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Abstract: Imaging flow cytometry (ImFC) represents a significant technological advancement in the
field of cytometry, effectively merging the high-throughput capabilities of flow analysis with the
detailed imaging characteristics of microscopy. In our comprehensive review, we adopt a historical
perspective to chart the development of ImFC, highlighting its origins and current state of the art and
forecasting potential future advancements. The genesis of ImFC stemmed from merging the hydraulic
system of a flow cytometer with advanced camera technology. This synergistic coupling facilitates
the morphological analysis of cell populations at a high-throughput scale, effectively evolving the
landscape of cytometry. Nevertheless, ImFC’s implementation has encountered hurdles, particularly
in developing software capable of managing its sophisticated data acquisition and analysis needs.
The scale and complexity of the data generated by ImFC necessitate the creation of novel analytical
tools that can effectively manage and interpret these data, thus allowing us to unlock the full potential
of ImFC. Notably, artificial intelligence (AI) algorithms have begun to be applied to ImFC, offering
promise for enhancing its analytical capabilities. The adaptability and learning capacity of AI may
prove to be essential in knowledge mining from the high-dimensional data produced by ImFC,
potentially enabling more accurate analyses. Looking forward, we project that ImFC may become an
indispensable tool, not only in research laboratories, but also in clinical settings. Given the unique
combination of high-throughput cytometry and detailed imaging offered by ImFC, we foresee a
critical role for this technology in the next generation of scientific research and diagnostics. As such,
we encourage both current and future scientists to consider the integration of ImFC as an addition to
their research toolkit and clinical diagnostic routine.

Keywords: flow cytometry; imaging flow cytometry; artificial intelligence; phenotype analysis

1. Introduction

Flow cytometry (FC) is a powerful methodology for the characterization of complex
phenotypes in cellular populations, as well as the quantification of cellular processes such
as proliferation, cell death, and cell differentiation [1]. The rationale of FC is based on
the analysis of the spectral characteristics of cells in a homogeneous liquid mixture. A
standard flow cytometer, in which FC analysis is performed, can be divided into three
distinct systems: a hydraulics system, an optical system, and an electronics system. The
hydraulics system performs hydrodynamic focusing in order for cells to pass sequentially,
as single events, through an interrogation point. At this point, as part of the optical
system, a laser source is used for excitation-specific fluorophores (that have been added
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in a preanalytical step), while the emitted fluorescence from each cell is passed through
detection filters. Third, the electronics system stores fluorescence signals in a digital
format [1–4]. These characteristics make flow cytometry invaluable in several scientific
fields such as hematology, immunology, and oncology, among others [5–15].

Imaging flow cytometry (ImFC) stands as an innovative and technologically advanced
offshoot of conventional flow cytometry (FC), distinguished by new modifications and
improvements to existing techniques. Using a camera, ImFC is able to provide granular and
high-quality visual information about the detected cells. More specifically, it provides broad
information about the morphology, or structural characteristics, of the cell. This includes a
detailed analysis of the cell size, shape, internal structure, and the distribution of specific
components or markers within the cell. Thus, the combination of imaging technologies
with flow cytometry represents a major advance in cellular analysis [16]. This way, users
have a supplementary source of information to validate their fluorescence data and provide
a comprehensive and accurate characterization of cell populations. The principles and key
applications of ImFC are presented in Figure 1.
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Figure 1. The workflow for imaging flow cytometry (ImFC), a technology that combines flow
cytometry and microscopy to enable high-throughput analysis of cells. Cells are collected and
homogenized to ensure a consistent sample containing single cells, which is crucial for accurate
flow cytometry. Cell suspension is then loaded into the ImFC instrument (an Imagestream MK
II is depicted for reference), where individual cells are isolated and aligned for imaging. As cells
pass through the ImFC device, they are imaged at high speed, capturing detailed fluorescence
and brightfield images for each cell. The collected images are analyzed to extract multiple data
points. The technology has several applications, including assessment of cell cycle stages based
on nuclear DNA content and morphology; detection and characterization of small particles like
exosomes or microvesicles that may be present with the cells; morphological and phenotypic profiling
of cells, including size, shape, and internal complexity; sorting capabilities to physically separate
and collect cells based on the analysis (not available in the depicted cytometer); and quantitative
analysis of pathogens inside cells, which is vital for studying infections and immune responses. ImFC
workflow enables rapid and detailed cellular analysis, facilitating advanced research in cell biology,
immunology, and related fields.

In the evolving landscape of cytometric technologies, ImFC emerges as a cornerstone
advancement, distinguishing itself by its application versatility, particularly in the study of
non-adherent cells, and its unmatched capability in detecting rare cell populations. As such,
ImFC has the advantages of both flow cytometry and microscopy. First, it is advantageous
over typical FC in a manner that provides structural information apart from the spectral
properties of cells. ImFC’s ability to capture high-resolution images of cells in flow enables
the visualization of cellular morphology, the organization of intracellular components, and
the spatial relationships between different cell markers. This is a significant advancement
over conventional FC, which is largely limited to measuring fluorescence intensity without
providing any contextual imagery of the cellular structures producing these signals. By
integrating structural with spectral data, ImFC facilitates a more nuanced understanding of
cellular behavior, phenotypic variations, and complex biological processes [17]. Second, it
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provides a high throughput, a feature that is not available in fluorescence microscopy [18].
Unlike traditional microscopy, IFC transcends conventional limitations by integrating the
ability to analyze an extensive array of markers simultaneously and in a high throughput.
The technological nuances that position ImFC as a revolutionary tool in cytometry include
its robust data acquisition, uniform field illumination, and the automated segmentation
of images, relying less on supervised analysis than microscopy [19]. These technological
strides not only enhance the precision and efficiency of cellular analysis, but also pave
the way for groundbreaking research in cellular biology and contribute to the scientific
community’s understanding and exploration of cellular dynamics [17].

The current review unfolds the chronological progression of imaging flow cytometry
(ImFC), from its historical roots to its contemporary applications, and looks forward to the
potential challenges in its future deployment. It also critically addresses the pivotal steps
required to transition this technology from laboratory research to practical clinical use.

2. History of Imaging Flow Cytometry

FC development through the years is based on the same principles as a fluorescence
microscope, with the main difference being that the fluorescence is digitalized as a signal
and not as an image [1]. Following the vision that a cytometer could employ imaging
capabilities, an initial implementation of ImFC was developed as early as 1978 by a research
team at Rochester University, who envisioned that a cytometer could utilize imaging capa-
bilities, leading to the initial development of imaging flow cytometry [20,21]. The authors
developed a slit-scan flow system that performed slit-imaging. This was a preliminary
technological milestone that was, however, ahead of its time, as it needed necessary techno-
logical evolution that would take more than 20 years. Critical technology implementations
in detectors and imaging systems led to the first commercially available imaging flow
cytometers [22]. Commercial systems, even though they lacked resolution compared to
fluorescence microscopes, allowed for the analysis of protein particles [23]. These im-
plementations, though promising, were never commercialized and the field remained
hindered for nearly two decades, mainly because new technologies were in need to support
ImFC requirements.

For the next two decades, the scientific and technological community worked at
refining and enhancing this innovative technique. During this period, the major hurdles
stemmed from the limitations of then-existing technology in detectors and imaging systems.
The process of capturing and interpreting detailed cell images in real time at the scale
needed for flow cytometry required far more sophisticated and powerful hardware and
software than those available at that time. Throughout the 1980s and 1990s, significant
efforts were made to develop the necessary technological components and increase their
resolution and speed while ensuring their reliability. By the turn of the century, research
and development in the field began to bear fruit, ultimately leading to the launch of the first
commercially available imaging flow cytometers, along with several other developments in
the field of cytometry. The advancements in creating these ImFC instruments significantly
enhanced its capabilities. These include the introduction of high-resolution analysis with
a 60× objective, variable objectives for tailored throughput options, the ability to switch
between flow cytometry and ImFC modes, and an increased laser line versatility for better
reagent compatibility. These improvements position ImFC uniquely in biomedical research,
especially for imaging cells in suspension, offering advantages over systems like high-
throughput microscopy designed for adherent cells [18]. ImFC instruments marked the
beginning of ImFC in cellular analysis, in parallel to multiparameter flow cytometry [1,24–27].

3. State of the Art: Current Imaging Cytometers and Present Applications

The trajectory of imaging flow cytometry (ImFC) saw a marked progression with
the first successful introduction of commercial ImFC systems, notably Imagestream and
FlowSight, originally developed by Amnis Corporation (and currently under Cytek Bio-
sciences). These robust systems revolutionized the field with their superior capabilities and
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advanced features. These intellectual properties were acquired by EMD Millipore in 2011.
As of the present day, these systems are marketed and commercialized under the umbrella
of the Luminex Corporation group. This consolidation represents an important milestone
in the commercial trajectory of ImFC systems, highlighting their growing prominence in the
scientific and medical industries. A number of key applications of imaging flow cytometry
are summarized in Table 1.

Table 1. Applications of imaging flow cytometry.

Application Description Ref.*

Spatiotemporal calcium
mobilization

ImFC has been used for the analysis of calcium ion (Ca2+) mobilization in T cells, combining the
statistical rigor of conventional flow cytometry with microscopic spatial information to observe Ca2+

flux in response to stimuli.
[28]

Virus–host interactions
The imaging capabilities of ImFC have been exploited to analyze viral infection stages and virus
host–interactions. Analyzed viruses include mimivirus, respiratory syncytial virus, and human
immunodeficiency virus.

[29,30]

Extracellular vesicles (EVs)
and exosomes analysis

The applications of advanced ImFC enable detailed analyses of EV subset composition, the
identification of exosomes in the circulation and their tissues of origin, and the determination of their
functional immunological impact and both physiology and pathology (such as cancer).

[31,32]

Quantification of
protein–protein interactions
in rare cell populations

Proximity ligation imaging cytometry (PLIC), designed to address the challenges of proteomic
analysis in rare cell populations, has been applied to medullary thymic epithelial cells and allowed
for the high-resolution detection/quantification of protein–protein interactions and post-translational
modifications at the single-cell level.

[33]

Quantification of senescent
cells

ImFC has allowed the simple, rapid, and quantitative detection of senescent cell populations. This
detection included live cells and required no staining. [34]

Golgi fragmentation
analysis

ImFC can be used for quantifying Golgi fragmentation, offering a rapid, automated, and unbiased
method capable of analyzing over 50,000 cells per sample. The technique has proven robust for
future Golgi dynamics research.

[35,36]

Bacterial phenotypes and
interactions

ImFC has been successfully applied in the analysis of the morphological characteristics of bacterial
cells, as well as the interactions between different bacteria and with the host cells. [37–39]

Mitochondrial dynamics

ImFC introduces a novel, unbiased, and high-throughput approach for measuring mitochondrial
fusion activity using the Amnis ImagestreamX™ MKII and IDEAS™ V6.1 software. This method
enhances the traditional polyethylene glycol (PEG) fusion assay by efficiently detecting and
analyzing fused cells—identified by their dual nuclei and the co-localization of different
mitochondrially targeted proteins.

[40]

Label-free analysis of cell
cycle distribution

ImFC has been used to demonstrate a polarized antigen distribution in B cells during an immune
response that was sustained among progeny. This successfully revealed the cell cycle distribution of
cells and a consistent pattern of polarized antigen distribution in B cells during immune responses, a
pattern that persists across generations. Imagestream X ImFC platform and IDEAtool v6.1 software
were used for acquisition, while cellprofiler was used for further analysis.

[41]

Analysis of intracellular
pathogens

ImFC has successfully been used for the analysis of Toxoplasma gondii and Mycobacterium
tuberculosis infections in cell lines. This type of analysis offers a prospect for studying host–pathogen
dynamic interactions. IDEAS software with the Feature Finder algorithm was implemented.

[42]

Cell sorting

ImFC offers the capability for cell sorting, a feature available in specialized FC sorters. ImFC offers
single-cell resolution and highly accurate label-free sorting, above 90%, in several experimental
conditions. An on-chip sorting technology was developed using nanofluidics and electrostatic force,
implementing a phase-contrast/fluorescence microscope ImFC system.

[43,44]

Microparticle imaging
ImFC has been used for high-throughput single-microparticle imaging flow analyses. The authors
developed a rapid optical iMFC platform that contained self-focusing microfluidic apparatus,
optoelectronic communication, and an informatics analysis system.

[45]

Ghost cytometry

Ghost cytometry, a technique for classifying cells and other microparticles without the need for
labeling or imaging, has been used in conjunction with ImFC. It offers the potential for cell sorting.
Ghost cytometry was developed as an image-free fluorescence cytometry utilizing a single-pixel
detector, which compressively translates spatial information from cell movement across a static,
randomly patterned optical structure into sequential signals.

[46–48]

* Relevant references.

Headland et al. showed that the ImageStream Mk II imaging flow cytometer demon-
strates remarkable capabilities in the analysis of microparticles and calibration beads,
ranging from 20 nm to 1 µm. It excels in minimal sample preparation and volume re-
quirements, enabling accurate quantification in various samples, including whole blood



Methods Protoc. 2024, 7, 28 5 of 14

and plasma. Significantly, it outperforms traditional cytometers like the BD LSRFortessa,
detecting nanoparticles as small as 20 nm, showcasing a superior sensitivity. With its ad-
vanced imaging in multiple wavelengths, including brightfield images and fluidics control,
it achieves a high correlation in quantifying microparticles, offering a breakthrough in
microparticle research through detailed phenotypic analyses and real-time generation kinet-
ics [49]. Keeping with this, Erdbrugger et al. confirmed that ImFC, using an Imagestream
imaging FC, represents a more sensitive method for characterizing microparticles (MPs)
than traditional FCM alone. This approach overcomes some limitations of conventional
FCM by providing morphological insights and allowing for the differentiation between true
single events and aggregates or debris, despite challenges in detecting MPs smaller than
0.200 µm and the need for better standardized calibrators [50]. Given the performance and
high resolution of traditional FC in the quantitative and qualitative analysis of nano-sized
vesicles from cells (up to 100 nm) [51], ImFC has the prospect to be suitable for nanobiology
studies and clinical applications like analyzing vesicle-based biomarkers.

A very interesting application is the label-free analysis of cell cycle distribution [52].
Utilizing high-throughput ImFC, researchers showcased a polarized distribution of antigens
in B cells throughout an immune response, a characteristic maintained across descendants.
As B cells trigger humoral immune responses, they gather antigen to present to correspond-
ing T cells. Following antigen accumulation by mouse B cells, its polarized arrangement
persists for prolonged durations in vivo. High-throughput ImFC revealed that this polar-
ization remains intact through B cell mitosis, leading to uneven antigen distribution among
offspring [41]. In conclusion, high-throughput ImFC successfully revealed the cell cycle
distribution of cells, as well as a consistent pattern of polarized antigen distribution in
B cells during immune responses, a pattern that persists across generations. Thus, this
technological advancement plays a pivotal role in enhancing our understanding of the
mechanics of immune response activation and its implications for B cell division and
subsequent antigen segregation among progeny.

Another innovative approach presented a sheathless, microfluidic imaging flow cy-
tometer that incorporated stroboscopic illumination for blur-free fluorescence detection
at an ultra-high analytical throughput, enabling the detection of the internal localization
of P-bodies and stress granules. This system was capable of multiparametric fluorescence
quantification and sub-cellular localization down to 500 nm with microscopy image qual-
ity, achieving analytical throughputs in excess of 60,000 and 400,000 cells per second for
fluorescence and bright-field detection, respectively [53].

ImFC has been applied in the analysis of intracellular pathogens. Haridas et al. re-
ported an Imagestream-based analysis of Toxoplasma gondii and Mycobacterium tubercu-
losis infections in cell lines [42]. Phanse et al. described an ImFC method for analyzing the
internalization of Salmonella species [54]. Also, studies have shown the analysis of malaria
development [55]. This type of analysis offers a prospect for studying host–pathogen
dynamic interactions. Significantly, the advantages offered by ImFC support its diagnostic
potential, with a prospect for translation into clinical practice [56]. Recent advancements in
imaging flow cytometry have significantly improved its detection performance, offering
an enhanced sensitivity, wavelength range, throughput, and detection limits, especially in
fluorescence performance. A study by Luo et al. demonstrated a deep-learning-enabled
imaging flow cytometry system for the high-throughput detection of Cryptosporidium and
Giardia in drinking water. This system achieved a classification accuracy greater than 99.6%,
with a sensitivity of 97.37% and a specificity of 99.95%, showcasing the system’s high-speed
analysis capability at 346 frames per second [57]. The capacity to analyze microbial popula-
tions, as well as to scrutinize host–pathogen interactions, coupled with ImFC’s potential
diagnostic capabilities, underscore ImFC’s immense potential for integration into clinical
practice, which could revolutionize patient care and infectious disease management.

ImFC offers the capability for cell sorting, a feature available in specialized FC
sorters [43,44]. ImFC offers a single-cell resolution and highly accurate label-free sort-
ing, above 90%, in several experimental conditions [58]. Label-free cells are easier to
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manipulate thereafter and do not need to undergo the preparation step of labeling that may
lead to a decrease in viability. The increased accuracy of ImFC in isolating single target
cells is believed to be mostly based on the capability for morphological data analysis [58].
The implementation of machine learning algorithms is considered to further assist in the
development of highly accurate, label-free cell sorting [59,60]. The unique capability of
ImFC to perform cell sorting at a single-cell resolution, with an impressive accuracy of
above 90% in diverse experimental conditions, opens up new frontiers in cell-based re-
search. Notably, its ability to perform label-free sorting, enhanced by morphological data
analysis and further augmented with machine learning algorithms, minimizes the need
for preparation steps that could potentially reduce cell viability, thereby simplifying cell
manipulation and ensuring a higher degree of cell integrity.

It is important to mention a recent and significant stride forward in the field. This is
the introduction of the FACSDiscover S8 Cell Sorter (BD Biosciences), which is the first
commercial imaging sorter, combining spectral and morphological image-based sorting
capabilities [61,62]. Similarly, Visionsort (Thinkcyte) utilizes ghost cytometry and AI-
powered algorithms to offer robust and accurate sorting capabilities [63,64].

ImFC has made significant strides since its inception, particularly with the introduc-
tion of commercial systems like Imagestream and FlowSight. Based on these advancements,
ImFC has been applied in the label-free analysis of cell cycle distribution and cellular
processes such as polarized antigen distribution in B cells during an immune response.
ImFC has also been proven invaluable in studying intracellular pathogens, such as Tox-
oplasma gondii and Mycobacterium tuberculosis infections, thus indicating a promising
avenue for the integration of this technology into clinical practice. Another important
feature of ImFC is its cell sorting capability, providing highly accurate sorting at a single-
cell resolution. The implementation of machine learning algorithms has further refined
this process, reducing the need for preparation steps that could compromise cell viability.
Collectively, the progress in the field underscores the significant potential of ImFC for ad-
vancing cell-based and clinical research, thereby contributing substantially to the medical
and scientific industries.

4. Implementation of Machine Learning and Artificial Intelligence

Artificial intelligence (AI) and machine learning (ML) represent transformative tech-
nologies that are revolutionizing various sectors of society. AI refers to the simulation
of human intelligence processes by machines, especially computer systems, while ML, a
subset of AI, involves the development of algorithms that allow computers to learn and
make decisions from data, thus improving their performance over time without being
explicitly programmed. The application of ML algorithms has been widely used in imaging
flow cytometry [64]. In a multiplex analysis by Eulenberg et al., deep learning offered the
prospect of reconstructing biological processes such as cell cycle distribution, as well as
disease progression [65]. Importantly, deep-learning-based predictions, apart from being
sensitive, have been proven fast enough to support the high-throughput of generated data
from ImFC. A deep learning approach has been successfully used to assess imaging flow
cytometry data and is believed to have changed the landscape of high-throughput cell
analysis [66]. Several successful applications support this notion. For example, 3D imaging
flow cytometry (3D-ImFC) was performed by Subramanian R et al. to reveal hepatic stellate
cell (HSC) and liver endothelial cell (LEC) morphology at a single-cell resolution. In their
study, a combination of transmission and side-scattered single-cell images of liver cells
with artificial intelligence was proposed to provide a staging system of NASH progres-
sion [67]. Furthermore, tomographic imaging flow cytometry (tIFC) has arisen to prevail
over 2D to the 3D imaging of the surfaces and internal structures of particles [68]. The
successful integration of AI and ML in imaging flow cytometry exemplifies the exciting
prospects of these technologies in advancing our understanding of cell biology and disease
mechanisms. Importantly, ImFC, through the adoption of microfluidics and lab-on-chip
technologies, aims to simplify and reduce the costs of these analyses, with high-resolution
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single-cell imaging maximizing data extraction and enabling the use of smaller sample
sizes. The anticipated benefits of integrating machine learning and deep learning into ImFC
are substantial and expected to drive future innovations in the field [69].

ImFC has proven to be a valuable tool in the field of protein therapeutics, specifically,
it was successfully exploited in a study of protein–silicon oil (SO) complexes. These
complexes arise when protein particles adsorb onto silicon oil droplets, a process which
has the potential to elicit an immune response, thus making it crucial to understand and
monitor. In the study by Probst et al., ImFC provided a unique ability to measure the
key parameters of these insoluble particles, including their number and shape. To further
enhance the utility of this technology, researchers have incorporated ML techniques. By
using a high amount of particle image data generated by ImFC, they have developed an
ML model that can effectively categorize and count protein–SO compounds [70]. This
combination of imaging flow cytometry and machine learning not only enhances the
analysis of protein–SO complexes, but also broadens the scope of future applications in
protein therapeutics and other related fields.

Equally prestigious is the contribution of ImFC and artificial intelligence to the classifi-
cation of non-white blood (non-WBC) cells such as circulating rare cells in peripheral blood
nucleated cells (PBNCs). Hirotsu et al. combined label-free ImFC with artificial intelligence
software and managed to distinguish circulating rare cells as non-WBC fractions among
PBNCs in cancer patients and healthy volunteers. Their described method offers exciting
prospects for cancer patient monitoring and therapy optimization [71].

In a recent publication [72], Doan et al. detailed a process for analyzing ImFC images
through deep learning techniques: by initially training a model with sample images
possessing a specific phenotype, the model then uses the image pixels as inputs to forecast
outcomes for new images. This direct analysis method was similarly employed in a recent
investigation using traditional microscopy, where a fluorescent differentiation marker
served as the factual basis for training a classifier. This classifier was then able to predict
cell differentiation proactively based on the bright-field images [73].

Deep cytometry is a recent implementation of deep learning, in which image recon-
struction is not necessary and real-time, non-supervised cell sorting can be achieved [74].
The future implications of deep cytometry are beginning to emerge. First, by employing
deep learning algorithms, cell analysis and sorting can be performed in real time with
minimal human intervention. This can dramatically increase the speed and efficiency of
the process, enabling the handling of larger samples and potentially leading to more robust
results. Second, AI could potentially be used to identify complex patterns or characteristics
in cells that may not be immediately apparent to human analysts, based on subtle correla-
tions and features. Third, AI holds promise in predicting future trends or behaviors based
on historical data. This could be instrumental in studying disease progression or the effects
of treatments at a cellular level. By analyzing past cytometry data using AI, predictive
models can be created to forecast cellular responses under certain conditions.

AI, ML, and especially deep learning techniques have had a transformative impact on
imaging flow cytometry, enabling unprecedented accuracy and efficiency in multicellular
data analysis and increasing our understanding of complex biological phenomena such
as disease progression and immunity. AI and ML facilitate highly accurate, real-time,
unsupervised cell analysis. They also hold the potential to provide valuable insights into
complex cell morphology, opening new frontiers in cell-based research, and suggest future
prospects for clinical application.

5. Imaging Flow Cytometry and Hematology: Fundamentals for a Paradigm Shift?

In the previous sections of this review, we revisited the concept that imaging flow
cytometry represents a significant technological advancement in the field of cytometry by
merging the high-throughput capabilities of flow analysis with the image-based features of
microscopy. This innovative approach has the potential to open up new avenues for the
study of hematological diseases, offering distinct advantages over traditional cytometry, as
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well as complementing and/or competing with other novel molecular methodologies such
as next-generation sequencing (NGS).

NGS has revolutionized hematology, providing insights into the genetic and molecular
underpinnings of various blood disorders [75,76]. NGS technologies have enabled the compre-
hensive genomic profiling of hematological malignancies, such as leukemia and lymphoma,
revealing the complex mutational landscapes that drive these diseases [77–80]. This has not
only improved our understanding of disease pathogenesis, but has also facilitated the
development of targeted therapies, leading to more personalized and effective treatment
strategies, and has been instrumental in the detection of measurable residual disease (MRD),
a critical factor in patient prognosis and treatment success [81–84]. Despite the challenges
associated with data interpretation and integration into clinical practice, the impact of
NGS in hematology has been transformative, and its potential for further advancements in
diagnosis, prognosis, and treatment continues to be immense.

NGS and traditional flow cytometry, while distinct in their methodologies, both play
crucial roles in the field of hematology. They complement each other in that flow cytometry
provides the rapid, real-time analysis of cellular characteristics and protein expression,
while NGS offers a deep dive into the genetic and molecular landscape of cells. However,
they also compete in certain areas. For instance, while flow cytometry has been the gold
standard for immunophenotyping, cell activity status, and measurable residual disease
detection, NGS is increasingly being used for such applications, since it also offers a
great sensitivity and specificity in detecting disease-associated genes and low-frequency
mutations [85–89].

Beyond classic cytometry, one of the primary advantages of ImFC is its high-throughput
capabilities. Unlike fluorescence microscopy, which is limited to processing a large number
of cells, and NGS, which requires extensive time for sequencing and data analysis, ImFC
can rapidly process and analyze up to 5000 cells/objects per second. This high-throughput
capability allows for a more comprehensive analysis of cell populations, which is par-
ticularly beneficial in the context of hematological diseases, where disease progression
can be monitored by changes in cell populations. In addition to its high-throughput ca-
pabilities, ImFC provides detailed morphological information about the cells it analyzes,
including cell size, shape, internal complexity, and the distribution of specific markers
in the cell. This level of detail is not typically available in NGS, which focuses more on
genetic and molecular information. In hematological diseases, cellular morphology can
provide important diagnostic and prognostic information, making ImFC a valuable tool in
these contexts [17,90]. ImFC also leverages the power of deep learning for data analysis.
Deep-learning-based predictions, apart from being sensitive, have been proven fast enough
to support the high throughput of data generated from ImFC. This combination of ImFC
and artificial intelligence can provide a more efficient and streamlined analysis compared
to NGS, which often requires more complex and time-consuming data analysis. Novel
developments, such as virtual freezing imaging flow cytometry, suggest that the imple-
mentation of information-rich cell data with artificial intelligence algorithms can further
improve ImFC’s output and throughput [91].

Kalfa et al. described the use of ImFC to enhance the study of erythroid maturation, a
process traditionally observed through microscopy, by combining the quantitative analysis
capabilities of flow cytometry with the morphological assessment power of microscopy.
ImFC is presented as a powerful tool for enumerating the various stages of erythropoiesis
from primary tissue and for culturing progenitors to study rare enucleating cells, bridging
the gap between microscopy and flow cytometry to offer comprehensive insights into
erythropoiesis [92].

Fuller et al. validated the effectiveness of an advanced immuno-flowFISH method,
combining immunophenotyping and FISH within an automated imaging flow cytometry
framework to accurately detect chromosomal abnormalities in CLL, achieving a sensi-
tivity surpassing that of current clinical standards. The integration of high-throughput
imaging flow cytometry with specific fluorescent probes and immunophenotypic markers
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allowed for the precise identification of CLL cells and their chromosomal defects, offering
substantial improvements in the detection limits for minimal residual disease monitoring.
Technically, the process involved cell staining with specific fluorophore-conjugated anti-
bodies, DNA denaturation, and hybridization with FISH probes, followed by automated,
high-resolution image acquisition and analysis, enabling the simultaneous assessment of
multiple chromosomal abnormalities in a single test without prior cell separation [93]. Sim-
ilarly, Tsukamoto et al. introduced Immunophenotyped-Suspension-Multiplex (ISM)-FISH,
a novel diagnostic approach for the simultaneous detection of the critical chromosomal
translocations (t(4;14), t(14;16), and t(11;14)) in multiple myeloma, using immunopheno-
typing with anti-CD138 antibody and multiplex fluorescence in situ hybridization (FISH)
analyzed via imaging flow cytometry. This method surpasses traditional FISH in sensitivity
and efficiency, enabling the analysis of over 25,000 nucleated cells with a detection sensitiv-
ity of up to 0.1%, demonstrating a high concordance with standard FISH and offering a
rapid, sensitive, and reliable diagnostic tool for guiding individualized treatment strategies
in multiple myeloma [94].

In conclusion, while NGS has made significant contributions to our understanding
of hematological diseases at a molecular level, ImFC offers unique advantages in terms
of its high-throughput capabilities, detailed morphological information, deep learning
integration, and label-free sorting. As such, ImFC represents a powerful tool in the study of
hematological diseases and holds great promise for the future of diagnostics and research
in this field.

6. Future Perspectives

ImFC is a relatively new technology in the field of cytometry. However, new ImFC
systems are currently under development that have increased its speed and analytical
power [45,95]. A stimulating example of ImFC development is ghost cytometry, described
by Ota et al. as an image-free rapid fluorescence “imaging” cytometry which implements
a single-pixel detector of spatial information obtained from the motion of cells relative
to a static optical structure. Such data computationally reconstruct cell morphology and
allow for rapid, accurate, and inexpensive analysis [46,47], as well as the potential for
cell sorting [48]. Recent advancements in ghost cytometry are supported by a conference
presentation and recent preprint, which provide evidence for the utility of the methodology
and its application in the detection of acute leukemia cells, respectively [96,97]. Additional
larger studies by diverse research groups will be needed to verify these promising results.

Suzuki et al. introduced label-free chemical imaging flow cytometry, merging the
rapid analysis capabilities of flow cytometry with the specificity of fluorescence imaging
and digital analysis, enhanced by a novel pulse pair-resolved, wavelength-switchable
Stokes laser. This advancement allowed for the fastest multicolor stimulated Raman
scattering (SRS) microscopy of cells in flow, achieving an unprecedented throughput of up
to ∼140 cells/s on a 3D acoustic focusing microfluidic chip. Demonstrating its versatility,
the method was applied to study metabolic heterogeneity in microalgae and to detect
cancer in blood without the need for markers, leveraging deep learning for enhanced
accuracy [98].

7. Conclusions

Imaging flow cytometry (ImFC) is a technology that has gained ground during re-
cent years based on its potential in both research and clinical settings, and promise for
revolutionizing our ability to study, quantify, depict, and ultimately understand cellular
mechanisms. In the field of basic and translational research, ImFC provides information
about cellular morphology in addition to the high-throughput capabilities of a flow cytome-
ter, illuminating our understanding of cellular structures and their respective functions.
By allowing for the high-throughput analysis of individual cells in a population, it offers a
detailed and objective view of cellular dynamics, enabling researchers to observe processes
like cell division, antigen distribution, and intracellular pathogen behavior in real time.
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The additional layer of morphological data greatly aids in the study of complex biological
phenomena and can significantly enhance accuracy. In the clinical setting, even though cur-
rent data are limited, the high precision of ImFC and its ability to perform label-free sorting,
as well as its compatibility with machine learning algorithms, indicate a promising future
potential for diagnostic applications. From studying disease progression at the cellular
level to potentially tailoring patient-specific treatments, ImFC might improve patient care,
given that it is successfully implemented. Its capacity for the real-time analysis of large cell
populations also holds promise for implementation in high-throughput clinical workflows,
potentially leading to quicker diagnoses and treatment. In conclusion, the impact of ImFC
in both research and clinical environments signals a promising future for cell-based studies
and medical practices.
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