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Abstract: An investigation of the concept of “surveyability” as traced through the thought of Hilbert,
Wittgenstein, and Turing. The communicability and reproducibility of proof, with certainty, are
seen as earmarked by the “surveyability” of symbols, sequences, and structures of proof in all
these thinkers. Hilbert initiated the idea within his metamathematics, Wittgenstein took up a kind
of game formalism in the 1920s and early 1930s in response. Turing carried Hilbert’s conception
of the “surveyability” of proof in metamathematics through into his analysis of what a formal
system (what a step in a computation) is in “On computable numbers, with an application to the
Entscheidungsproblem” (1936). Wittgenstein’s 1939 investigations of the significance of surveyability
to the concept of “proof “in Principia Mathematica were influenced, both by Turing’s remarkable
everyday analysis of the Hilbertian idea, and by conversations with Turing. Although Turing does
not use the word “surveyability” explicitly, it is clear that the Hilbertian idea plays a recurrent role in
his work, refracted through his engagement with Wittgenstein’s idea of a “language-game”. This
is evinced in some of his later writings, where the “reform” of mathematical notation for the sake
of human surveyability (1944/45) may be seen to draw out the Hilbertian idea. For Turing, as for
Wittgenstein, the need for “surveyability” earmarks the evolving culture of humans located in an
evolving social and scientific world, just as it had for Hilbert.

Keywords: surveyability; Hilbert; Wittgenstein; Turing; Wittgenstein’s philosophy of mathematics;
Turing’s philosophy; Turing’s analysis of computability

1. Introduction

Turing visited Göttingen in the late spring of 1934, after his graduation from King’s
College and before beginning to write his dissertation. According to Hodges (1983/2012,
82), the purpose of this trip was to consult with someone, “presumably” on the subject
of his Fellowship dissertation, which proved the Central Limit Theorem in probability
theory (Turing spoke German). As Hodges explains, Göttingen was the mathematical and
scientific center of the world at that time. Might Turing have also discussed logic and the
foundations of mathematics with students and/or professors at Göttingen in 1934? After
all, Hilbert and Bernays had been lecturing on foundations of logic there since 2017 [1].

Turing had developed his focused interest in logic in spring 1933, drawn in—as Gödel
and Kleene also were—by reading Russell’s Introduction to Mathematical Philosophy [2]1.
Transcriptions of Hilbert’s lecture notes on the foundations of mathematics were available
in the Göttingen mathematics library and used by students regularly, had Turing stopped
by2. Although Bernays had been fired in April 1933 with the Nazi takeover of the Uni-
versity, leaving Göttingen by February 1934, memories of his work as Hilbert’s Assistant
would have remained among the students and instructors in the early summer of 1934.
Newman’s course at Cambridge on mathematical logic, which Turing attended in 1935,
had already in 1934 presented developments in the field via Hilbert and Bernays’s text-
book [5]3. Within two years Turing would correspond with Bernays about the corrections
to “On computable numbers” [7]4. So, as Hodges makes clear, and as, e.g., Copeland
explains [9], Turing was, historically speaking, in the orbit of Göttingen’s tradition in logic
and proof theory at the time he wrote “On computable numbers”. After all, his paper
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resolved the Entscheidungsproblem, which Hilbert himself had posed in his textbook with
Ackermann [10].

Whether or not the young Turing, already interested in logic and philosophy, profited
from discussions of philosophical and foundational issues with students or professors in
Göttingen in 1934, as philosophical readers of history we can ask about the relation of
Turing’s work to Hilbert’s views on proof theory and the foundations of mathematics. The
aim of this essay is to investigate an important logico-philosophical, Hilbertian strand in
Turing’s work: the idea of the “surveyability” of proof. This idea makes itself felt also in
Post’s work [11], which bears important affinities, logico-philosophically, to Turing’s5. But
we shall restrict ourselves to the Hilbert-Turing-Wittgenstein philosophical orbit around
surveyability in what follows.

“Surveyability” will stand in here for a number of closely related terms to be found in
original German writings of Hilbert and Wittgenstein: Überblickbarkeit, Übersehbarkeit, and
Übersichtlichkeit—and this requires clarification6. Mühlhölzer ([21,23]) has discussed the
Hilbert-Wittgenstein relation in light of Wittgenstein’s manuscripts, offering what I think of
as a very useful, minimalist reading of what Wittgenstein meant in using these Hilbertian
terms to characterize something characteristic of proof. According to Mühlhölzer’s reading,
the “surveyability” of a proof means that it can be reproduced easily, like a picture, and
we must be able to decide with certainty whether or not a reproduction reproduces or
pictures that proof. By extension, the “surveyability” of a character or sign would exhibit
just the same features of easy reproducibility, culminating in the ability of a human being
to be able to decide with certainty whether or not one instance of a symbol in a notation
is the same as another, and whether or not one symbol immediately precedes or follows
another. (Wittgenstein already raised this latter issue as fundamental to our concept of
the logical in his Tractatus ([24], hereafter “TLP”, 3.203).) Mühlhölzer emphasizes that in
Wittgenstein’s manuscripts from 1937 onward “surveyability” is used in “a purely formal
sense that has nothing to do with understanding, at least not in the sense of ‘mathematical
understanding’”7, but rather is characteristic of certain everyday mathematical and other
rule-following human activities. We shall probe the extent and limits of this minimalist
reading in what follows, gauging its relation to Hilbert, to Turing, and to the human drive
for intelligibility. While the term “surveyable” does not so far as I know occur in Turing’s
writings explicitly, I take this concept to have nevertheless been an important one for him,
philosophically speaking8. Our investigation of the idea of “surveyability” in Turing will
serve, not only to expand on Mühlhölzer’s analyses of Wittgenstein and Hilbert’s uses of
the concept, but also shed light on an important affinity linking Turing with Hilbert and
Wittgenstein. “Surveyability” emerges as a kind of norm, not simply something descriptive,
an earmark of what human beings in fact do.

An idea of the “surveyability” of proof makes itself felt in a number of Turing’s
writings, and at crucial points, always interpreted in terms of the communicability and
intelligibility of proof, its pragmatic and characteristic employment for and by human
beings. The need for some version of the idea remains with us today, in an age of formal
proofs, internet crowdsourcing of mathematician’s activities, and debates over the extent
to which these should be considered driving marks of achievement in mathematics9. I
shall argue that in his remarks touching on surveyability, Turing was self-consciously ad-
dressing himself to, and philosophically reinterpreting and generalizing, Hilbert’s account
of the “finitistic” foundations of proof theory at several crucial junctures. While this is
not a surprising or controversial thing to conclude, what is interesting is how Turing’s
reinterpretation of Hilbert’s idea highlights the features of communicability, reproducibility
and intelligibility that lie at the heart, not only of Hilbert’s foundational enterprise, but of
the wider logico-philosophical tradition stemming from Frege, Russell and Wittgenstein.
In this tradition, as Sieg has put it, the “normative demand for intersubjectivity between
humans motivated the step from axiomatic to formal systems” ([31], p. 200). It was, I
shall add, in Turing’s and Wittgenstein’s work that the step from formal systems to the
fundamental idea of embodied human beings operating with signs in “forms of life” was
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made. In our world, faced with the growth of social media and the world wide web, the
normative demand for radical intersubjectivity has shown its dangers and limits, as well as
its uses, and this is something that Turing presciently foresaw, and worried about, as we
shall see: the effect on human culture of mathematics, and vice versa.

It will thus be important to characterize in what follows the precise philosophical
points at which Turing’s highlighting of surveyability entered into his work. I shall make
much of Turing’s relation to Hilbert and Wittgenstein here, without impugning Hodges’s
account of other important philosophical influences on Turing during his undergraduate
and early graduate years10. While most of the direct mathematical connections between
Turing’s work and Hilbert’s are already clearly explained in the literature11, the philosophi-
cal relations with Wittgenstein, as well as those involving “surveyability”, are obscurer12.
By drawing these out, Turing may be affiliated with an important series of steps in this
philosophical tradition in the foundations of logic.

Further, Turing may be seen to have contributed to and elaborated that tradition. For
he sent Wittgenstein an offprint of “On computable numbers” by early 193713. Clearly
the interplay between Turing’s analysis of computatability and Hilbert’s ideas about the
surveyability of proof, so vivid in Turing’s paper, caught Wittgenstein’s eye. Wittgenstein’s
subsequent fascination with the concept of “surveyability”, especially evident in his writ-
ings 1937–1939, reflected, as I have argued elsewhere, his ongoing responses to Turing’s
and Hilbert’s work14.

In his 1939 Lectures on the Foundations of Mathematics at Cambridge ([37], hereafter
“LFM”), attended by Turing, the two continued discussions begun in 1937, particularly
focusing on the notion of a mathematical “technique” (the term occurs 117 times in the
notes of the lectures and enters firmly into Wittgenstein’s repertoire as a concept only at
this point). Wittgenstein’s manuscripts from 1937–39, later selectively published as Remarks
on the Foundations of Mathematics ([19], hereafter “RFM”), show an ongoing fascination with
the topics of “surveyability” and mathematical “techniques”. In turn, Turing explicitly
wrote that his paper on types and the “reform” of mathematical notation was stimulated
by attending Wittgenstein’s lectures (see Turing’s 1944/45 unpublished paper [38], quoted
below). Turing would address as well the related issues of evolving forms of cultural life
and the human drive toward nonsense, as we shall see.

What emerges from all this is a larger question: how does the to and fro of metaphor
and philosophy shape mathematical practice, especially at the foundations? From the
perspective of philosophy of logic and mathematical practice it is crucial to explore the roles
that metaphors play. For while in mathematical proving the aim is to eliminate appeals
to unpacked metaphors, at the same time, within the practice itself, metaphors crop up
everywhere to aid understanding15.

With regard to the notion of “surveyability” it will be argued that although it is partly
metaphorical, the notion has foundational, philosophical significance of a very particular
cast. In this regard I shall argue that the concept’s significance does not reduce itself to
the fact that Turing dogmatically assumed certain empirical facts of human psychology,
as has often been alleged16. It is of course true that for purposes of modeling cognition
Turing’s “machines” have proved their power17. But this is very different from supposing,
as Post and Gödel did, that Turing’s foundational work necessarily forwards a particular
mechanistic conception of mind in general18. Rather, I take Turing to have forwarded a
language-game—a snapshot of a portion of characteristic human linguistic activity—to
philosophically and mathematically unlock as homespun or home-baked (to use Wittgenstein’s
phrase) the relevant features of our very concept of “computing” or “calculating according
to a fixed rule”19.

While Turing certainly did emphasize ([7], §9) that experientially evidenced facts
about human beings shape our sense of what is fundamental in logic—namely, symbolic
configurations must, generally speaking, at some point be able to be “taken in at a glance”,
independent of any particular piece of mathematical knowledge or theory—this was
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not primarily a theory of mind, but rather one that concerned, first and foremost, the
foundations of logic and mathematics. And here there lie residues that remain, for better or
for worse, “raw”, right alongside and part and parcel of what is “cooked”20.

2. Surveyability at Work in the Grammar of “Computable”

What Turing writes in his [7] is that, if his “machines” are going to be able to represent
all operations that human beings could possibly carry out by “computing”—i.e., reckoning
according to a fixed rule—he must rely on what he calls (using quotes) “‘simple operations’
which are so elementary that it is not easy to imagine them further divided . . . [and that]
. . . . . . in a simple operation not more than one symbol is altered” ([7], §9). The generality
of the characterization is key here, but the notion of simplicity is complex, and merely
saying that he is describing a practice with language vastly underestimates the character of
this move21.

What Turing stresses is that in his model of human computing the number of sym-
bols that may be written down is finite—as in our alphabet or the decimal notation—and
that each symbol must be such that a glance at it leaves no doubt for the ordinary hu-
man perceiver that it has been fully “taken in” and individuated. This is because the
human/machine scanning a symbol is, if calculating or computing, to be immediately clear,
confident, and correct about which symbol it is that is being scanned and what the hu-
man/machine is to do next, and this is ensured partly by requiring that the symbol must
be a discrete, immediately intelligible component of the system of operating with signs for
the humans concerned. This is what allows for the clear communicability of the procedure, as
well as the human capacity for public, shared certainty—the lack of endless disputes and
doubts—about what the correct results are and should be.

This, one might say, with Wittgenstein, is in a sense a grammatical point about the
relevant concept of calculating: not a matter of necessary and sufficient examples for
anything that we call a “computation”, but rather an observation about our human forms
of life, considered both biologically (evolutionarily) and culturally. That is to say, the
phenomena characteristic of human calculators is shown across the varying kinds of
human life forms that there are. As Wittgenstein later writes ([51], hereafter “[PI]”, PPF xi):

§341. A dispute may arise over the correct result of a calculation (say, of a rather
long addition). But such disputes are rare and of short duration. They can be
decided, as we say, ‘with certainty’.

Mathematicians don’t in general quarrel over the result of a calculation. (This
is an important fact.)—Were it otherwise: if, for instance, one mathematician
was convinced that a figure had altered unperceived, or that his or someone
else’s memory had been deceptive, and so on—then our concept of ‘mathematical
certainty’ would not exist.

And also

§240. Disputes do not break out (among mathematicians, say) over the question
of whether or not a rule has been followed. People don’t come to blows over it,
for example. This belongs to the scaffolding from which our language operates
(for example, yields descriptions).

These quasi-anthropological remarks express Wittgenstein’s mature philosophical
stance—one he devised, as I believe, partly through reading Turing’s [7]22.

In these remarks he is not merely pointing to our forms of life, but also highlight-
ing the actual contingencies in our world—in our modes of speaking and proceeding in
language—that form a needed, evolving backdrop to the necessities exhibited in calcula-
tions. Once they are pointed out, of course, forms of life may be used as tools of criticism:
though Wittgenstein does not explicitly mention Marx, surely the point that human beings
are, as a matter of fact, used as machines and are trained to act mechanically is of fundamental
philosophical importance to questions about what, in the end, we are really doing, not only
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when we do mathematics but when we use mathematics in the course of life, doing other
things.

With respect to the “certainty” that characteristically earmarks what we call “calcu-
lation”, Mühlhölzer [54] quotes from Wittgenstein’s On Certainty ([55], hereafter “OC”)
labelling the following “Wittgenstein’s multiplication problem”:

Perhaps I shall do a multiplication twice to make sure, or perhaps get someone
else to work it over. But shall I work it over again twenty times, or get twenty
people to go over it? And is that some sort of negligence? Would the certainty
really be greater for being checked twenty times? (OC, §77)

This quandry is, as Mühlhölzer emphasizes, not merely a recapitulation of the “prob-
lem” of characterizing what it is in general to follow a rule. Rather it is that although
generally speaking checking helps better the evidence for our claims, thereby increasing
their epistemological value, in cases like this this at some point unmotivated, repetitive
re-checking, by means of the same or differing techniques and the same or differing people,
must terminate, and if it does not, these activities would lose the (relevant) character of
“calculation”. The whole idea of doing epistemic justice to the concept of calculation re-
quires that we take into account this characteristic manifestation of trust and certainty easily
and confidently exhibited and secured in everyday life, by hook or by crook, and always
building upon vast cultural resources put in to training human beings to act “unthinkingly”
when operating rules to calculate. It should not matter who makes the calculation: all
should be impersonal. In this way Wittgenstein raises a potentially skeptical juncture of
thought to elucidate the grammar of our concept of “calculation”.

In raising this question, we are asked not to assimilate cases where a simple calculation
(e.g., “2 × 2 = 4”) is made by a competent speaker, in an everyday, “normal” context to
a large formalized proof or calculation which requires many people or perhaps even
machines to check it. For in the latter case there seems to be a principled difference in
the role repetitive checking would play. Nevertheless, the basic idea that the simplest
language-game elucidates a crucial, generally ubiquitous feature of any method or system
or collection of techniques of calculating remains in place. For if many people and/or
machines are used to check the proofs, then there could be a need for further people to
check the machines and their programs, or further machines to check the results of other
machines. The important point would be that at some point, if what we have is “calculating”
in an everyday sense, this process ends. And it is important to the application of our very
concept of calculating that it end repeatedly, communicably, and with certainty, at the
same result, or, in the case of a vast or vastly complicated calculation, perhaps very close,
allowing for a specific margin of error given things we know about human beings and their
physical, emotional, technological, perceptual and calculational capacities.

3. Surveyability vs. Subitizing

In the Hilbertian context, like Wittgenstein, Turing [7] treated the issue of “simple”
operations with signs as a matter of unfolding our intuitive, ordinary notion of the activity
of a human being “calculating” according to a fixed rule. He took as his paradigm the
calculating out of digits of a real number in its decimal expansion, taking this to exemplify,
at least for his mathematician readers, the “least cumbrous technique” ([7], Introduction).
Turing made clear that “if we were to allow an infinity of symbols, then there would be sym-
bols differing to an arbitrarily small extent” ([7], §9 I)—but then, clearly, the uncontroversial,
repeatable, impersonal, terminating and communicable immediacy of our computational
certainty would give way.

Allowing the use of sequences of simple symbols allows for the construction of a
potential infinity of “command” strings, allowing far greater expressive power and scope
for “computation” routines. However, certain sequences that are too lengthy “cannot be
observed at one glance”, something “in accord with experience”, as Turing says ([7], §9 I).
Ordinarily, a command that a human being cannot possibly take in or understand does not
count as a “command”.
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As a matter of fact, this ability of humans to take in sequences of symbols at a glance
had been emphasized by Hilbert on more than one occasion when he presented his finitistic
perspective on metamathematics (e.g., [56], §25). As Newman put the point in his 1934
lectures on logic at Cambridge ([6], Lecture 13, 5/19/1934): “metamathematics requires the
possibility of recognizing symbols, and of scanning rows of symbols”.

It is obviously, uncontroversially, and ordinarily too difficult for humans to tell at a
glance the difference between

|||||||||| and |||||||||||

or to take in the number of more than a few strokes or numerals at a glance, quickly and
confidently, without counting23. When we can utilize our visual powers to discriminate
differences of number at a glance, without bringing to bear a concept, theory or counting
procedure, this is a matter of subitizing, a phenomenon currently studied by psychologists
with increasing interest24. It seems that for visible objects, confidently and quickly deter-
mining the number of certain kinds of objects before one at a glance, without counting,
is something human beings (and other animals) can do fairly easily up to the number
four—though it is a difficult methodological question for psychologists to determine
whether what is being discriminated here is number, or simply the notions of “same”
vs. “different”.

The important point, for purposes of the foundations of mathematics in the Hilbert-
Turing-Wittgenstein context, is that subitizing is more difficult for more complex collec-
tions, and it gives out at some point or other. This is why notational and technological
systems—from the finger to the token to the abacus to the Arabic notation to the digital
computer—have been devised throughout human history. The point is a logical one, be-
cause it applies to notations themselves: the stroke notation used above becomes very
quickly unsubitizable for us. The Arabic notation outstrips human subitization a bit later.
Kripke, whose Harvard Whitehead lectures explored a possible foundational view of
number based on this representational fact, called the subitizable portions of a notation
“buckstoppers”, connecting the idea with Wittgenstein’s discussion of “surveyability” in
RFM III (from 1939)25.

Given the evolution of symbolic prostheses in the development of programming
languages today, what is important for our purposes is however not what the ultimate
buckstoppers there are, but that there must be some buckstoppers in any system deserving
the name of “mathematics”26.

Subitizing, in other words, highlights an interesting fact highly relevant to foundations
of mathematics: we need to develop mathematical techniques to take on what we cannot
subitize, and these techniques must exhibit clearly communicable, procedural termination.
The “beginnings” of mathematics, as Wittgenstein called them27, are entangled with human
practical needs for procedures, for the development of useable, communicable, repeatable,
explainable and terminating-in-agreement techniques for the application of numbers in life,
ordinarily using symbolic prostheses. It is to our understanding of the latter issue, rather
than the straight psychology of subitizing, that Turing contributed in his paper of 1936 [7].

This may be lost sight of if we exclusively emphasize, as so much of the philosophical
literature has, the relation of Turing’s work to computational psychology and philosophy
of mind taken at the level of the individual. It is true that the computational perspective
Turing opened up is crucial for psychology and neurology, and also true, as Hodges
emphasizes, that the nature of mind, free will and spirit were crucial philosophical issues
for Turing [3,33]). The facts of subitization in the animal world are fascinating in themselves.
But it is also true, as Mühlhölzer has rightly emphasized ([21,23]), that we should avoid
psychologistic readings of Wittgenstein’s notion of “surveyability”, for example those that
take Wittgenstein to have been exploring strictly visual criteria of sameness of number28.

The same is true, I think, of Turing, who stimulated Wittgenstein to investigate the
concept in 1939. By bringing Turing and Wittgenstein together back into the orbit of Hilbert,
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we are able to explore the “beginnings” of mathematics and logic without the intrusion of
psychologism.

Turing’s analysis of what it is for a human being to take a “step” in a formal system,
or “compute”—his human–machine analogy, and Turing explicitly calls this a “comparison”
([7], §1)—is, from our present point of view, to be regarded as an elaboration of Hilbert’s
finitistic approach to proof theory, and therefore part of an amentalistic foundations of
mathematics. As Georg Kreisel, a student of Wittgenstein’s, once said, when it comes to the
foundations of logic and mathematics, “no matter, never mind”29.

Neither Hilbert nor Wittgenstein nor Turing had a general theory, either of metaphor
or of matter or of mind. Instead, their analyses turned on invoking and taking seriously the
friction of ordinary, everyday concepts such as “surveyability” and “mathematical tech-
nique”. We can see this by revisiting Turing’s analysis of the very notion of a formal system
of logic and emphasizing how he rooted this ultimately in a kind of anti-psychologism
about logical foundations inherited from Hilbert and Wittgenstein. Turing reworks this
anti-psychologism, self-consciously hewing, throughout his work, to certain foundational
ideals of simplicity, intersubjectivity and objectivity that he inherited from them. In turn,
he stimulated Wittgenstein to revisit the role of “surveyability” in our conception of mathe-
matics, and then, in response, saw the future of the ways in which human beings would
develop, in a social and evolving cultural setting (forms of life) languages and typed
symbolic systems to interact with the aids given by stored program computers.

4. Hilbert on Überblickbarkeit: What Is a Metamathematical “Foundation”?

Hilbert’s finitistic metamathematics urged the importance of taking up a particular
stance toward the foundations of mathematics, at least for the purposes of proof theory:
metamathematics. Hilbert emphatically did not think that all of mathematics should
proceed by taking up this stance. Rather his idea, as later articulated by Bernays, was to
subject the concept of the logical to mathematical articulation, contrasting Kant’s traditional
idea of logic as analytic knowledge given through a “pure consciousness of meaning” with
mathematical knowledge, which rests, according to the Hilbertian view, on basic, “concrete”
intuitive evidence. By this Hilbert meant, not that the evidential objects of mathematical
knowledge are located in space and time, but rather that they are simple and self-evident,
not reliant on abstract concepts30.

Bernays defines mathematical knowledge as something resting on formal (structural)
consideration of objects, the numbers being, not logical objects (as the logicists had held),
but rather “the simplest formal determinations” ([65], §3, p. 243). Hilbert encapsulated the
attitude with the slogan, riffing on Goethe’s Faust, that in the beginning was the sign ([16],
§25)—Wittgenstein would later make a riposte by resuscitating Goethe’s actual saying, “In
the beginning was the deed”31—that is, uses of signs by human beings and, ultimately the
evolving embedding of these signs in modes of use in everyday life (Lebensformen).

In an essay that Wittgenstein certainly read, Hilbert gives an example. We may
consider “concrete” signs, i.e., simple numerals in an alphabet, “extra-logical discrete
objects, which exist intuitively as immediate experience before all thought” ([16], §25).
Hilbert wrote,

If logical inference is to be certain, then these objects must be capable of being
completely surveyed in all their parts [überblicken lassen], and their presentation,
their difference, their succession (like the objects themselves) must exist for us
immediately, intuitively, as something that cannot be reduced to something else.
Because I take this standpoint, the objects [Gegenstände] of number theory are
for me—in direct contrast to Dedekind and Frege—the signs themselves, whose
shape [Gestalt] can be generally and certainly recognized by us—independently
of space and time, of the special conditions of the production of the sign, and of
insignificant differences in the finished product. [Note: In this sense, I call signs
of the same shape ‘the same sign’ for short.] ([16], §25).
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Hilbert proceeds to give the example of (a) the sign 1 is a number, and (b) a sign that
begins with 1 and ends with 1 and 1 always follows +, is a number, so that the number
signs are

1
1+1
1+1+1,
and so on,

. . . and these number-signs, which are numbers and which completely make up
the numbers, are themselves the object of our consideration, but otherwise they
have no meaning [Bedeutung] of any sort” ([16] §§29). Thus “2”, “100” and so on
are really abbreviations, “3 > 2” serving “to communicate the fact that the sign 3
(that is, 1+1+1) extends beyond the sign 2 (that is, 1 + 1), or that the latter sign is a
part of the former” ([16], §29).

Hilbert should not really be called a philosophical “formalist” in general32. Rather, he was
advocating the use of a particular mathematical technique, formalization, in furthering
the rigorous axiomatization of theories, viz., the technique of metamathematical reasoning
about a theory through the construction of a formal system whose formulae are finitistically
constructed. By this means could be marked the substantial mathematical assumptions
Hilbert called “contentual” [inhaltliche] ([16], §§73, §§80-81, §83; [68], §36).

Hilbert thus draws out and clarifies mathematically the finitistic aspect of mathemati-
cal reasoning. Poincaré ([69,70]) had argued against Hilbert ([71]) that the metamathemati-
cian needs to presuppose the truth of mathematical induction in order to set out the class of
well-formed formulae of any formal system. Wittgenstein, who took our capacity to iterate
“formal series” step-by-step indefinitely far to be a fundamental logical capacity embedded
in our grasp of language, was sympathetic to Poincaré, while turning his argument into a
logical one (see TLP 4.1252, 5.501, and [72]). However, mathematically speaking Hilbert’s
stance allowed him to distinguish between strong principles of induction expressed in the
formal system itself, and weaker principles used in the metalanguage, where we reason
“contentually” about possible configurations of signs ([16], §31).

Many have opposed “formalism”, taking mathematical experience and conceptually
contentful meaning to be fundamental to mathematics at each and every point. But
the Hilbertian metamathematical moment in which one touches down in a reduction to
humanly operable sequences of signs, if only a moment, is a necessary one, conceptually
speaking. Frege and Russell, who had formalized the foundations of mathematics, had
no general way of proving that one sentence does not follow from another, or a set of
axioms. Of course, Frege and Russell could in any particular case maintain that if one has a
derivation of a proposition Q from another proposition P, then this shows that -Q is not a
consequence of P. They had circumscribed rules, they could analyze purely logical steps
down to the point of utter precision, providing a gap-free analysis of any specific sequence
of logical inferences33. But a general method for negative results was lacking. This related
brings out the importance of their assumption that pure logic must be consistent, i.e., never
generate contradictory results, an assumption applied in each particular case of “negative”
results about logical implication.

This created an apparently fundamental disanalogy with the axiomatic approach in
geometry. There alternative axiom systems may be tested for consistency via the construc-
tion of models, and their logical structure articulated using the axiomatic approach Hilbert
perfected in his Foundations of Geometry [79]). However, laws of logic cannot, Frege and
Russell held, be meaningfully denied, as axioms of geometry may be. Frege held, for
example, that affirming a false thought is not really to put together a judgement. For to
count as a judgement—an acknowledgement of the True—the True must be the object
judged, and if one attempts to acknowledge the True, but in fact acknowledges something
else, then one’s judging is no real judgement. This point concerning truth must, Frege [80]
argued, be generally assumed at each step, something Hilbert did not pretend to do. Russell
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reiterated the point about methods of geometry not applying generally in logic ([81], chap.
2, §17), and in Principia Mathematica made the base-step for his quasi-recursive definition
of truth-levels a collection of “judgments of perception”, which are assumed to be true,
“perception” being treated here as a success verb34.

Hilbert’s sharp distinction between remarks about the logical system and statements
within it was “foreign” to this point of view (Sieg, in [1], Introduction, p. 9). Later
on, in a quite different, conventionalist vein, the middle Wittgenstein flatly denied that
there is such a thing as the “game”, or system, of mathematics, furthering the idea that
“metamathematics is just more mathematics”35 This hard pluralism yields the consequence
that there is no generally applicable notion of consistency, so that Hilbert’s foundational
project of metamathematics is not applicable to logic or mathematics in general, but only to
formalisms one by one. This vague hunch was on the right path, as Turing later showed,
even if at the time it was based on an unsatisfying, dogmatically conventionalistic and
purely philosophical point of view. Having been the first to conjecture a decision procedure
for logic—in a letter to Russell of 191336—in 1929–1931 Wittgenstein was repudiating his
earlier conception of the unity of logic as a single, absolute system. By responding to
Hilbert’s metamathematics, he was incorporating the formalist point of view, attempting to
give it its due in a kind of game-formalism37.

Wittgenstein thus rejected Hilbert’s idea that consistency proofs were foundational
for all of mathematics, on the basis of a re-interpreted, relativistic Hilbertian ground. He
raised explicitly the question whether the search for models conducted by Hilbert really
constituted a general logical method, something universally applicable in one way38. On
his view metamathematics cannot yield “absolute” certainty through consistency proofs
applicable across all of science, as Hilbert had hoped ([56], §33). Ultimately such proofs can
at best titrate comparisons between particular differing game-formalisms: some systems
would be classically inconsistent (and so “tautologous”) and some not, but discriminating
between and comparing systems would have to be done on a case-by-case basis, experi-
mentally, so to speak, as opposed to calculationally. And then there could be no way to
require, as Hilbert had, that

The chief requirement of the theory of axioms must . . . show that within every
field of knowledge contradictions based on the underlying axiom-system are
absolutely impossible ([56], §33).

In his [7] Turing shows that although the notion of “computable” has a certain absoluteness,
as Gödel termed it—i.e., Turing-computability is a robust concept, a fixed parameter
remaining constant, independent of the particular formalism or language used39.

—there can be no general algorithm (or formalism) used to determine, for any arbitrary
formalism, not only whether or not it is consistent (Gödel’s [87]) but even whether it will
output this or that configuration of signs on a given input (Turing’s [7]). Hence, there are
fundamental philosophical, mathematical and logical limitations to the Hilbert program.

Turing was clearly aware of the interplay between his [7] and Hilbert’s views. Far from
thinking he had refuted Hilbert, in his PhD dissertation ([88]) he developed mathematics
designed to adapt the Hilbert program to the situation his work and Gödel’s had exposed.
His ordinal logics were designed to transcend Gödelian incompleteness through the use
of what, in an anthropological twist of terminology, Turing called “oracles”40. He thus
emphasized that human “intuition” and “ingenuity”, which cannot be analyzed in terms
of step-by-step rules, could enter into the development of mathematics in a controlled way,
circumscribed through steps made explicit in adding assumptions41.

In a letter to Newman (c. 1940, [89]) Turing referred to this work explicitly in the
context of Hilbert’s point of view—one of the few places, as Copeland notes ([9], p. 206),
where he writes explicitly about the foundations of mathematics:

Ingenuity and Intuition. I think you [Newman] take a much more radically
Hilbertian attitude about mathematics than I do. You say ‘If all this whole
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formal outfit is not about finding proofs which can be checked on a machine it’s
difficult to know what it is about.’ When you say ‘on a machine’ do you have in
mind that there is (or should be or could be, but has not been actually described
anywhere) some fixed machine on which proofs are to be checked, and that the
formal outfit is, as it were, about this machine. If you take this attitude (and it is
this one that seems to me so extreme Hilbertian) there is little more to be said: we
simply have to get used to the technique of this machine and resign ourselves to
the fact that there are some problems to which we can never get the answer. On
these lines my ordinal logics [88] would make no sense. However, I don’t think
you really hold quite this attitude because you admit that in the case of the Gödel
example one can decide that the formula is true, i.e., you admit that there is a
fairly definite idea of a true formula which is quite different from the idea of a
provable one. Throughout my paper on ordinal logics I have been assuming this
too ([9], p. 215).

Note the Hilbertian tone of “optimism” in Turing’s remarks on “extreme” Hilbertianism:
although we must resign ourselves, in the use of any one machine (formal system), to
admitting that “there are some problems to which we can never get the answer”—i.e., we
must face what Hilbert called the ignorabimus42 —this does not mean that, with “ingenuity”,
i.e., the human use of informal steps, we may not come close enough to knowing answers.
Moreover, Turing continues, if we think opportunistically about the potentialities of a
variety of systems (“machines” now refers to literal machines, as well as routines calculated
with by humans), we may well be able to circumscribe the very idea of “provability” more
and more closely:

If you think of various machines I don’t see your difficulty. One imagines different
machines allowing different sets of proofs, and by choosing a suitable machine
one can approximate ‘truth’ by ‘provability’ better than with a less suitable
machine, and can in a sense approximate it as well as you please. The choice of
a proof checking machine involves intuition, which is interchangeable with the
intuition required for finding an Ω if one has an ordinal logic Λ, or as a third
alternative one may go straight for the proof and this again requires intuition: or
one may go for a proof finding machine ([9], p. 215).

Having invoked the need for human “intuition”—i.e., choices and guesses that are not nec-
essarily formalizeable—Turing then argues that a “proof finding machine” still falls within
the scope of the Hilbertian ideal of metamathematics and proof theory as an approach:

I am rather puzzled why you draw this distinction between proof finders and
proof checkers. It seems to me rather unimportant as one can always get a proof
finder from a proof checker, and the converse is almost true: the converse fails if
for instance one allows the proof finder to go through a proof in the ordinary way,
and then, rejecting the steps, to write down the final formula as a ‘proof’ of itself.

The suggestion here is that one might still use “proof finder” systems of deductive logic to
generate proof checking systems, so long as one realized this would not resolve all problems.
Alluding to his own diagonal argument showing that there is no general decision procedure
for logic ([7], §8) Turing notes, as he had shown, that a proof checking system cannot be
assumed to be able to check any system, on pain of one being able to define a tautological
machine in connection with its own behavior. The latter proof—as Wittgenstein later noted
explicitly43—shows that if we imagine a single machine that could determine, Yes or No,
the behavior of any arbitrary machine, it would collapse into tautological circularity when
it ran into its own commands. Turing’s proof, and his suggestion to Newman, circles back
to the Wittgensteinian idea that the limits of logic lie in tautological constructions of rules
that cannot be followed as commands: in general, for logic human embedding in a particular
context or form of life is needed “friction” (Wittgenstein [51], [PI] §107).
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All this, let us emphasize again, grants something very important to Hilbert. Hilbert’s
metamathematical analysis in terms of “effectively” surveyable modes of proof is essen-
tial for making clear sense of the idea of comparing different formal systems with one
another. Hilbert’s metamathematical perspective is just what was required to make what
general sense can be made of the idea of one sentence’s following or failing to follow in a
particular system44.

Hilbert had written that with his metamathematics, “proof procedures become com-
pletely surveyable [Überblickbar]”45. This is because the finitistic aspect of our very concept
of proof or argument emerged clearly in his analysis, grounded on these purely formal
determinations. As Hilbert also wrote, a “formalized proof, like a numeral, is a concrete and
surveyable object. It can be communicated from beginning to end” ([17], p. 383). What a
formalized proof yields is something “immediately intuitive and directly intelligible” ([17],
p. 380). The intersubjective communicability and impersonal, repeatable nature of proof, as
well as an ideal of “direct intelligibility”, lie at the heart of Hilbert’s foundational stance.

This is less an aspiration to psychological theorizing for its own sake than an emphasis
on the kind of intelligibility and communicability mathematics is capable of affording
us with proofs. As for Frege, so for Hilbert: ultimately the social, communicable, logical
character of thought is something depsychologized.

As part of his ideal of intersubjectivity, Hilbert aimed to overcome controversy in the
foundations of mathematics through the application of mathematics to pure logic:

If we use contentual [non-finitistically regarded] axioms as starting points and
foundations for the proofs, then mathematics thereby loses the character of
absolute certainty. With the acceptance of assumptions we enter the sphere of
what is problematic. Indeed, the disagreements among people are mostly due to
the fact that they proceed from different assumptions ([16], p. 233).

However,

Now the theorems at issue can in part be proved, in an absolutely certain and
purely mathematical fashion, with the help of the present results, and they have
therefore been removed from the dispute. Whoever wants to confute me must
show me, as has always been customary in mathematics and will continue to be
so, exactly where my supposed error lies ([16], p. 228).

The main Hilbertian points for our purposes are these:

1. Certain symbols are a precondition of the application of logic. (They serve as parameters.)
2. These symbols are extra-logical, discrete, and intuitively immediate before all thought.
3. Logic’s certainty depends upon the surveyability [Überblickbarkeit] of these symbols in

all their parts (simplicity).
4. These symbols are irreducible and objects of direct intelligibility.

5. Turing 1936 and “Surveyability”

Turing’s “On computable numbers, with an application to the Entscheidungsprob-
lem” [7] extended Gödel’s work, making clear that the finististic aspects of proof empha-
sized by Hilbert have their limits. Gödel [87] showed, first, that first-order logic, though
complete, does not always have a finitistically terminating formal procedure for finding a
counter-model in cases where one sentence fails to follow from a set of axioms. Second,
Gödel [78] showed that first-order arithmetical truth cannot be completely axiomatized
in the Hilbertian manner: there will always exist unprovable sentences for any given
axiomatization incorporating arithmetical truth in this way. Turing then showed that there
can be no one machine (no one algorithm or proof system) for determining Yes or No as
an answer to the question of whether or not a sentence of a formal system of logic does or
does not follow from the axioms of a theory. There can be no general way of deciding, no
“definite method” of the kind that Hilbert’s Entscheidungsproblem had sought.
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The interplay between Turing and Hilbert is thus subtle and fascinating. For the
meaning of Turing [7] depends upon assumptions of Hilbert himself. Perhaps following
Newman, perhaps following Wittgenstein, and perhaps following both or neither, Turing
took more seriously and literally than Hilbert and Gödel did the idea of a formalism as a
machine, in this case a mechanical procedure carried out by a human being reckoning ac-
cording to a rule46. “Turing’s ‘machines’. These are humans who calculate”, as Wittgenstein
later remarked47.

Whereas the Hilbert school and Herbrand, Church and Kleene worked as mathemati-
cians with systems of equations and the lambda calculus (as Turing would do as well),
Turing began his “beginnings” of an analysis of what a formal system is in his [7] with
a more informal idea. This informality, this logic-free character to his analysis of what a
logic (in the relevant sense) is, is what lent weight to his analysis of the very notion of
what a “step” in a formal system of logic is. Turing analyzed Hilbert’s idea of a “defi-
nite method” in terms of the existence of what Church soon called a “Turing Machine”
([92], p. 43), couched in Turing’s [7] in terms of command tables utilizing a finite set of
symbols and finite, discrete states of a machine, i.e., a human calculator.

Why does Turing need to insist in his 1936 that his human–machines can “take in at a
glance” the command structures ([7], §9)? What he says is that he needs to argue, infor-
mally, that he has found a mathematical representation that plausibly answers the question,
“What are the possible processes which can be carried out in computing a number”, i.e.,
by a human. And he has already said ([7], §1) that the fundamental “justification lies in
the fact that the human memory is necessarily limited”. We have seen that this marks
out the “beginnings” of mathematics, rather than advocating any particular psycholog-
ical theory: it marks off the phenomenon of calculation, in an everyday, mundane way.
There is a phenomenon generally characteristic of human forms of life: calculation that
terminates in agreement, impersonally and without dispute. As Hilbert (and as we have
seen, later Wittgenstein) noted, mathematicians do not “come to blows” over whether a
particular written sign is or is not an instance of a symbol-type (Wittgenstein [51] §240).
“Surveyability” of proof captures this phenomenon, which is partly normative.

Turing rightly stresses in spelling out his characterization that “all arguments which
can be given [in characterizing “computable”] are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically” ([7], §9). However,
his intuitive, partly informal approach is necessitated by the foundational context. For
to analyze what a formal system is—in Hilbert’s terminology, a “definite method” for
deciding questions about implication in formal systems—it will not do to simply concoct a
new formalism (such as the λ-calculus). Instead one must do something, philosophically
speaking, find a way of marking out the concept sufficiently plausibly, and informally. What
Kennedy [49] calls “formalism freeness” is a mathematical desideratum in this context, not
a defect.

Turing says he will offer what he calls three different kinds of arguments ([7], §9):

(1) A direct appeal to “intuition”, i.e., something not mathematical.
(2) A proof of the equivalence of two definitions (Turing’s with the λ-definable functions)

“in case the new definition has greater intuitive appeal”.
(3) Giving examples of large classes of numbers which are computable.

The first two appeal to the relatively “intuitive” quality of Turing’s characterization of
computation, the third to vivid exemplifications. Neither is capable of offering anything
more than a sufficient condition for “computability”: a surveyable snapshot, language-
game style, of what we are inclined to call “computable”.

It is not Turing, but Church and Gödel who later held, in light of Turing’s proof of the
equivalence of his machine-characterization of computable function with that of a function
definable in Church’s λ-calculus, that Turing had successfully analyzed in general the
notion of “computable”, i.e., given necessary and sufficient conditions for the application
of the concept of “calculable in a logic” or “step in a formal system of logic”. “Church’s
Thesis”, as it came to be called—sometimes even called the “Church-Turing Thesis”—was
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however not quite Turing’s. This Thesis requires more refinement, and there are open
questions remaining about whether or not the “thesis”, or perhaps part of it, is provable
at all. By contrast, a language-game can only do so much, and it is not intended to offer
necessary and sufficient conditions.

It therefore seems to me to have been ever so slightly unfair for Sieg—an otherwise
brilliant reader of Turing in historical context, and in relation to the Hilbert program
specifically—to have accused Turing, alongside Church, of “dogmatism” in analyzing
computability [41]. Sieg himself provided an axiomatization of the Turing-Computable
functions using axioms for a set of dynamical systems which include a crucial constraint,
the “locality” condition: there is a finite bound on human computation through there being
some finite bound on human attention48.

This mathematico-philosophical move brings Hilbert’s method back to bear on Turing,
illustrating a beautiful harmony in the spirit of their works, and giving the lie to the idea
that Gödel and Turing “destroyed the Hilbert program”. Sieg is right to hold that the
method of axiomatics is, in general, a way to avoid “dogma” about concepts. However,
when the question must address—as in Turing’s original context—what it is to axiomatize
in Hilbert’s sense, then offering another axiomatization would not have achieved what
needed doing.

Turing was clearly fully aware that his characterization has an “intuitive” plausibility
that differs from the two extensionally equivalent characterizations yielded by Church’s
λ-calculus and the Herbrand-Gödel-Kleene equational characterization of general recur-
siveness49. In Kleene’s words, Turing’s had the advantage of “aiming directly at the goal”
(Kleene [94], p. 61). As Kleene also wrote ([95], p. 49),

Turing’s computability is intrinsically persuasive in the sense that the ideas
embodied in it directly support the thesis that the functions encompassed are
all for which there are algorithms; λ-definability is not intrinsically persuasive
(the thesis using it was supported not by the concept itself but rather by results
established about it) and general recursiveness scarcely so (its author Goödel
being at the time not at all persuaded)50.

Turing alone, we could say, gave a surveyable characterization of surveyability, i.e., his
characterization of “computable” incorporates our sense of human action into the model
and gives us “direct intelligibility” in something like Hilbert’s sense. A Turing Machine has
a double face: it is, from one point of view, nothing more than a little formal system, a set
of equations. But from another point of view, it lives within a human form of life, and it is
we who bring the dynamism and movement into the model of its “step-by-step” “actions”.

Turing explicitly draws out two central aspects of the notion of “surveyability” that
are salient here, both closely related, and both at work in Hilbert, Turing and Wittgenstein.
First, there is the communicability and repeatability of a Turing computable process (recall
Hilbert’s remark that a proof “may be communicated from beginning to end”, comparing it
to Wittgenstein [19] [RFM] III §§1ff.). A calculation is impersonal. As Turing says explicitly
([7], §9, II), de-psychologizing his analysis:

We suppose . . . that the computation is carried out on a tape; but we avoid
introducing the “state of mind” by considering a more physical and definite
counterpart of it. It is always possible for the computer to break off from his work,
to go away and forget all about it. and later to come back and go on with it. If
he does this he must leave a note of instructions (written in some standard form)
explaining how the work is to be continued. This note is the counterpart of the
“state of mind”.

Second, and relatedly, there is the way in which calculation, involving humanly
devised symbolic technologies, realizes the human capacity not to “come to blows”, to
resolve disputes with certainty. Everything is above board: to quote Wittgenstein, in logic
(calculation) nothing is hidden Wittgenstein [51] [PI], §435).
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The origin of the term “machine” is, according to one authority, Doric: “that which
enables”, a “contrivance”, a “trick”51. Turing captured what calculation-in-a-logic is by
characterizing what it is for. He has broken the elements of the technology down into
visible parts, holding in mind the point of computability.

To reiterate. According to Mühlhölzer’s careful analysis of the concept of “surveyability”
in Wittgenstein’s manuscripts from 1939 ([21], pp. 58-9), there are four elements to the notion:

(1) Reproducibility: a proof must not be a one-off event, it must be able to be reproduced.
(2) The reproduction must be an easy task. –We might add, following Turing, that the task

must be able to be broken down into “easy”, “surveyable” steps.
(3) We must be able to decide with certainty whether something is or is not the reproduc-

tion of a proof.
(4) The kind of reproduction resembles the reproduction of a picture, or model.

And so it is with Turing’s characterization of “computation”. Turing provided a surveyable
picture of surveyability itself in just this sense. And it was this computational aspect of
formal proof at which Hilbert had been aiming. Turing shows that even though there is
one parameter for computation—the Universal Machine can do the work of all Turing ma-
chines, including itself—there are mechanical limits to our ability to construct mechanical
procedures to resolve disputes in this particular way.

6. Phraseology, Types,“Logicism”: Turing 1948–1954

I am reading Turing in a Wittgensteinian, “ordinary phraseology” spirit, supposing
that, as a likely reader of Wittgenstein’s Blue and Brown Books ([61], “[BlB]” and “[BrB]”), or
perhaps a hearer of Wittgenstein (Floyd [4]) Turing would have taken in

(a) the anthropological stance of language-games as logic, pieces of human technology
and procedure ([BrB]),

(b) the extrusion of inner mental states from the analysis of logic as characteristically an
embodied action of human beings operating according to fixed procedures with signs
([BlB]), and

(c) the idea of using humans as machines by giving them short tables of symbols express-
ing step-by-step commands, i.e., “mechanical” procedures ([BrB])52.

We need to ask, not whether Turing has actually given us necessary and sufficient conditions
for computations—with quantum computing who really knows?—but instead whether his
earmarks of “computation” make vivid a concept that has characterized human forms of
life for thousands of years.

His argument as I have so far described it has the form: suppose that what a human
computation is like, in general, is just this. Then, how could it be that the procedures
it could follow were not surveyable? How could it be that such “calculations” would
not be reproducible, would not terminate in a certain and unique outcome, would not be
impersonal and always verifiable by checking, yielding certain outcomes, resolving human
disputes? If you can think of why not, fine. If not, we are done for now with discussion.

On this reading, there may well be a family-resemblance between differing concepts of
computability (Wittgenstein [51] [PI], §§65ff): “computable” would be, to use Waismann’s
phrase “open-textured”53.

Bringing us back to today, AI may bring us all kinds of results we are not able to
easily survey, if we use unsupervised leaning algorithms. But there would still remain
a certain conception of human activity at which Hilbert, Turing and later Wittgenstein
were aiming. We could work over our procedures with the results of such results, and
agree to handle the situation in a variety of differing ways, some of which would involve
“explanation”, i.e., making results intelligible, and some of which would simply rely on the
spare notion of surveyability defended by Mühlhölzer: the key to the techniques would
then be reproducibility, copying in the manner of a picture or model, with confidence, an
impersonal and terminating kind of communication.
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Turing’s characterization of “computable” has the great advantage that it situates the
technology of computation in a dynamic world containing humans and machines, as well as
human activities, some conceived of as mechanical, some not. As Wittgenstein emphasized
in his mature philosophy, in a kind of anthropological vein, the “techniques” constituted
by Turing-computable routines would be applied in settings of human life. This means that
the mathematical model has its usefulness only insofar as the physical and social worlds
retain certain features they have long exhibited: that signs do not suddenly disappear for
no reason, that human beings do not come to blows over whether a surveyable step has
been taken, and so on. What Turing shows, and Wittgenstein later emphasizes, is that our
concept of computation depends upon features of the surrounding world. The necessities
of mathematics ride on the back of numerous contingencies, our forms of life, and these
may and will evolve as we embed routines and words in the stream of life in a variety
of ways.

The notion of a mathematical “technique” is an important thread throughout Turing’s
writings. As we have said, it enters into Wittgenstein’s repertoire only after 193754.

A beautiful turn toward the notion occurs in the following remark, one of the earliest where
Wittgenstein uses it:

The propositions of logic are “laws of thought” “because they express the essence
of human thought”—but more correctly: because they express or show the
essence, technique (Watson), of thinking. They show what thinking is and also
ways of thinking ([19] [RFM] I §133; in original manuscript Wittgenstein [77], p.
396, FF §332).

This swink ties together Frege, Hilbert and Turing in the following way. With Frege
Wittgenstein acknowledges his willingness to conceive of the logical as connected with
general features that are constitutive of certain aspects of human thinking, “forms” or
“essences” of thought that run through it everywhere, but not in a psychological sense.
With Hilbert he will “correct” Frege: Hilbert held that in metamathematics “the formula
game is carried out according to certain definite rules, in which the technique of our thinking
is expressed” ([97], p. 475). But with Turing—alluding to Alister Watson, whose discussions
with Wittgenstein and Turing in the summer of 1937 had so impressed him55—Wittgenstein
will correct Hilbert: logic shows us not merely what thinking is, but, now through a
plurality of techniques, ways of thinking. And in his anthropological explorations of
language-games in Remarks on the Foundations of Mathematics (Wittgenstein [19]) the point is
pursued at length.

In particular, in 1939, while Turing was attending his seminar, Wittgenstein deploys
the notion of surveyability to recast the light in which we ought to view proofs in Principia
Mathematica (Wittgenstein [19] [RFM] III). It is uncontroversial that proofs in Principia
quickly become unsurveyable: proofs of relatively simple arithmetical results contain
thousands of symbols, making them unusable as calculations. What is the import of this
with respect to the very idea of Principia as a “foundation” for mathematics56?

Re-deploying an anthropologically logicized version of Poincaré’s argument against
logicism as a reductive foundation of mathematics [see Floyd’s [72]], Wittgenstein picks
up again on the Hilbertian idea of surveyability, now adapting it to the point, made in
Turing’s work, that there must be many machines, not only one. Strikingly he relies
on the notion of a mathematical “technique”, on which he and Turing focused. The
Poincaré form of argumentation maintained that in the very setting forth of a formal
system, mathematical knowledge is already used in the applications of recursive inference
to set forth the formalism, i.e., the language, itself. The reply of Frege, Russell and Hilbert
would be that they are not giving an account of how mathematicians think and proceed,
psychologically speaking, but are instead spelling out the logical articulation of the content
of the theorems, i.e., their ultimate justifications. The use of any particular symbolic system
is not part of this. The point is anti-psychologism at the foundations, and, for Hilbert, the
metamathematical stance achieves this, as we have seen57.
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However, the situation changes once one realizes, after Turing (and Gödel), that
although one can define the Universal Turing Machine, one cannot deploy it in a gen-
eral way, applying it as a single technique for solving problems or computing answers,
even if the class of computable functions is “absolute”, and impervious to the choice of
particular signature58.

The consequence is that there will never be the kind of “absolute” certainty of which
Hilbert wrote, there will only be human certainty, and variegated forms of it at that. Turing
is able to give an analysis of the calculational, step-by-step aspect of proof that surmounts
reliance on any particular language (the “absoluteness” of the notion of computability, in
Gödel’s phrase), but at the price of pluralism about techniques.

Wittgenstein then stressed, in light of Turing, that one must admit what one does. What
we do is to employ a variety of techniques with the language of mathematics and logic to
explore long, unsurveyable Principia proofs mathematically. This is not, contrary to what is
often held, an attempt to refute logicism, but rather to explore what it ultimately comes to59.

In the most quickly appearing cases of unsurveyable proofs in Principia, we would
simply count the variables involved, and apply arithmetic. In more complex cases, we
would develop further techniques of representation and apply these. The point—just as
Mühlhölzer’s minimalist construal of surveyability states—is not necessarily immediate
intelligibility (such may well emerge, of course), but the preservation of the kind of certainty
and termination at which proof aims, in practice. The price, as Wittgenstein wrote, is that
now mathematics must be admitted to comprise a “colorful mix of techniques of proof”
(Wittgenstein [19] [RFM] I §§46-48)60. And this means that the sense in which mathematics
is “applied” varies with the evolution of human notations and purposes61.

In 1944/45 Turing [38] presented a theory of “types” with an eye on developing layers
of such techniques. His idea was to look toward ordinary scientific and mathematical
“phraseology” in developing higher-level programming languages and “types” (as we
would call them today)62.

We should not be surprised to learn that he was inspired in this by discussions with
Wittgenstein. He wrote,

The statement of the type principle given below was suggested by lectures of
Wittgenstein, but its shortcomings should not be laid at his door ([38], p. 247).

What we see here is Turing’s development of the Hilbertian ideal of surveyability in light of
the programming languages that, as he insisted, would do as much for the use of computing
in mathematics as the development of hardware63.

Turing was clear right at the outset that he was not quarreling with logicism, but
exploring what it could give rise to:

It has long been recognised that mathematics and logic are virtually the same
and that they may be expected to merge imperceptibly into one another. Actually
this merging process has not gone at all far, and mathematics has profited very
little from researches in symbolic logic. The chief reasons for this seem to be a lack
of liaison between the logician and the mathematician-in-the-street. Symbolic
logic is a very alarming mouthful for most mathematicians, and the logicians
are not very much interested in making it more palatable. It seems however that
symbolic logic has a number of small lessons for the mathematician which may
be taught without it being necessary for him to learn very much of symbolic logic.

In particular it seems that symbolic logic will help the mathematicians to
improve their notation and phraseology, which are at present exceedingly un-
systematic, and constitute a definite handicap both to the would-be-learner and
to the writer who is unable to express ideas because the necessary notation for
expressing them is not widely known. By notation I do not of course refer to such
trivial questions as whether pressure should be denoted by p or P, but deeper
ones such as whether we should say ‘the function f (z) of z’ or ‘the function f ’
([38], p. 245).
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Philosophically Turing is realizing the Hilbert ideal of metamathematics, but in a newly
dynamical way. The key would be to reflect on how notations could be developed that
would provide surveyability. Here, a form of intelligibility does enter, but it is procedural:
the point is to help the human being dealing with computational proofs formulate and
discuss, so to speak “metamathematically”, the situations that arise, a kind of “programme”.

Turing’s suggestion for this was drawn out of the kind of ordinary language philoso-
phy Wittgenstein had presented in his lectures. We should conduct, Turing wrote,

(i) an extensive examination of current mathematical, physical and engineering
books and papers with a view toward listing all commonly used forms of notation.

(ii) Examine them to see what they really mean. This will usually involve state-
ments of various implicit understandings as between writer and reader. But the
laying down of a code of minimum requirements for possible notations should
be exceedingly mild, avoiding the straightjacket of a logical notation.

(iii) Laying down a code of minimum requirements for desirable notations. The
requirements should be exceedingly mild . . . ([38], p. 245).

He also emphasized the need to make the deduction theorem central and to make “very
clear statements of the fundamental nature of the symbols” ([38], p. 245). He adds, echoing
Wittgenstein’s idea about the colorful mix of techniques, that

It would not be advisable to let the reform [of notation] take the form of a cast-iron
logical system into which all the mathematics of the future are to be expressed. No
democratic mathematical community would stand for such an idea, nor would it
be desirable( [38], p. 245).

Here we see a kind of dynamic, evolutionary attitude toward the role of notations and
languages in human being’s implementation of Hilbert’s idea of metamathematics. This
leads to the pluralism of techniques on which Turing’s 1939 discussions with Wittgenstein
focused. It also points toward what Turing called the inevitable need for “common sense”
(i.e., non-algorithmic uses of human “intuitions”, or hunches) in addition to “reason” (i.e.,
formal routines) in mathematics64.

This evolutionary attitude toward the development of notations and language was of
great philosophical importance to Turing. First, we note his insistence on the importance of
surveyability for the very possibility of proceeding with proof and computation at all. In
his address to the London Mathematical Society [106], he put the point humorously:

The Masters [i.e., mathematicians] are liable to get replaced because as soon as
any technique becomes at all stereotyped it becomes possible to devise a system
of instruction tables which will enable the electronic computer to do it for itself.
It may happen however that the masters will refuse to do this. They may be
unwilling to let their jobs be stolen from them in this way. In that case they would
surround the whole of their work with mystery and make excuses, couched in
well-chosen gibberish, whenever any dangerous suggestions were made. I think
that a reaction of this kind is a very real danger ([106], 496).

Resonating with Wittgenstein’s remarks on certainty and surveyability, Turing’s point is
that nonsense, the mucking up of surveyability in the use of language, would undercut the
very possibility, not only of using computations to further mathematical research, but of
mathematics itself. The point was of course wholly prescient, as we look at the problems of
nonsense and disinformation at work in the world wide web.

A final Hilbertian echo in Turing concerns Hilbert’s more global concerns with culture
as a whole, and the role of mathematics in it. In his 1930 address in Königsberg, a philo-
sophical meditation on the possibility of a harmony between thought and nature, Hilbert
had written that

The instrument which mediates between theory and practice, between thought
and observation, is mathematics; it builds the connecting bridges, and makes
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them ever sounder. Thus it happens that our entire modern culture, in so far
as it rests on the penetration and utilization of nature, has its foundation in
mathematics ([68], §22, p. 1162)65.

Hilbert’s entire lecture should be compared with Turing’s bold and far-thinking suggestions
about the future of computation in his report to the National Physical Laboratory of 1948,
the founding document of artificial intelligence [107]. Turing speculates there about the
future of “intelligent machinery”, hypothesizing that the very idea of “intelligence” involves
appreciating the differences among different kinds of search. First, he rightly predicts that
what he calls “intellectual searches” for algorithms will preoccupy scientists increasingly in
the future ([107], p. 516). Next, in light of Watson and Crick, he predicts the development
of computational biology:

There is the genetical or evolutionary search by which a combination of genes
is looked for, the criterion being survival value. The remarkable success of this
search confirms to some extent the idea that intellectual activity consists mainly
of various kinds of search ([107], p. 516).

This should be compared with Hilbert’s synthesis of all the sciences in his 1930, which also
included biology ([68], §8, p. 1159).

Finally, Turing emphasizes the human evolutionary aspect of the development of
mathematics. Here, we see the echoes with Hilbert’s general remarks on culture, as well
as Wittgenstein’s anthropologized remarks about human forms of life and the place of
calculations within them. Turing writes ([107], p. 516),

The remaining form of search is what I should like to call the “Cultural Search‘
. . . [T]he isolated man does not develop any intellectual power. It is necessary
for him to be immersed in an environment of other men, whose techniques he
absorbs during the first 20 years of his life. He may then perhaps do a little
research of his own and make a very few discoveries which are passed on to other
men. From this point of view the search for new techniques must be regarded as
carried out by the human community as a whole, rather than by individuals.

We see how important the “cultural” aspects of surveyability become for Turing, as he
gazes into the future. The whole is an adaptation of Hilbert’s and Wittgenstein’s work in
the direction of our present world.
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Notes
1 Hodges [3], p. 85; see Floyd [4], §5.3.1 for discussion.
2 See the published lecture notes and discussion of them by Sieg in Hilbert [1].
3 See Smithies’s notes of Newman’s lectures from the year before (1934) [6] and discussions in Hodges [3], pp. 63-4, 87 and Floyd [4],

pp. 106–107.
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4 Bernays and Turing [8].
5 Post wrote ([12], p. 284) about the lack of “surveyability” of formal logic at the time, noting “the forbidding, diverse and

alien formalisms” that grew up by 1936; see Floyd [4], p. 107. The confluence of Post’s and Turing’s work on the concept of
computability is discussed in Davis and Sieg [13] and Sieg [14].

6 Hilbert began using the term in connection with logical foundations as early as 1917. His remarks, some to be elucidated below,
appear in quotations from his lecture notes in Hilbert [1], pp. 48, 117, 490 as well as in Sieg [15], pp. 23, 32; Hilbert [16], §5;
Hilbert [17], p. 383; Hilbert [18] §2, Sieg contributing excellent discussions of this material. See Wittgenstein [19] [RFM] III §2, and
Wittgenstein [20] MS 122, p. 43r. Mühlhölzer notes ([21], p. 58 n. 2) that Wittgenstein does not write about the “surveyability” of
proof until 1937, but the idea of surveyability in connection with the sense of a proposition, a totality of numbers, or “grammar”
in recursive arguments occurs earlier, in, e.g., Wittgenstein [22] [PR] §§1, 121f., where the term is unfortunately sometimes
unhelpfully translated as “bird’s-eye-view”.

7 Mühlhölzer [21], pp. 58-9, n 1; compare Mühlhölzer [23].
8 When “survey” occurs in Turing’s writings, it means, as in ordinary English, an organized presentation of types, forms, or results,

e.g., the types of “ground forms” in Turing’s account of morphogenesis ([25], p. 824) or statistical surveys, interestingly dismissed
by Turing as hopeless for the exploration of concepts such as thinking (Turing [26], §1). Though I shall in the concluding section
speak of Turing as an “ordinary language” philosopher, I emphatically will not mean the “bad” ordinary language philosophy
idea of simple statistical surveys, or fixed rules of grammar that are static, but something more normative and dynamic.

9 Tao [27], Avigad [28] and [29], Zeilberger [30].
10 Hodges [3] highlights especially the 1932 personal letter of Turing’s, “The Nature of Spirit”, and Turing’s reading of Eddington [32]

in connection with problems about the mind, which Hodges takes to have been of central to Turing throughout his life.
Compare Hodges [33].

11 See, e.g., Turing and Copeland [9] and Sieg [34].
12 See Floyd [35,36], and [4].
13 See Floyd [4], p. 124.
14 Floyd [4,35].
15 Kennedy [39].
16 After Gödel [40], p. 306, the most sophisticated such allegation may be found in Sieg’s work axiomatizing the “bounded locality”

conditions involved in the concept of computation (see, e.g., Sieg [41]), work that brings Hilbert’s axiomatic method to bear, very
beautifully, on Turing’s characterization of “computation”. I do not differ with this as a piece of genuine mathematico-logical
and philosophical work. However, my reading makes Church, rather than Turing, the asserter of a full-fledged “thesis”, often
deemed “unproveable”. On the issue of “proving” the Church thesis, see Black [42] and Folina [43].

17 See Sieg [14].
18 Post [44], p. 377n 9, Gödel [40], which Gödel there describes as a “footnote” to Gödel’s use of “mathematics” in his [45], p. 73,

line 3. For discussion of Gödel and Turing see Webb [46] and Copeland and Shagrir [47].
19 Wittgenstein [20], MS 152, p. 96 uses hausbackener; see for discussion Floyd [36], p. 26; [48], p. 60.
20 See Kennedy [49,50].
21 See Wittgenstein [51] [PI] §48, in light of §51 and Floyd [52]). The more refined, granular notion of “technique” plays a far more

important, target role than Praxis in his later work, on which see chapter 8 of Floyd and Mühlhölzer [53].
22 Floyd [36,52] and Floyd and Mühlhölzer [53], chapter 8.
23 As Mühlhölzer points out ([21], p. 61, n. 6) Hilbert [16] and Hilbert [17] do not use the stroke notation, whereas Wittgenstein did,

at Wittgenstein and Waismann [57] (hereafter “[WVC]”), p. 84, Wittgenstein [58] [PR] §103ff, [58] [PG], pp. 329ff., 350, [19] [RFM]
I §25ff., §45 §§64ff., §99, §169, III §10, §44, §§51ff.

24 https://en.wikipedia.org/wiki/Subitizing#:~:text=Subitizing%20is%20the%20rapid%2C%20accurate,for%20small%20numbers%
20of%20items (accessed on 17 October 2022).

25 Kripke [59]. See Steiner [60] for discussion.
26 Calculation in the head is an interesting phenomenon for Wittgenstein, because it is not so clear what the buckstoppers are.

Presumably the certainty involved may be reproduced for easy cases “in the head” by humans who have mastered the usual
written routines. This raises a question: in a case where one person has mathematical authority over another, and no pencil
or paper are to hand, the buckstopper might be whatever that authority him or herself says. However, written materials may
typically be used to check and undermine that authority. If not, we are bordering on the use of what an anthropologist would call
an “oracle”, or priest.

27 In Wittgenstein [61], [BrB] §32; compare Wittgenstein [20], MS 169, p. 36v (1949), and Wittgenstein [51] [PI] PPF p. xiv, §372.
28 See Mühlhölzer [21] for discussion. Marion [62] skirts errors in this regard, while still insisting that the criterion is visual.

https://en.wikipedia.org/wiki/Subitizing#:~:text=Subitizing%20is%20the%20rapid%2C%20accurate,for%20small%20numbers%20of%20items
https://en.wikipedia.org/wiki/Subitizing#:~:text=Subitizing%20is%20the%20rapid%2C%20accurate,for%20small%20numbers%20of%20items
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29 Kreisel [63], p. 21, attributing the quote to Thomas Hewitt Key; compare Kreisel [64], pp. 158, 165n, 290. The actual quotation is:
What is mind?—No matter. What is matter?—Never mind.

30 Bernays [65].
31 Wittgenstein [55], [OC], §402.
32 At Ewald, (Ed.) [66], p. 1106 Ewald writes, “As for the term ‘formalist’, it is so misleading that it should be abandoned altogether

as a label for Hilbert’s philosophy of mathematics.”. Compare Sieg [67], passim.
33 Gödel’s [73] did open with a lament at the relative lack of formal precision in Whitehead and Russell [74] and [75], a falling off

from the standards set by Frege [76] and developed later on by Hilbert. Wittgenstein, in the Preface to PI (Wittgenstein [77]) states
explicitly, alluding to Frege’s term in the Preface to his [76], that logic, and so the method of his book, cannot proceed in a “gap
free” manner [Luckenlose]. This responds to the light shed for him on the nature of logic by Gödel [78] and Turing [7].

34 For Russell in Principia Mathematica (Whitehead and Russell [74] and [75], Introduction Chapter II, section III) a “judgment of
perception” in his “multiple relation” theory of judgment is also taken to be a successful judgment. By definition, to perceive that
a singular judgment of true requires actual perception, hence, success in the sense that something perceived is in fact true. This is
not to embrace self-evidence or dogmatism about truth, rather to frame a definition of truth that assumes we are at least capable of
judging truths. For discussion see Floyd [82] and Floyd and Kanamori [83].

35 Wittgenstein [22], [PR], p. 321; cf. Wittgenstein [57] [WVC], pp. 131ff.
36 In Wittgenstein [84], letter 30. For discussion see Dreben and Floyd [85], p., 32, n. 53, a paper arguing that the Tractatus surrendered

the conjecture of a decision procedure for all of logic.
37 On the importance of Hilbert’s formalism to Wittgenstein, see Mühlhölzer [21,23,86].
38 Wittgenstein [57], WVC, 147–148.
39 So long as it is a language of the “relevant” kind. On this see Kennedy [49].
40 The anthropological idea of an “oracle” is also mentioned by Wittgenstein at Wittgenstein [37] [LFM] XI, p. 109, and in a general

way adopts the anthropological quality of that work and Wittgenstein [58] [RFM] I, which is incipient in Wittgenstein’s Blue
and Brown Books (Wittgenstein [61], BlB, BrB]). It was criticized by Post as merely “picturesque” ([43], p. 311, n. 23, discussed in
Floyd [4], pp. 138ff).

41 See Copeland’s discussion in Turing and Copeland [9], pp. 135–145.
42 Hilbert [90] §29; Hilbert [68] §26.
43 Wittgenstein’s remarks on Turing’s diagonal argument occur in Wittgenstein [91], hereafter “RPP I”, §§1096ff. See Floyd [35] and

Floyd and Mühlhölzer [53] for analysis of Turing’s argument in this philosophical context.
44 This is perhaps why, later on, Wittgenstein would conceive of metamathematics in terms of the idea of a “geometry of signs”, the

development of “models” for reasoning about mathematics itself (Wittgenstein [19] [RFM] III §§46ff.)
45 Hilbert is quoted using this term in Sieg [15], pp. 24, 30 within a wonderful discussion of Hilbert’s programs.
46 Wittgenstein had emphasized the idea of a formal system as a “calculating machine” already in Wittgenstein and Waismann [57]

[WVC], pp. 106, 136, and returned to the theme of human “mechanical” procedures in Wittgenstein [61] [Bl] and [Br]. Of course
independently of Turing, Post [11] also adopted the human worker “mechanical” model of computation. On the relation to
Turing, see Davis and Sieg [13].

47 Wittgenstein [91], RPP I §§1096ff.
48 See Sieg [41]. Black [42], pp. 255f. contains a very useful discussion of the background to this in other work by Kolmogorov,

Uspenski, Mendelson, Shoenfield, and Gandy.
49 These were proven to be equivalent in Church [93], as Turing notes ([7], p. 231).
50 Again, compare Kennedy [49] for discussion.
51 See https://en.wikipedia.org/wiki/Machine, accessed on 28 October 2022.
52 Wittgenstein came to regard his [61] Brown Book §41 idea of “general training” as “the problem” after he read Turing’s [7]. On this

connection between Wittgenstein’s “problem” and the Entscheidungsproblem as interpreted by Turing, see Floyd [36], pp. 21–22.
53 See Shapiro [96]. This does not imply that the step from “recursive” to “effectively computable” in the sense of Church, Gödel,

Kleene and Herbrand is more determinate and not open-ended, since the relevant classes of functions are provably co-extensional,
whereas the step from “effectively computable” to “recursive” is more conceptually involved and perhaps not yet proven.
Compare Black [42].

54 See Chapter 8, Floyd and Mühlhölzer [53] for discussion.
55 See Floyd [4], pp. 123-4. Watson had introduced Wittgenstein Turing, according to Hodges [3].
56 Mühlhölzer [21] and [23] contain much excellent analysis of RFM III in light of the manuscripts; see also Mühlhölzer [98] on the

question of a “foundation”.
57 See Goldfarb [99] for a clear analysis of the situation with Frege, Russell and Poincaré.
58 Kennedy [50] explores the point in many directions, focusing on definability and “formalism freeness”.

https://en.wikipedia.org/wiki/Machine
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59 Compare Floyd [100]. Schroeder still regards Wittgenstein as being critical of logicism, and explores the notion of surveyability
at length ([101], chap 3.5). For a more elaborated view of the confrontation with logicism and other foundational views, see
Mühlhölzer [98].

60 See Mühlhölzer [23] and Floyd and Mühlhölzer [53], pp. 211ff. for discussion of this remark.
61 Hence, contra Schroeder [101], p. 118, n. 10, I believe Floyd and Mühlhölzer [53], pp. 42–49 were right to read Wittgenstein’s

remark about mathematics appearing in mufti with carefulness.
62 For commentary on Turing [38] see Floyd [102] and Wolfram [103].
63 Turing and Copeland [9], p. 266; Davis [104], p. 155 discuss Turing’s remark that his attitude contrasts with “the Americans”,

who tend to throw hardware at problems, as opposed to designing software.
64 See Turing [105], p. 23, discussed in Davis and Sieg [13] and Sieg [14].
65 One can hear a four-minute recording of Hilbert reading the lecture at https://www.maa.org/book/export/html/326610,

accessed on 31 October 2022.
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