C code).

Algorithm 6 Bitsliced multiplication

Require: 2× 64 n-bit words Xi and Yi where i ∈ [1, 64]
Ensure: 64 n-bit words Ri = Xi.Yi

1: Transpose X =



X1

X2
...

X64


to X′ =



X′1

X′2
...

X′n


where X′j are 64-bit words for j ∈ [1, n]

2: Transpose Y =



Y1

Y2
...

Y64


to Y′ =



Y′1

Y′2
...

Y′n


where Y′j are 64-bit words for j ∈ [1, n].

3: Get R′ where R′j = X′j.Y
′
j for j ∈ [1, n]

4: Transpose R′ =



R′1

R′2
...

R′n


to R =



R1

R2
...

Rn


where Ri are n-bit words for i ∈ [1, 64]

Cryptography 2018, 20, 25 10 of 21

This countermeasure prevents information leakage and speeds up the implementation. To
compensate for the loss of performance, one can use Intel’s CLMUL (Carry-Less Multiplication)
assembly instruction set to improve the speed of multiplication over GF(2N). PCLMULQDQ, available
with the new 2010 Intel Core processor family based on the 32 nm Intel microarchitecture codename
Westmere, performs carry-less multiplication of two 64-bit operands over a finite field (without
reduction). The optimizations take advantage of the processor datapath (64 bit) and of available
instructions. It is thus artificial and probably not very informative to write multiplications as algorithms.
Instead, we provide the extensive C code for the case N = 12 (` = 6 and m = 2), written in a portable
way (ANSI POSIX). The code is abundantly commented on, hence the operations carried out should not
leave place to ambiguity. Regarding performance evaluation of the different functionally equivalent
codes, again, a pure algorithmic description would be misleading. For instance, 64 XOR operations can
be conducted in one clock cycle provided the operands are laid out as the 64 bits of a quad word, or
otherwise in 64 clock cycles if the operands are located at different addresses. Therefore, performance
reads better from the C code. We estimated the performance by averaging the execution time of
each multiplication placed in a loop. This method allows to filter out abnormal durations caused by
improper pipeline or cache initializations.

In the next section, we show a case study where we compare different implementations of
GF(2N) multiplication on the basis of security and performance. The comparison further points out
computation performance over the tower field GF((2`)m) and the field GF(2N), where N = m`, using
the derived conversion matrices in Section 2.

4. Case Study: Optimization of DAGS

DAGS is a code-based Key Encapsulation Mechanism (KEM). As all code-based primitives,
it relies on the Syndrome Decoding Problem [19], and shows no vulnerabilities against quantum
attacks. In particular, DAGS is based on the McEliece cryptosystem [6] and uses Quasi-Dyadic
Generalized Srivastava (GS) codes to address the issue of the large public key size, which is inherent to
code-based cryptography. We start by recalling some important definitions.

Definition 1. For m, n, s, t ∈ N and a prime power q, let α1, . . . , αn, w1, . . . , ws be n + s distinct elements of
GF(qm) and z1, . . . , zn be nonzero elements of GF(qm). The Generalized Srivastava (GS) code of order st and
length n is defined by a parity-check matrix of the form:

H =


H1

H2
...

Hs

 ,

where each block is defined as

Hi =


z1

α1−wi
· · · zn

αn−wi
z1

(α1−wi)2 · · · zn
(αn−wi)2

...
...

...
z1

(α1−wi)t · · · zn
(αn−wi)t

 .

Parameters are the length n ≤ qm − s, dimension k ≥ n−mst and minimum distance d ≥ st + 1.

Definition 2. Given a ring R (in our case Fqm) and a vector h̄ = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix
∆(h̄) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j, where ⊕ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence h̄ is called its signature. If n is a power of 2, then every
2l × 2l dyadic matrix can be described recursively as

M =

(
A B
B A

)
,

Cryptography 2018, 20, 25 11 of 21

where each block is a 2l−1 × 2l−1 dyadic matrix (and where any 1× 1 matrix is dyadic).

A linear code is quasi-dyadic if it admits a parity-check in quasi-dyadic form, i.e., a block matrix
whose component blocks are dyadic matrices.

It has been shown by Misoczki and Barreto [20] that it is possible to build Goppa codes in
quasi-dyadic form if the code is defined over a field of characteristic 2, and the dyadic signature
satisfies the fundamental equation

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

. (5)

Persichetti in [21] then showed how to adapt the Misoczki–Barreto algorithm to generate
quasi-dyadic GS codes. Intuitively, using this larger class of codes (of which Goppa codes are a
subclass) provides more flexibility in the design of cryptographic schemes. More importantly, thanks to
their “layered” structure, GS codes make it easier to resist structural attacks aimed at recovering the
private key. In particular, the parameter t plays a crucial role in defining the complexity of one such
attack (and successive variants), due to Faugère, Otmani, Perret and Tillich, and simply known as
FOPT [22].

The attack, succinctly, consists of generating a system of equations from the fundamental
relationship between generator and parity-check matrices G · HT = 0. The system of equations
is heavily simplified thanks to the particular relations stemming from the quasi-dyadic form (and
the limitations inherent to alternant codes) and successively solved using Gröbner bases. This allows
for recovering an equivalent matrix for decoding, i.e., a private key. Despite the lack of a definitive
complexity analysis, it is possible to observe that the attack scales somewhat proportionally to the
value that defines the solution space (i.e., number of free variables) of the system of equations. In the
case of quasi-dyadic Goppa codes, this is given simply by m− 1; thus, the key factor is that the value
m be large enough to make the attack unfeasible. In the original proposal by Misoczki and Barreto, this
value varies from 2 to 16, where the large extension field GF(2N) is kept constant (i.e., N = 16) and the
base field varies, (i.e., ` = 1, 2, 4, 8). As a consequence, the dimension of the solution space is in most
cases trivial or so, and the only parameters that weren’t broken in practice were those corresponding
to m = N = 16, although the attack authors recommend m− 1 to be at least 20.

In the case of GS codes, it is possible to apply the attack, but the dimension of the solution space
is given by mt− 1 instead. It is thus a lot easier to achieve larger values for this, while at the same time
keeping the extension field small (but still large enough to define long codes) and consequently having
more efficient arithmetic. It follows that schemes based on GS codes (and DAGS is no exception) are
usually defined over a relatively large base field, with the goal of minimizing the value m; the “burden"
of thwarting FOPT falls then on t, which is chosen as relatively large. This has the additional advantage
of a better error-correction capacity, since the number of correctable errors depends on t (it is in fact
st/2). Better error-correction means that generic decoding attacks like Information-Set Decoding
(ISD) [23,24] are harder, and thus implies the possibility of better parameters.

4.1. Initial Choice of Parameters

We report DAGS parameters below Table 2. Note that in all cases the condition mt ≥ 21 is satisfied
to prevent the FOPT attack, as suggested by the authors themselves.

Table 2. DAGS [4] parameters.

Name Security Level q m n k s t Public Key Size

DAGS_1 128 25 2 832 416 24 13 6760
DAGS_3 256 26 2 1216 512 25 11 8448
DAGS_5 512 26 2 2112 704 26 11 11,616

Cryptography 2018, 20, 25 12 of 21

For DAGS 3 and DAGS 5, the finite field GF(26) is built using the polynomial x6 + x + 1 and then
extended to GF(212) using the quadratic irreducible polynomial x2 + α34x + α, where α is a primitive
element of GF(26).

4.2. Improved Field Selection

The protocol specification for DAGS 3 and DAGS 5 is the same; hence, we choose to focus on
DAGS 5 optimization in this section. The overall process is

• Key Generation,
• Encapsulation,
• Decapsulation.

Multiplications over the finite fields GF(26) and GF((26)2) are carried all along the process and
must be protected especially in critical operations such as key generation and encapsulation. The key
generation is performed over the tower field GF((26)2) using the log-antilog tables of GF(26). Thus,
it must be protected against cache-timing attack on one hand and optimized for fast implementation
on the other. Encapsulation is a critical operation performed over GF(26) using the tabulated method
and hence is vulnerable to cache-leakage. In the following, we propose comparing the performance
of seven implementations of multiplication algorithms over GF(26), GF((26)2) and GF(212). In fact,
according to Section 2, we can convert elements from GF((26)2) to GF(212) to perform multiplication
in the key generation process faster. In the example of Section 2, we used DAGS polynomials x6 + x + 1
for GF(26) and x2 + α34x + α for GF((26)2) with α a primitive in GF(26) and hence we can use the
derived matrix T for the isomorphic mapping. Note that we can change the tower field polynomial,
yet still be consistent with DAGS design, in order to construct a field GF(212) with a sparse generator
polynomial. That is to say, using the polynomial x2 + α27x + α for the extension yields a mapping
to GF(212) with the generator trinomial x12 + x7 + 1. However, the overall gain when compared to
the performances using the pentanomial from the example is negligible, not to mention the cost of
changing the initial polynomial in the reference code. Thus, we chose to keep the initial parameters
and compare the following seven implementations on the basis of security and performance:

• Tabulated log/antilog (Algorithms A1–A3),
• Iterative, conditional reduction (Algorithm A5),
• Iterative, ASM with PCLMUL, conditional reduction (Algorithm A5),
• Iterative, unconditional reduction (Algorithm A6),
• Iterative, ASM with PCLMUL, unconditional reduction (Algorithm A6),
• Iterative, unconditional reduction, 1-bit-sliced, 64 comput. in parallel (Algorithm A7),
• Iterative, ASM with PCLMUL, unconditional reduction, bit-sliced 2 computs. In parallel

(Algorithm A8).

4.3. Implementation Performances

We will present the results of our experiments below.

• (*): Conversion from GF((26)2) to GF(212) using T in Example (1) is 112 cycles, using POPCNT
ASM instruction is 38 cycles (Algorithm A9).

• (**): Time to initialize the tables: (Algorithm A1 and A2);

– 2360 cycles on GF(26),
– 267,086 cycles on GF((26)2) and,
– 7884 cycles on GF(212),

(can be precomputed, hence cycles=0)
• (***): Transposition (Algorithm A7.1) time is;

Cryptography 2018, 20, 25 13 of 21

– 780 cycles on GF(26) and,
– 1613 cycles on GF(212),

• (****): Transposition (X, X′)→ X′22N + X is 2 cycles on GF(2N).

In Table 3, we have presented the performances of different implementations of multiplication
over the finite field GF(26). We further compared these implementations over the tower field GF((26)2)

and the isomorphic field GF(212). Note that the costs of isomorphic mapping, bitslice transposition
and log-antilog tables initialization are excluded from Table 3 since they can be carried only a few
times during the process and not at each multiplication. Accordingly, we conclude the following:

• The tabulated log-antilog version is the fastest amongst non-parallel algorithms.
• It is faster to implement tower field computation directly in an isomorphic field of

characteristic two.
• The modular multiplication with Carry-less MULtiplication (PCLMUL) dedicated Assembly

(ASM) instruction does not improve the speed since the overhead in the function call is dominating
the computation for those small values of N. However, in case of only one serial operation,
PCLMUL should be used because it has the lowest latency.

• Constant-time cache secure implementations take more time than those that are not secure.
Moreover, we noticed that “conditional reduction” in C code is actually constant-time once
compiled in assembly code (when optimization flag is set) owing to the use by the compiler of the
CMOV (conditional move) assembly instruction, which executes in one single clock cycle.

• The bitsliced single multiplication takes only 55/64 = 0.86 cycle over GF(26) and 335/64 = 5.23
cycles for GF(212) and is invulnerable to cache-timing attacks. Thus, it is our champion
implementation to be chosen for fast and secure arithmetic over GF(2N).

• For the second version of bitsliced implementation, we pack two words X, X′ ∈ GF(2N) as
X′22N + X. Then, the products XY and X′Y′ can be computed in one go by noticing that
PCLMULQDQ(X′22N + X, Y′22N + Y) = PCLMULQDQ(X′, Y′) 24N + (PCLMULQDQ(X, Y′)⊕
PCLMULQDQ(X′, Y)) 22N + PCLMULQDQ(X, Y); hence, the results are obtained at bit indices
[6N, 4N] and [2N, 0].

Table 3. Performances (in clock cycles) of several multiplication algorithms on an Intel(R) Core(TM)
i7-4790 CPU @3.60GHz with one processor.

Multiplication Algorithm Algorithm GF(26) GF(212) (*) GF((26)
2
) Constant-Time

Tabulated log/antilog (**) 3, 4 8 11 20 No

Iterative, conditional reduction 5 27 51 133 No
Iterative, ASM with PCLMUL, 5 29 41 146 Noconditional reduction

Iterative, unconditional reduction 6 30 58 155 Yes
Iterative, ASM with PCLMUL, 6 35 65 225 Yesunconditional reduction

Iterative, unconditional reduction, 7 55/64 335/64 - Yes1-bit-sliced (***) 64 computations in parallel

Iterative, ASM with PCLMUL,
8 55/2 95/2 - Yesunconditional reduction, bit-sliced (****) 2

computations in parallel

For DAGS key generation, we chose to map elements from GF((26)2) to GF(212) and perform a
bitsliced multiplication for secure and fast computation. The encapsulation process is carried over
GF(26) and we chose the bitsliced multiplication as well. Concerning the decapsulation, we mapped
elements to GF(212) and kept the tabulated method because it is unimportant to secure this public-key
process against cache-leakage.

Cryptography 2018, 20, 25 14 of 21

5. Conclusions

In this paper, we compared several implementations of multiplication over the finite field GF(2N),
for N < 32, on the basis of security and performance. Our analysis showed that log-antilog tabulated
method and conditional iterative methods are vulnerable to cache-timing attacks. Moreover, for big
values of N, the tabulated method becomes costly and tower fields are used to perform the arithmetic.
We showed that this towering technique is slow and we proposed to map the elements to the isomorphic
field for better performances.

To counter the cache-attacks, we presented two constant-time implementations: the iterative
method with unconditional reduction which removes branches and thus is longer and the bitsliced
implementation which is executed SIMD. We used DAGS, a code-based KEM submission to NIST’s
PQC call, as a case study to examine the different multiplications over GF((26)2). The conclusions
are that the bitsliced implementation is faster than the tower multiplication and secure with respect
to cache-attacks. It should be pointed out that our results also apply to secure and accelerated
implementations of the other PQC algorithms listed, as well as AES and symmetric ciphers that run
over finite fields GF(2N). Finally, note that all the algorithms tested in the paper are provided in C
language in Appendix A.

Author Contributions: Conceptualization, J.-L.D.; investigation and writing: Y.E.H.; review and editing, A.F.;
formal analysis, C.T.G.; project administration, S.G.; data curation, S.H.; visualization, O.N.; investigation, E.P.;
investigation, visualization, A.S.

Funding: We acknowledge the support of the French Programme d’Investissements d’Avenir under the national
project RISQ.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. C Code for Various Algorithms

include < s t d l i b . h>
include < s t d i n t . h>

typedef u i n t 1 6 _ t g f _ t ; /∗ G a l o i s f i e l d e l e m e n t s ∗ /

define gf_extd 6
define gf_card (1 << gf_extd)
define gf_ord ((gf_card)−1)
define p o l y _ p r i m i t i v e _ s u b f i e l d 67 / / 0x43 (0 b01000011 ; t h e b i t s a r e d e f i n e d
/ / f o l l o w i n g t h e p o l y n o m i a l : X^6 + x + 1

/∗ Algor i thm A1 : P r e c o m p u t a t i o n o f t h e a n t i l o g t a b l e f o r F (2) [x] / x^6+x+1 ∗ /
s t a t i c g f _ t ∗ g f _ a n t i l o g ;
void g f _ i n i t _ a n t i l o g ()
{
i n t i = 1 ;
i n t temp = 1 << (gf_extd − 1) ;
g f _ a n t i l o g = (g f _ t ∗) malloc ((gf_card ∗ s i ze of (g f _ t))) ;
g f _ a n t i l o g [0] = 1 ; / / Dummy v a l u e (not used)
for (i = 1 ; i < gf_ord ; ++ i)
{
g f _ a n t i l o g [i] = g f _ a n t i l o g [i − 1] << 1 ;
i f ((g f _ a n t i l o g [i − 1]) & temp)
{
/ / XOR with 6 7 : X^6 + x + 1
g f _ a n t i l o g [i] ^= p o l y _ p r i m i t i v e _ s u b f i e l d ;
}

Cryptography 2018, 20, 25 15 of 21

}
g f _ a n t i l o g [gf_ord] = 1 ;
}

/∗ Algor i thm A2 : P r e c o m p u t a t i o n o f t h e l o g t a b l e f o r F (2) [x] / x^6+x+1 ∗ /
s t a t i c g f _ t ∗ gf_ log ;
void g f _ i n i t _ l o g ()
{
i n t i = 1 ;
gf_ log = (g f _ t ∗) malloc ((gf_card ∗ s i ze of (g f _ t))) ;
g f_ log [0] = −1; / / Dummy v a l u e (not used)
gf_ log [1] = 0 ;
for (i = 1 ; i < gf_ord ; ++ i)
{
gf_ log [g f _ a n t i l o g [i]] = i ;
}
}

/∗ Algor i thm A3 : T a b u l a t e d m u l t i p l i c a t i o n o v e r GF(2^6) ∗ /
/∗ Use precomputed t a b l e s t o a c c e l e r a t e t h e m u l t i p l i c a t i o n : i t u s e s t h e ∗ /
/∗ a l g o r i t h m 1 and 2 which a r e done j u s t once t o t h e DAGS i n i t i a l i z a t i o n ∗ /
/∗ Thi s a l g o r i t h m i s not c o n s t a n t−t ime , so i t i s not p r o t e c t e d . ∗ /
define gf_mult_tabulated (x , y) ((y) ? g f _ a n t i l o g [(gf_ log [x]+ gf_ log [y])
% gf_ord] : 0)
/ / no t c o n s t a n t−t ime

/∗ Algor i thm A4 : T a b u l a t e d m u l t i p l i c a t i o n o v e r GF((2 ^ 6) ^ 2) ∗ /
/∗ Uses t h e a l g o r i t h m 3 , so i t i s not p r o t e c t e d ∗ /
g f _ t gf_mult_extens ion_tabulated (g f _ t x , g f _ t y)
{
g f _ t a1 , b1 , a2 , b2 , a3 , b3 ;
a1 = x >> 6 ;
b1 = x & 6 3 ;
a2 = y >> 6 ;
b2 = y & 6 3 ;
/ / no t c o n s t a n t−t ime
a3 = gf_mult_tabulated (gf_mult_tabulated (a1 , a2) , 36) ^
gf_mult_tabulated (a1 , b2)^ gf_mult_tabulated (b1 , a2) ;
/ / 36 i s p_1 in t h e e x t e n s i o n p o l y n o m i a l
b3 = gf_mult_tabulated (gf_mult_tabulated (a1 , a2) , 2)
^ gf_mult_tabulated (b1 , b2) ; / / 2 i s p_0 in t h e e x t e n s i o n p o l y n o m i a l

return (a3 << 6) ^ b3 ;
}

/∗ Algor i thm A5 : I t e r a t i v e m u l t i p l i c a t i o n o v e r GF(2^6) wi th c o n d i t i o n a l r e d u c t i o n ∗ /
/∗ The m u l t i p l i c a t i o n d o e s not use t h e precomputed t a b l e s and t h e
ASM PCLMUL i n s t r u c t i o n ∗ /
/∗ can be used . I t i s not c o n s t a n t−t ime . ∗ /
g f _ t g f _ m u l t _ i t e r a t i v e _ c o n d i t i o n a l (g f _ t x , g f _ t y)
{
ifndef PCLMUL
g f _ t res ,m;
r es = 0 ; / / t h i s v a r i a b l e w i l l c o n t a i n t h e r e s u l t

Cryptography 2018, 20, 25 16 of 21

for (i n t i =0 ; i <6;++ i) / / For e a c h c o e f f i c i e n t o f t h e p o l y n o m i a l
{
i f (y&1==1) / / Check t h e c o e f f i c i e n t , i t i s no t c o n s t a n t−t ime
{
re s = re s ^ x ; / / a d d i t i o n
}
y=y> >1;
/ / t h i s s h i f t p e r m i t s t o have t h e nex t c o e f f i c i e n t b _ i f o r t h e nex t i t e r a t i o n
x = x << 1 ;
i f ((x & 64) != 0)
/ / x must be r e d u c e d modulo X^6+X+1 , 64 f o r 0x40 , 0 b01000000
{
x ^= 6 7 ; / / 0x43 : X^6 + x + 1
}
}
return re s ;
else
/ / us ing ASM PCLMUL i n s t r u c t i o n
u i n t 3 2 _ t a , m;

/ / M u l t i p l i c a t i o n
asm v o l a t i l e ("movdqa %1, %%xmm0;\n\ t "
"movdqa %2, %%xmm1;\n\ t "
" pclmulqdq $0x00 , %%xmm0, %%xmm1;\n\ t "
"movdqa %%xmm1, %0;\n\ t "
: "=x " (a)
: " x " ((u i n t 3 2 _ t) y) , " x " ((u i n t 3 2 _ t) x)
: "%xmm0" , "%xmm1"
) ;

/ / r e d u c t i o n p o l y n o m i a l (c o n d i t i o n a l r e d u c t i o n)
for (i n t k =0; k <6; k++) { / / For e a c h c o e f f i c i e n t o f t h e p o l y n o m i a l
i f (a >> (11−k)) / / no t c o n s t a n t−t ime
{
a ^= (67 << (5−k)) ; / / 0x43 : X^6 + x + 1
}
}
return a&0xFFFF ;
endif
}

/∗ Algor i thm A6 : I t e r a t i v e m u l t i p l i c a t i o n
o v e r GF(2^6) wi th u n c o n d i t i o n a l r e d u c t i o n ∗ /
/∗ The m u l t i p l i c a t i o n d o e s not use t h e
precomputed t a b l e s and t h e ASM PCLMUL i n s t r u c t i o n ∗ /
/∗ can be used . I t i s c o n s t a n t−t ime . ∗ /
g f _ t g f _ m u l t _ i t e r a t i v e _ u n c o n d i t i o n a l (g f _ t x , g f _ t y)
{
ifndef PCLMUL
g f _ t res ,m;
re s = 0 ;
for (i n t i =0 ; i <6;++ i)
/ / For e a c h c o e f f i c i e n t o f t h e po lynomia l , c o n s t a n t−t ime
{

m = −(y &1) ; / /m i s e i t h e r 0 x f f f f o r 0 x0000

Cryptography 2018, 20, 25 17 of 21

re s = r es ^ (x&m) ; / / a d d i t i o n
y=y> >1;
x = x << 1 ;
/ / x must be r e d u c e d modulo X^6+X+1

m=−(((x) > >6)&1);
x ^= m & 6 7 ; / / 0x43 : X^6 + x + 1
}
return re s ;
else
/ / us ing ASM PCLMUL i n s t r u c t i o n
u i n t 3 2 _ t a , m;

/ / m u l t i p l i c a t i o n
asm v o l a t i l e ("movdqa %1, %%xmm0;\n\ t "
"movdqa %2, %%xmm1;\n\ t "
" pclmulqdq $0x00 , %%xmm0, %%xmm1;\n\ t "
"movdqa %%xmm1, %0;\n\ t "
: "=x " (a)
: " x " ((u i n t 3 2 _ t) y) , " x " ((u i n t 3 2 _ t) x)
: "%xmm0" , "%xmm1"
) ;

/ / r e d u c t i o n p o l y n o m i a l
for (i n t k =0; k <6; k++) {

m = −((a >> (11−k)) & 1) ;
a ^= ((6 7 << (5−k))&m) ; / / 0x43 : X^6 + x + 1
}
return a&0xFFFF ;
endif
}

/∗ Algor i thm A7 : 1− b i t s l i c e d m u l t i p l i c a t i o n
o v e r GF(2^6) (64 c o m p u t a t i o n s in p a r a l l e l) ∗ /
/∗ A7 . 1 : T r a n s p o s i t i o n s ∗ /
void t o _ b i t s l i c e (g f _ t ∗x , u i n t 6 4 _ t ∗ r es) {
i n t i = 0 ;
for (i = 0 ; i <64; i ++) {
re s [0] |= (((((u i n t 6 4 _ t) x [i])) & 1) << i) ;
re s [1] |= (((((u i n t 6 4 _ t) x [i]) >> 1) & 1) << i) ;
re s [2] |= (((((u i n t 6 4 _ t) x [i]) >> 2) & 1) << i) ;
re s [3] |= (((((u i n t 6 4 _ t) x [i]) >> 3) & 1) << i) ;
re s [4] |= (((((u i n t 6 4 _ t) x [i]) >> 4) & 1) << i) ;
re s [5] |= (((((u i n t 6 4 _ t) x [i]) >> 5) & 1) << i) ;
}
}

void f r o m _ b i t s l i c e (u i n t 6 4 _ t ∗ res , g f _ t ∗x) {
i n t i = 0 ;
for (i = 0 ; i <64; i ++) {
x [i] |= (((re s [0] >> i) & 1)) ;
x [i] |= (((re s [1] >> i) & 1) << 1) ;
x [i] |= (((re s [2] >> i) & 1) << 2) ;
x [i] |= (((re s [3] >> i) & 1) << 3) ;
x [i] |= (((re s [4] >> i) & 1) << 4) ;
x [i] |= (((re s [5] >> i) & 1) << 5) ;

Cryptography 2018, 20, 25 18 of 21

}
}

/∗ A7 . 2 : 1−b i t−s l i c e d m u l t i p l i c a t i o n (SIMD c o d e) ∗ /
void gf_multsubTab (g f _ t ∗x , g f _ t ∗y , g f _ t ∗z)
{
u i n t 6 4 _ t xbin [6] ;
u i n t 6 4 _ t ybin [6] ;
u i n t 6 4 _ t r es [6] ;

xbin [0] = xbin [1] = xbin [2] = xbin [3] = xbin [4] = xbin [5] = 0 ;
ybin [0] = ybin [1] = ybin [2] = ybin [3] = ybin [4] = ybin [5] = 0 ;

/ / T r a n s p o s e x and y
t o _ b i t s l i c e (x , xbin) ;
t o _ b i t s l i c e (y , ybin) ;

/ / M u l t i p l i c a t i o n and r e d u c t i o n p o l y n o m i a l
/ / wi th 64 c o m p u t a t i o n s in p a r a l l e l f o r a e a c h c o e f f i c i e n t o f t h e p o l y n o m i a l
/ / c o n s t a n t−t ime
u i n t 6 4 _ t const xbin05 = xbin [0] ^ xbin [5] ;
u i n t 6 4 _ t const xbin54 = xbin [5] ^ xbin [4] ;
u i n t 6 4 _ t const xbin43 = xbin [4] ^ xbin [3] ;
u i n t 6 4 _ t const xbin32 = xbin [3] ^ xbin [2] ;
u i n t 6 4 _ t const xbin21 = xbin [2] ^ xbin [1] ;

re s [0] = (xbin [0] & ybin [0]) ;
r e s [1] = (xbin [1] & ybin [0]) ;
r e s [2] = (xbin [2] & ybin [0]) ;
r e s [3] = (xbin [3] & ybin [0]) ;
r e s [4] = (xbin [4] & ybin [0]) ;
r e s [5] = (xbin [5] & ybin [0]) ;

r e s [0] ^= (xbin [5] & ybin [1]) ;
r e s [1] ^= (xbin05 & ybin [1]) ;
r e s [2] ^= (xbin [1] & ybin [1]) ;
r e s [3] ^= (xbin [2] & ybin [1]) ;
r e s [4] ^= (xbin [3] & ybin [1]) ;
r e s [5] ^= (xbin [4] & ybin [1]) ;

r e s [0] ^= (xbin [4] & ybin [2]) ;
r e s [1] ^= (xbin54 & ybin [2]) ;
r e s [2] ^= (xbin05 & ybin [2]) ;
r e s [3] ^= (xbin [1] & ybin [2]) ;
r e s [4] ^= (xbin [2] & ybin [2]) ;
r e s [5] ^= (xbin [3] & ybin [2]) ;

r e s [0] ^= (xbin [3] & ybin [3]) ;
r e s [1] ^= (xbin43 & ybin [3]) ;
r e s [2] ^= (xbin54 & ybin [3]) ;
r e s [3] ^= (xbin05 & ybin [3]) ;
r e s [4] ^= (xbin [1] & ybin [3]) ;
r e s [5] ^= (xbin [2] & ybin [3]) ;

r e s [0] ^= (xbin [2] & ybin [4]) ;

Cryptography 2018, 20, 25 19 of 21

re s [1] ^= (xbin32 & ybin [4]) ;
r e s [2] ^= (xbin43 & ybin [4]) ;
r e s [3] ^= (xbin54 & ybin [4]) ;
r e s [4] ^= (xbin05 & ybin [4]) ;
r e s [5] ^= (xbin [1] & ybin [4]) ;

r e s [0] ^= (xbin [1] & ybin [5]) ;
r e s [1] ^= (xbin21 & ybin [5]) ;
r e s [2] ^= (xbin32 & ybin [5]) ;
r e s [3] ^= (xbin43 & ybin [5]) ;
r e s [4] ^= (xbin54 & ybin [5]) ;
r e s [5] ^= (xbin05 & ybin [5]) ;

/ / T r a n s p o s e
f r o m _ b i t s l i c e (res , z) ;
}

/∗ Algor i thm A8 : I t e r a t i v e , ASM with PCLMUL, u n c o n d i t i o n a l r e d u c t i o n , b i t−s l i c e d
(2 c o m p u t a t i o n s in p a r a l l e l) ∗ /
/∗ with PCMUL, 2 c o m p u t a t i o n s maximum a r e p o s s i b l e . I t i s c o n s t a n t−t ime . ∗ /
void gf_mul t_b i t s l i ce_2computa t ions (g f _ t ∗x , g f _ t ∗y , g f _ t ∗ tab) {
/ / T r a n s p o s i t i o n f o r c o m p u t a t i o n in p a r a l l e l
u i n t 6 4 _ t x2 = x [1] << 12 | x [0] , y2 = y [1] << 12 | y [0] ;
u i n t 6 4 _ t a , m, m1, s , m0;

/ / M u l t i p l i c a t i o n
/ / As t h e ou tp ut i s on 64 b i t s max
asm v o l a t i l e ("movdqa %1, %%xmm0;\n\ t "
"movdqa %2, %%xmm1;\n\ t "
" pclmulqdq $0x00 , %%xmm0, %%xmm1;\n\ t "
"movq %%xmm1, %0;\n\ t "
: "=x " (a)
: " x " (y2) , " x " (x2)
: "%xmm0" , "%xmm1"
) ;

/ / P o l y n o m i a l r e d u c t i o n
for (i n t k =0; k <6; k++) {
m0 = a >> (11−k) ;
m = −(m0&1) ;
m1 = −((m0> >24)&1);
s = (67 << (5−k)) ; / / 0x43 : X^6 + x + 1
a ^= ((s & m) | ((s << 24) & m1)) ;
}

/ / T r a n s p o s i t i o n
tab [0] = a&0x3F ;
tab [1] = (a>>24)&0x3F ;
}

/∗ Algor i thm A9 : Mapping be tween GF((2 ^ 6) ^ 2) and GF(2^12) ∗ /
/ / C o n v e r s i o n Matrix from GF((2 ^ 6) ^ 2) t o GF(2^12)
s t a t i c const g f _ t T [1 2] = { 3 8 5 7 , 1140 , 3330 , 132 , 286 ,
1954 , 1938 , 1208 , 314 , 3754 , 2750 , 1 8 8 } ;

Cryptography 2018, 20, 25 20 of 21

/ / C o n v e r s i o n Matrix from GF(2^12) t o GF((2 ^ 6) ^ 2)
s t a t i c const g f _ t Ti [1 2] = { 3 3 2 1 , 3388 , 4080 , 2152 ,
3712 , 3808 , 2274 , 4088 , 1076 , 3904 , 1904 , 3 7 0 8 } ;

/ / Hamming we igh t c o m p u t a t i o n
s t a t i c i n l i n e g f _ t hamming_weight (g f _ t n) {
ifndef ASM_POPCNT
n = ((n & 0x0AAA) >> 1) + (n & 0 x0555) ;
n = ((n & 0x0CCC) >> 2) + (n & 0 x0333) ;
n = ((n & 0x00F0) >> 4) + (n & 0x0F0F) ;
n = ((n & 0x0F00) >> 8) + (n & 0x00FF) ;
else
/ / us ing ASM
asm (
"POPCNT %1, %0 \n" / / Count o f Number o f B i t s S e t t o 1
: "=r " (n)
: "mr" (n)
: " cc "
) ;
endif
return n ;
}

/∗ A9 . 1 : C o n v e r s i o n from GF(2^12) t o GF((2 ^ 6) ^ 2) ∗ /
/∗ with t h e c o n v e r t i o n Matrix Ti from GF(2^12) t o GF((2 ^ 6) ^ 2) ∗ /
g f _ t i c o n v _ b i t (g f _ t x)
{
g f _ t r e s = 0 ;
for (i n t i =0 ; i <12; i ++) {
re s |= (hamming_weight (x & Ti [i])&1) << i ; / / Ti d e f i n e d in (3 . 5)
}
return re s ;
}

/∗ A9 . 2 : C o n v e r s i o n from GF((2 ^ 6) ^ 2) t o GF(2^12) ∗ /
/∗ with t h e c o n v e r t i o n Matrix T from GF((2 ^ 6) ^ 2) t o GF(2^12) ∗ /
g f _ t conv_bit (g f _ t x)
{
g f _ t r es = 0 ;
for (i n t i =0 ; i <12; i ++) {
re s |= (hamming_weight (x & T [i])&1) << i ; / / T d e f i n e d in (3 . 5)
}
return re s ;
}

References

1. Paar, C. Efficient VLSI architectures for Bit-Parallel Computation in Galois Fields. Ph.D. Thesis, Institute
for Experimental Mathematics, University of Essen, Duisburg, Germany, 1994. Available online: https:
//tinyurl.com/yc7hmfmo (accessed on 18 September 2018).

2. Sunar, B.; Savas, E.; Koç, Ç.K. Constructing composite field representations for efficient conversion.
IEEE Trans. Comput. 2003, 52, 1391–1398. [CrossRef]

3. Round 1 Submissions (30/11/2017)—Post-Quantum Cryptography. Available online: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-1-Submissions (accessed on 18 September 2018).

https://tinyurl.com/yc7hmfmo
https://tinyurl.com/yc7hmfmo
http://dx.doi.org/10.1109/TC.2003.1244937
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

Cryptography 2018, 20, 25 21 of 21

4. DAGS project. Available online: http://www.dags-project.org (accessed on 18 September 2018).
5. NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197, 11/26/2001. (Also ISO/IEC

18033-3:2010). Available online: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (accessed on
18 September 2018).

6. McEliece, R.J. A public-key cryptosystem based on algebraic coding theory. JPL DSN Prog. Rep. 1978,
42–44, 114–116.

7. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.
Commun. ACM 1978, 21, 120–126. [CrossRef]

8. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
9. Bardet, M.; Chaulet, J.; Dragoi, V.; Otmani, A.; Tillich, J.P. Cryptanalysis of the McEliece public key

cryptosystem based on polar codes. In Proceedings of the 7th International Conference on Post-Quantum
Cryptography (PQCrypto 2016), Fukuoka, Japan, 24–26 February 2016; Springer: Berlin, Germany, 2016;
pp. 118–143.

10. Post-Quantum Cryptography Challenge (ongoing). Available online: https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Round-1-Submissions (accessed on 18 September 2018).

11. Yarom, Y.; Falkner, K. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack.
In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA,
20–22 August 2014; pp. 719–732.

12. Facon, A.; Guilley, S.; Lec’hvien, M.; Schaub, A.; Souissi, Y. Detecting cache-timing vulnerabilities in
post-quantum cryptography algorithms. In Proceedings of the 3rd IEEE International Verification and
Security Workshop, Hotel Cap Roig, Platja d’Aro, Costa Brava, Spain, 2–4 July 2018.

13. Lidl, R.; Niederreiter, H. Finite Fields; Cambridge University Press: Cambridge, UK, 1997.
14. Tromer, E.; Osvik, D.A.; Shamir, A. Efficient Cache Attacks on AES, and Countermeasures. J. Cryptol. 2010,

23, 37–71. [CrossRef]
15. Aciiçmez, O.; Koç, Ç.K.; Seifert, J.P. On the power of simple branch prediction analysis. In Proceedings of the

2nd ACM Symposium on Information, Computer and Communications Security, Singapore, 20–22 March,
2007; pp. 312-320.

16. Aciiçmez, O.; Koç, Ç.K.; Seifert, J. Predicting Secret Keys Via Branch Prediction. In Proceedings of the
Cryptographers’ Track at the RSA Conference 2007, San Francisco, CA, USA, 5–9 February 2007; pp. 225–242.

17. Biham, E. A Fast New DES Implementation in Software. In Proceedings of the the Fourth International
Workshop on Fast Software Encryption, Haifa, Israel, 20–22 January 1997; pp. 260–272.

18. Matsui, M.; Nakajima, J. On the Power of Bitslice Implementation on Intel Core2 Processor. In Proceedings of
the Cryptographic Hardware and Embedded Systems, Vienna, Austria, 10–13 September 2007; pp. 121–134.
[CrossRef]

19. Berlekamp, E.; McEliece, R.; van Tilborg, H. On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inform. Theory 1978, 24, 384–386.

20. Misoczki, R.; Barreto, P.S.L.M.B. Compact McEliece Keys from Goppa Codes. In Proceedings of the
16th Workshop on Selected Areas in Cryptography (SAC 2009), Calgary, AB, Canada, 13–14 August 2009;
pp. 376–392. [CrossRef]

21. Persichetti, E. Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 2012, 6,
149–169.

22. Faugère, J.C.; Otmani, A.; Perret, L.; Tillich, J.P. Algebraic Cryptanalysis of McEliece Variants with Compact
Keys. In Proceedings of the 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, France, 30 May–3 June 2010; pp. 279–298. [CrossRef]

23. Prange, E. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 1962, 8, 5–9.
24. Peters, C. Information-Set Decoding for Linear Codes over Fq. In Proceedings of the The Third International

Workshop on Post-Quantum Cryptography, Darmstadt, Germany, 25–28 May 2010; pp. 81–94.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.dags-project.org
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TIT.1976.1055638
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1515/jmc-2011-0099
http://dx.doi.org/10.1109/TIT.1962.1057777
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Field GF(2N) in Cryptography: Arithmetic and Suitability
	Application to Block Ciphers
	Application to Classical Public-Key Cryptography
	Application to Post-Quantum Public-Key Cryptography
	Arithmetic in Extensions of GF(2)
	Tower Fields Representation
	Composite Fields and Fields Mapping

	Results and Discussion
	Multiplication in GF(2N)
	Secure Computation in GF(2N)

	Case Study: Optimization of DAGS
	Initial Choice of Parameters
	Improved Field Selection
	Implementation Performances

	Conclusions
	C Code for Various Algorithms
	References

