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Abstract: The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is
destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein
stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA
was purified by including trehalose in the purification protocol. The purified SERCA showed high
protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+

and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 µM ATP).
FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme
as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were
observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding
domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect
FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the
SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for
structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use
of trehalose is recommended for the isolation of unstable enzymes.

Keywords: SERCA; Ca2+-ATPase; trehalose; enzyme stabilization; fluorescent labeling; ATP binding;
circular dichroism; P-type ATPase; enzyme purification; ultracentrifugation

1. Introduction

In muscle cells, relaxation of the molecular contractile machinery is mediated by the
activity of the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), in which ATP hydroly-
sis is coupled to Ca2+ pumping into the sarcoendoplasmic reticulum (SR), resulting in a
decrease in the cytoplasmic Ca2+ concentration [1–3]. SERCA is a member of the P-type
ATPase family, which are integral membrane enzymes that generate ionic/chemical po-
tentials (i.e., primary active transporters) and are therefore thought to be present in all
living organisms [4]. Three major groups of Ca2+-ATPases have been identified, located in
different cellular structures, namely the SR, the Golgi, and the plasma membrane. Inter-
estingly, despite significant amino acid sequence differences (up to ~70%), Ca2+-ATPases
share a similar three-dimensional (3D) structure and catalytic mechanism (Post-Albers
scheme) [3,5–7]. Importantly, conserved amino acids are involved in ATP binding and
hydrolysis, phosphotransfer, and ion transport [4]. The best-studied calcium pump is fast-
twitch-muscle SERCA, (SERCA1a, EC 7.2.2.10), a ~110 kDa enzyme [1,8–13]. For example,
numerous X-ray diffraction studies of SERCA crystals have been reported, and a wealth
of three-dimensional (3D) structures in different catalytic states are now available for the
enzyme [14–16]. Nevertheless, functional–structural information can still be obtained with
other experimental techniques; e.g., previously unrecognized catalytic states have been
detected in single-molecule studies using fluorescent labeling [17,18], while cryoelectron
microscopy is becoming the method of choice for studying other P-ATPases [19–23].

The isolation of membrane proteins/enzymes while preserving their native struc-
ture is of paramount importance for in vitro functional–structural experiments. In this
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context, the isolation of a P-ATPase in high purity and catalytically active form can help
to test interacting molecules identified by molecular docking and molecular dynamics
simulations [15,24–26]. P-type ATPases are known to be remarkably labile to harsh media
conditions; e.g., Ca2+-ATPase is known to be sensitive to high centrifugation speeds (i.e.,
high pressure), the presence of oxidative compounds, a relatively extreme pH and mild
heat [27–30]. Recently, the yeast plasma membrane H+-ATPase was isolated in its active
hexameric state and at high purity [31]. The existence of the H+-ATPase hexamer as a
functional–structural state was later confirmed and its three-dimensional (3D) structure
determined using cryo-electron microscopy [23]. The isolation of the H+-ATPase hexamer
was achieved using the disaccharide trehalose [31], a well-known protein stabilizer [32,33]
that prevents protein unfolding and monomer dissociation [34,35].

In this work, SERCA was isolated from fast-twitch muscle using a purification protocol
based on that used to isolate yeast plasma membrane H+-ATPase [31,36]. The purified
SERCA was of high purity and exhibited enzyme kinetics and other biochemical properties
similar to those reported in the literature. Fluorescence labeling with FITC was used to
test the integrity of the SERCA binding site and the identity of the enzyme as a P-type
ATPase [37]. The secondary structure of SERCA and the effect of ATP binding were
analyzed using circular dichroism (CD) spectroscopy. The results showed that the isolated
SERCA is suitable for functional and structural experiments, e.g., to test inhibitors (naturally
occurring or designed and synthesized in laboratories) identified by molecular docking
and molecular dynamics simulation [15,24–26].

2. Materials and Methods
2.1. Chemicals and Reagents

Sucrose, Trizma base, Folin–Ciocalteu phenol reagent, ethyleneglycol-bis
(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), ethylenediaminetetraacetic acid
disodium salt dihydrate (EDTA), deoxycholic acid, trehalose, adenosine triphosphate
(ATP), fluorescein isothiocyanate (FITC) and rabbit muscle pyruvate kinase were purchased
from Sigma-Aldrich Corp. (St. Louis, MO, USA). Rabbit muscle lactate dehydrogenase
was purchased from Roche (Basel, Switzerland). Phosphoenolpyruvate (PEP) and nicoti-
namide adenine dinucleotide (reduced) salt (NADH) were purchased from Chem-Impex
International Inc. (Wood Dale, IL, USA). All other reagents were of the highest quality
commercially available.

2.2. Sarcoplasmic Reticulum Isolation

Muscle tissue was obtained from wild-type Oryctolagus cuniculus from a local animal
handling unit (INE/CITES/DGVS-ZOO-E0055-SLP-98). Sarcoplasmic reticulum vesicles
(SRVs) were prepared as described by Champeil et al. (1978) [38], with slight modifica-
tions [26]. Briefly, fast-twitch muscles were macerated in a Oster Pro blender (Sunbeam
Products Inc., Miami, FL, USA) in three volumes of 100 mM KCl, with 1 min on and 1 min
in ice-cold rest repeated three times. Tissue debris was removed using centrifugation
(1532× g) at 4 ◦C for 5 min; a second centrifugation (4256× g) was performed if necessary.
The supernatant was collected and homogenized using a tissue grinder and WiseStir HS-
30E (Daihan Scientific Co., Seoul, Republic of Korea), then centrifuged (10,048× g) at 4 ◦C
for 15 min. The resulting supernatant containing sarcoplasmic reticulum was centrifuged
(33,110× g) at 4 ◦C for 120 min. The pellets were suspended in 0.5 M sucrose and cen-
trifuged (12,111× g) at 4 ◦C for 15 min. The supernatant was diluted to 0.6 M KCl and
0.15 M sucrose and centrifuged (34,310× g) at 4 ◦C for 165 min. The SRVs sheets were
suspended in 0.3 M sucrose, 0.1 M KCl, and 5 mM Tris-HCl, pH 7.0. Protein concentration
was determined using the Lowry assay [39,40], using human serum albumin as the protein
standard. The SRVs (30–32 mg/mL) were aliquoted in 1 mL volumes and stored at −72 ◦C
until use.
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2.3. SERCA Purification

Sarcoplasmic reticulum Ca2+-ATPase (SERCA) was purified using the method de-
scribed by Sampedro et al. (2007) [36], with slight modifications; the procedure shows
high efficiency in purifying yeast plasma membrane H+-ATPase [36,41]. Briefly, SRVs were
diluted by up to 2 mg/mL of protein in ice-cold 75 mM Tris-HCl, pH 7.2, 0.6 M KCl, 6 mM
EDTA, 1 mM EGTA and 0.1% (w/v) deoxycholate. The mixture was incubated on ice for
10 min with gentle agitation and then centrifuged (103,000× g) at 4 ◦C for 60 min. Pellets
were suspended in 25 mM Tris-HCl, pH 7.5, 0.3 M KCl, 45% glycerol (v/v) and 2 mM EDTA
and homogenized. The protein concentration was determined and 5 mg/mL azolectin
and 0.85 (w/w) Zwittergent 3–14 were added. The mixture was homogenized and then
centrifuged (103,000× g) at 4 ◦C for 60 min. The supernatant was collected and diluted 1:2
with 2 mM EGTA (pH 7.2). The suspension was then gently poured onto a discontinuous
trehalose concentration gradient (45, 40, 35 and 30% w/v) in 10 mM Tris-HCl, pH 7.0,
1 mM EDTA, 0.1% deoxycholate and 1 mg/mL azolectin. The samples were centrifuged
(103,000× g) at 4 ◦C for 14 h. After centrifugation, a transparent slightly yellowish pellet
was obtained. The pellet was gently resuspended in a small volume (<1.5 mL) of 25 mM
Tris-HCl, pH 7.5, 0.3 M KCl, 45% glycerol and 2 mM EDTA. The protein concentration was
determined as described above and then adjusted to 2 mg/mL. Aliquots (~50 µL) were
taken and stored at −72 ◦C until its use.

2.4. Enzyme Kinetics

ATPase activity was measured at 37 ◦C using an enzyme-coupled assay, as previously
described [41,42]. The reaction mixture (1 mL) consisted of 50 mM MOPS (pH 7.0), 1 mM
EGTA, 80 mM KCl, 5 mM MgCl2, 3 mM CaCl2, 5 mM phosphoenolpyruvate, 250 µM
NADH, and ATP concentration as indicated (0.001 to 0.25 mM). The reaction solution
was homogenized carefully by vortexing and then incubated at 37 ◦C for 10 min. Then,
0.9 U L-lactate dehydrogenase (LDH) and 1.5 U pyruvate kinase (PK) were added and
the ATPase reaction was initiated by the addition of 10 µg of the purified SERCA. The
NADH formed was monitored by the change in absorbance intensity at a wavelength (λ) of
340 nm using an 8453UV/VIS spectrophotometer (Agilent Technologies, Waldbronn. DE)
equipped with a thermostatted cell holder. The rate of ATP hydrolysis was calculated from
the slope of the linear portion of each curve using the molar extinction coefficient (ε) of
NADH (λ = 6220 M−1·cm−1). Velocity data were fitted to the Michaelis–Menten Equation
(1) (Equation (1)) using non-linear regression with the Origin 6.0 software:

ν =
Vmax·[S]
Km + [S]

(1)

where v is the velocity, Vmax is the maximum velocity, [S] is the ATP concentration and Km
is the Michaelis–Menten constant.

2.5. SERCA Labeling with Fluorescein Isothiocyanate (FITC)

Covalent labeling of SERCA with FITC was performed as previously described with
slight modifications [43–45]. Briefly, purified SERCA (20 µg) was suspended in 50 µL
(final volume) labeling buffer (100 mM KCl, 5 mM MgCl2, and 30 mM Tris-HCl, pH
8.9) containing 1 mM FITC. After mixing using vortexing, the samples were incubated
for different times (15, 10, 7, 5, and 2 min) in the dark at room temperature, and labeling
reaction was stopped with 1 volume of ice-cold stopping buffer (480 mM sucrose and 48 mM
MOPS, pH 7.0), containing ATP (5 mM); the mixture was incubated on ice for 5 min in the
dark. FITC-labeled SERCA was then subjected to SDS-PAGE. The clear gels were exposed
to UV light (λ = 302 nm) and photodocumented using a benchtop UV transilluminator
(Cole-Parmer, Vernor Hills, IL, USA) and a Coolpix B500 camera (Nikon Corp., Tokyo,
Japan). After photographic documentation, the gel was stained with Coomassie blue.
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2.6. Circular Dichroism (CD) Spectrum of SERCA

Purified SERCA (3 µM) was suspended in 400 µL of 10 mM phosphate buffer (pH 7.0)
at 25 ◦C. Aliquots of ATP were added stepwise as indicated (5–100 µM final concentration)
in the absence and presence of Ca2+ (200 µM). Far-UV spectra (λ range of 190–260 nm) were
recorded at 50 nm/min in a Jasco J1500 spectropolarimeter (Jasco Inc., Tokyo, Japan) using
a 0.1 cm path length cell at 25 ◦C. The internal resolution of the data was 1 nm and the
bandwidth was 1 nm.

3. Results
3.1. SERCA Purification

SERCA is the most abundant protein (~90%) embedded in the SR membrane [46].
Therefore, the purification of SERCA seems straightforward and significant material would
be expected to be obtained. As a result, numerous isolation methods for SERCA have been
reported, with variable protein yields, but showing ATP hydrolysis dependent/coupled to
Ca2+ ion transport [7,12,38,44,47–53]. However, the instability of SERCA during handling
(purification, storage, and experimental) is a problem [12,44,52–54]; e.g., the intrinsic
fluorescence intensity of SERCA gradually decreases during incubation time [29,30,55,56].
Preservation of the native functional state is important for structural and functional studies
of this ATPase (and any other protein) [30–32,57].

In this work, the purification of rabbit fast-twitch-muscle SERCA was carried out
using the purification methodology used for the isolation of yeast plasma membrane
H+-ATPase, as it allows the successful isolation of the functional hexameric state [31].
Sarcoplasmic reticulum vesicles (SRVs) were obtained, and the kinetic parameters (Km
and Vmax) for ATPase activity of the isolated SRVs were similar to those reported in the
literature (Vmax = 7.0 µmoles ATP/min·mg protein and Km = 15.1 µM ATP) [26]. The
purification of SERCA from SRVs was then performed as described in the Methods [36];
SRVs (SERCA ~110 kDa) at different steps of isolation were monitored using SDS-PAGE
(Figure 1A). SRVs were solubilized with detergent and importantly, after centrifugation
(103,000× g) on a trehalose concentration gradient, a clear pellet was observed at the bottom
of the centrifuge tubes containing SERCA in high purity (Figure 1B). Samples at different
tube heights were also taken and analyzed. Notably, SERCA was only observed in the
pellet (Figure 1B). The purity of SERCA was ≈95%, as determined using densitometry [31].
Importantly, when SERCA was ultracentrifuged in the absence of trehalose, it denatured,
forming white insoluble aggregates and irreversibly losing ATPase activity (Figure 1B, last
lane). The isolation protocol was tested at least three times with similar results for protein
purity. Suspended SERCA was stored at −71 ◦C until use.

3.2. ATPase Kinetics

The rate of ATP hydrolysis (37 ◦C) of the purified SERCA showed a hyperbolic
pattern of dependence on ATP concentration (Figure 2A). The specific activity was in
agreement with that reported by Shivanna and Rowe (1997) [58]. The rate data for ATP
hydrolysis were fitted to the Michaelis–Menten equation (Equation (1)) using non-linear
regression, and the kinetic parameters were calculated (Figure 2): Vmax = 1.68± 0.09 µmoles
ATP/min·mg protein, and Km = 12.16 ± 2.25 µM ATP. In the literature, the published Vmax
of SERCA purified using different methodologies ranges from 0.8 to 4.5 µmol ATP/min ·mg
protein [56,59–65]. Notably, the Km value was similar to that determined for isolated SRVs
(Km = 15.1 ± 2.1 µM ATP), and to that reported in the literature [30,66–68]. Certainly, the
native SR membrane environment is ideal for maximum ATPase activity [58].
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ugation on a discontinuous trehalose gradient. Purified SRVs were treated as described in Methods. 
Purified SERCA was treated as in (A) for protein visualization. Lanes: 1, purified SRVs; 2, purified 
SERCA (pellet); 3, 4, and 5: samples at 45, 40, and 35% trehalose (w/v); 6, SERCA aggregates after 
ultracentrifugation in the absence of trehalose. All lanes were loaded with 20 µg of protein, except 
in B where lanes 3, 4, and 5 were loaded with ∼6.2 µg each. 
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Figure 2. Enzyme kinetics of isolated SERCA. The assay for ATPase activity was performed at 37 ◦C
using an enzyme−coupled assay (SERCA−PK−LDH) in buffer 50 mM MOPS, pH 7. (A) Dependence
of SERCA specific activity (•) on ATP concentration. Data points represent the mean of three
independent experiments plus or minus standard deviation. The rate of ATP hydrolysis showed a
hyperbolic dependence on ATPase kinetics, so the data were fitted to the Michaelis–Menten equation
(Equation (1)) using non−linear regression (Vmax = 1.68 ± 0.09 µmoles ATP/min·mg protein, and
Km = 12.16 ± 2.25 µM ATP). (B) Lineweaver–Burk plot of the data in (A) (≤).

3.3. FITC Labeling of SERCA

In SERCA, FITC-labeling indicates the intactness and interacting functionality of
the ATP-binding site [26,37,43,44]. FITC interacts with the nucleotide binding site of the
enzyme [37], resulting in the formation of a covalent bond between FITC and a lysine (Lys)
residue [37,45,69,70]. SERCA was subjected to FITC labeling at different incubation times
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as described in the Methods, followed by SDS-PAGE and photo-documentation using UV
irradiation (Figure 3A). The gel in Figure 3A shows a single bright green fluorescent band
corresponding to the molecular weight of SERCA (MW ~110 kDa) (Figure 3A). The gel was
then stained with Coomassie blue (Figure 3B). The resulting blue bands (~110 kDa) were
superimposed on those showing green fluorescence under UV irradiation (Figure 3A). FITC
labeling was also performed in the presence of 3 mM Ca2+, but no change in FITC labeling
was observed. FITC labeling occurred relatively rapidly, as no significant differences were
observed at the incubation times tested (Figure 3).
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3.4. Secondary Structure of SERCA

The secondary structure of SERCA was analyzed using circular dichroism (CD) spec-
troscopy. SERCA (3 µM) was suspended in 10 mM phosphate buffer (pH 7.0), and the
circular dichroism (CD) spectrum was recorded at 25 ◦C (Figure 4A). ATP was then added
stepwise (0–100 µM) and CD spectra were recorded after each addition. The results showed
a slight change in molar ellipticity as a function of ATP concentration at a wavelength (λ)
of 225 nm (Figure 4A), but not at λ of 212 nm. A hyperbolic pattern was observed at ATP
saturation (Figure 4B), which was similar to that observed in a recombinant engineered
Ca2+-ATPase N-domain [37]. Notably, the secondary structural changes in α-helices medi-
ated by the presence of ATP occurred in the µM region for the ATP affinity determined by
enzyme kinetics (Figure 2). Therefore, the change in CD intensity at λ of 225 nm appears to
correspond to changes in secondary structure (α-helices) induced by ATP binding [71]. The
experiment was repeated in the presence of 200 µM Ca2+, but no significant differences in
the CD spectra (200–260 nm) were observed, in agreement with that reported by Csermely
et al. (1987), and by Shivanna and Rowe (1997) [58,71].
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representative experiment is shown. (B) Effect of ATP on CD intensity at λ of 225 nm. Data show
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4. Discussion

Most integral membrane proteins/enzymes are difficult to isolate in their native func-
tional state due to their hydrophobic nature [72]. The detergent solubilization of biological
membranes usually leads to the disruption of embedded macromolecular complexes, dis-
sociation of protein/enzyme oligomers, protein unfolding, and consequently the loss of
function/activity [58]. Any effective method of isolating membrane proteins must minimize
this disruption of the delicate structural arrangement.

The use or inclusion of cosmotropic agents in isolation buffers can help to improve
the retention of the native structure and, thus, the function of proteins [30,73,74]. In this
sense, the disaccharide trehalose is a well-known protein stabilizer synthesized by yeast,
plants, and other organisms under harsh conditions such as heat shock temperatures,
desiccation, and others [75–87]. Various studies have shown that trehalose is superior in
protein stabilization when compared to other saccharides and polyols [32,33,88,89]. The
molecular mechanism by which trehalose stabilizes and protects the three-dimensional
structure of proteins is essentially well understood [33,34,88,90–92]. With regard to P-
ATPases, the disaccharide trehalose has been shown to be able to stabilize H+-ATPase
under various incubation/storage conditions (mainly dehydration and heat) [32,33], but
also during the H+-ATPase purification process [31], i.e., the presence of trehalose prevents
the loss of the native structure during H+-ATPase isolation, thus allowing macromolecular
complexes formed by the enzyme hexamer to be isolated [31]. The oligomeric state of the
H+-ATPase is known to be highly labile. In plants, the H+-ATPase hexamer is stabilized by
the fungal toxin fusicoccin via 14-3-3 protein binding [93]. In yeast, trehalose appears to
prevent the dissociation of the H+-ATPase hexamer, thus avoiding the loss of its quaternary
structure and ATPase activity [31,33]. Notably, the 3D structure of the Ca2+-ATPase in
its dimeric state is currently lacking; similarly, the oligomeric structure of other P-type
ATPases remains to be determined.

In this work, SERCA was purified in both a relatively high yield and purity by incorpo-
rating trehalose as a protein stabilizer. Trehalose is useful in preserving both structure and
function, as evidenced by results obtained from FITC labeling, secondary structure analysis
(CD spectrum), and ATPase activity. This protocol offers advantages when compared
to published molecular biology protocols; e.g., it does not require additional reagents,
material, and processing enzymes (for gene cloning and protein expression and purifica-
tion) or equipment, and mainly, the protein purified is the native enzyme. In regard to its
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disadvantages, the presence of other native residual proteins may be a problem. Thus, the
SERCA isolation method described here will allow future structural/functional/regulatory
studies, for example (a) to understand of functional divergence of isozymes [94] (i.e., the
functional role of amino acid sequence variation) and the regulation of activity [15]; (b) the
structural–mechanistic defect in mutation-mediated diseases [95–100]; (c) to test new com-
pounds with inhibitory properties in a given Ca2+-ATPase pump (e.g., cardiac) [101], i.e.,
the identification of the structural target, and mechanism of inhibition of natural or newly
designed inhibitors [101]; (d) the testing of molecular docking and molecular dynamics sim-
ulation results; (e) the clarification of the ion transport mechanism [48]; and (f) the role of
specific structural dynamics in its function. The high isolation efficiency (~95%) of SERCA
and PMA1 are examples of improving the effectiveness of the purification methodology
developed in our laboratory [31,36]. In addition, it is expected that the protocol will be
applied to efforts to purify other P-ATPases and unstable proteins (cytosolic and integral
membrane).
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101. Peterková, L.; Kmoníčková, E.; Ruml, T.; Rimpelová, S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond
Anticancer Perspective. J. Med. Chem. 2020, 63, 1937–1963. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4172/2157-7412.1000181
https://doi.org/10.1016/j.bbrc.2004.07.128
https://doi.org/10.1016/j.tips.2013.10.007
https://doi.org/10.1101/cshperspect.a035113
https://doi.org/10.1021/acs.jmedchem.9b01509

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Sarcoplasmic Reticulum Isolation 
	SERCA Purification 
	Enzyme Kinetics 
	SERCA Labeling with Fluorescein Isothiocyanate (FITC) 
	Circular Dichroism (CD) Spectrum of SERCA 

	Results 
	SERCA Purification 
	ATPase Kinetics 
	FITC Labeling of SERCA 
	Secondary Structure of SERCA 

	Discussion 
	References

