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Abstract: The longitudinal monitoring of patient circulating tumor DNA (ctDNA) provides a power-
ful method for tracking the progression, remission, and recurrence of several types of cancer. Often,
clinical and research approaches involve the manual review of individual liquid biopsy reports after
sampling and genomic testing. Here, we describe a process developed to integrate techniques utilized
in data science within a cancer research framework. Using data collection, an analysis that classifies
genetic cancer mutations as pathogenic, and a patient matching methodology that identifies the same
donor within all liquid biopsy reports, the manual work for research personnel is drastically reduced.
Automated dashboards provide longitudinal views of patient data for research studies to investigate
tumor progression and treatment efficacy via the identification of ctDNA variant allele frequencies
over time.
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1. Introduction

A major goal of precision medicine in cancer is to provide effective and specific
therapies for patients by incorporating more biomarker-directed therapies [1]. To facilitate
personalized treatment in cancer, studies pertaining to high-throughput drug screens of
individual patient primary tumor cultures as well as the genomics landscape of their tumors
are being evaluated, as part of the Cancer Avatar Project, at the California Pacific Medical
Center Research Institute. We recently published our institutional experience of developing
a liquid biopsy approach using circulating tumor DNA (ctDNA) analysis of plasma for
personalized medicine for cancer patients. The focus of this study was on the hurdles
encountered during the multistep process in order to benefit other investigators wishing
to set up this type of study in their institution [2]. In this manuscript, we also describe
some case reports using longitudinal samples, illustrating the potential advantages and
rewards in performing ctDNA sequencing to monitor tumor burden or guide treatment for
cancer patients.

Compared to traditional biopsies, liquid biopsies are more convenient, easily obtain-
able, and present minimal procedure risks to patients. ctDNA, as a part of circulating
cell-free DNA (ccfDNA) in peripheral blood, contains gene mutations found in primary tu-
mors, and the serial sampling of ctDNA can have diagnostic value and predict the response
to treatment and the clinical outcome. Earlier studies have shown the potential power of
this approach to monitor tumor burden in cancer patients [3,4]. So far, these results suggest
the potential of ctDNA analysis in the monitoring of disease progression and treatment
response in individual cancer patients [5–7].
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Pharmacological studies focus on drug testing to estimate efficacy, while genomic
analyses focus on the identification of pathogenic mutations in the patient [8]. The identifi-
cation of specific pathogenic DNA mutations can drive the choice of the pharmacological
agent used to treat a patient, and the presence of such mutations can be tracked over time
using liquid biopsy tests. With over 600 liquid biopsy reports flowing into the laboratory
computers, our process of identifying pathogenic mutations and organizing the reports by
individual patients, which are appropriate for a research context independent of a clinical
setting, had been a cumbersome manual process.

Here, we describe an automated way of identifying pathogenic mutations from liquid
biopsy reports and grouping them at a patient level. The method uses no patient identifiable
markers and is essentially anonymous. We discuss the underlying theory of this process
using the techniques in data science and provide a way to replicate it in any organizational
setup. The focus of this paper is to provide a replicable, automated methodology to
organize ctDNA information sourced from liquid biopsy and identify the patients to
perform longitudinal analyses.

2. Materials and Methods
2.1. Genetic Sequencing Method
2.1.1. Circulating (Cell-Free) Tumor DNA Extraction

Extraction was performed on 655 human plasma samples. Informed consent was
obtained from all subjects involved in the study, which was conducted according to the
guidelines of the Declaration of Helsinki and approved by the Institutional Review Board
of Sutter Health (protocol code 2015.059-1 approved on 3 October 2022). Blood samples
were collected in tubes (PAXGene blood tubes) with preservatives to increase shelf life and
ccfDNA (which corresponds to DNA fragments shed by all cell types including cancer
cells) was isolated using the QIAamp Circulating Nucleic Acid kit (Qiagen, Redwood City,
CA, USA), and quantified using PicoGreen (Thermo Fisher Scientific, South San Francisco,
CA, USA).

2.1.2. Next-Generation Sequencing

We selected the 56G Oncology Panel V2 from Swift Biosciences (Ann Arbor, MI), which
contained 56 gene targets: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R,
CTNNB1, DDR2, DNMT3A, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3,
FLT3, FOXL2, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, IDH2, JAK2, JAK3, KDR, KIT,
KRAS, MAP2K1, MET, MLH1, MPL, MSH6, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA,
PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, TSC1, and VHL.
MiSeq 2 × 151 base paired-end sequencing was performed to detect single-nucleotide
variant (SNV) and insertion/deletion (indel) at 1% allelic frequency or higher in target
regions with sufficient read coverage (at least 100×).

2.1.3. Data Analysis

ccfDNA data obtained using the 56G Oncology Panel V2 was analyzed using Genialis
Expressions (Accel-Amplicon analysis workflow, Genialis Inc., Boston, MA, USA). In brief,
quality trimmed (Trimmomatic v.0.36) sequencing data was aligned to the human genome
(GRCh37 assembly) using BWA MEM (v. 0.7.17-r1188). The aligned data were further
processed by trimming primer sequences (Primerclip, Swift biosciences) and using GATK
(v.3.6) tools (IndelRealigner and BaseRecalibrator) to prepare the analysis-ready BAM file.
SNP/INDELs were named using LoFreq (v.2.1.3.1) and annotated using snpEff (v.4.3k).

2.2. Pathogenic Matching Approach

Reference data were obtained from the COSMIC (Catalogue of Somatic Mutations in
Cancer) database that consolidates data from peer-reviewed publications and other genomic
data screening sources in order to provide a comprehensive overview of cancerous genetic
mutations [9]. This data source was filtered to reduce the number of variables to the gene
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name, amino acid mutation, type (pathogenic/neutral), and FATHMM (Functional Analysis
through Hidden Markov Model) score. Duplicates were removed and the resulting data
were uploaded into an SQL (Structured Query Language) database in order to automate the
classification of liquid biopsy reports. COSMIC aggregates latest research on cancer-causing
mutations and assigns a probability score for these mutations. When using this database,
it is advisable to update the data source twice a year to identify new findings on novel
pathogenic gene mutations.

Input Genialis files (or similar sequencing results with comparable structure) were
uploaded into an internal database via Python script (an open-source object-oriented
computer programming language). This programming code serves multiple functions
beyond database creation and data load. Built-in functionality includes a check for whether
the sample is already included in the database in order to prevent redundancy in data
collection. The program identifies the level of pathogenicity, based on the gene and amino
acid mutations within the sample and identical combinations in the COSMIC database,
before consolidating data from both sources into a database for further analysis.

2.3. Patient Similarity Analysis

Liquid biopsy reports collected from the patients are anonymous. A major part of the
genomic analyses involves tracking of pathogenic mutations that are detected from the
bloodstream. With anonymity, there is a need to identify liquid biopsy reports that belong
to the same patient. This could be accomplished by leveraging the fact that the fragments of
ccfDNA detected from the bloodstream are unique to each human. We, therefore, attempted
to quantify the similarity of liquid biopsy reports to identify if they would belong to the
same patient.

We leveraged the cosine similarity method from vector algebra [10]. The mathematics
uses two objects—a scalar and a vector. Scalar is an object that can be represented as a
single number; it has only magnitude. Since a vector has magnitude and a direction, it
is plotted in an N-dimensional space. An example of a scalar is speed (which is simply a
number representing magnitude), while the vector form is velocity (it has both magnitude
and direction in a 3D space). Similarly, every liquid biopsy report can be represented as a
vector with genes as dimensions and their allele frequency as the corresponding magnitude.
The similarity of vectors can be quantified by measuring how close their projection is on
one another.

In order to increase the range of similarity scores, we added another layer before the
similarity score calculation. We used k-means clustering method to separate the samples set
into two groups to ease the computation process by reducing the number of samples that
are compared to one another. This clustering method ensures that no two samples falling
into the two different groups are similar to each other, but that each remains comparable
to the ones within the group. Similarity scores were computed within each group, and
any sample that had not seen a match based on the score was extracted from both groups.
They were shuffled to increase the probability of obtaining the right match while reducing
computation time overall.

2.4. Longitudinal Data Visualization

After the pathogenic matching and the patient similarity analysis were conducted, the
final data were uploaded via the Python script into a database for integration with Tableau,
a visualization platform [11]. This table includes indicators for germline mutations, defined
as gene and mutation combinations with allele frequencies around either 50% or 100%.
Additionally, a flag for allele frequencies < 1% was included in order to provide filtering
options for visualization that retain only larger frequency pathogenic mutations to facilitate
clinical analysis. Overall, all the necessary code to build this data platform can be found
at the following website address: https://github.com/azurey0/cpmc-prac (accessed on 1
April 2023).

https://github.com/azurey0/cpmc-prac
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3. Results

The project’s initial objective was to improve research efficiency by automating the
classification of pathogenic gene mutations presented in the liquid biopsy reports. As
our understanding of the data structure improved, we uncovered a second objective: to
expand the research by identifying the liquid biopsy samples that belonged to the same
patient without the need for specific patient information. Lastly, we combined the gene
classification with the patient matching to show how the pathogenic genes evolved in the
same patient. To deliver the results, we used Tableau [11], in which the user can easily
upload new samples and navigate and check information about the gene classification,
patient matching, and longitudinal analyses.

3.1. Pathogenic Mutation Matching

First, gene and mutation data points were mapped from Genialis standard forms
(Figure 1) to the nomenclature utilized in the COSMIC database. Figure 2A provides an
overview of the data processing flow for the matching methodology, Figure 2B provides
the view of the database table for COSMIC data, and Figure 2C provides the patient
matching results. The two sources were combined by matching the gene and amino acid
changes, finding the associated FATHMM or pathogenicity score, and creating an output
that combines both sources into a final consolidated data source (Figure 2D).
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Figure 2. Pathogenic mutation matching. (A) Gene matching process workflow describing the process
of merging two different datasets to create the final data. (B) MySQL Table Schema for COSMIC data
source. (C) MySQL Table Schema for patient matching results. (D) Example of liquid biopsy report
after gene matching process.

During loading, the Python program presented in the Materials and Methods section
identified the Amino Acid Change column (column “AA” in Figure 1) and the Gene
column (column “GENE” in Figure 1) of the input file. The program then translated the
AA column into the nomenclature used in the COSMIC database (Figure 2B) and then
matched the same columns in the COSMIC database and determined whether COSMIC
classified each gene and mutation combination as Pathogenic or Neutral. The Python script
found COSMIC’s associated FATHMM score, which is a measure of pathogenicity severity
(1 being the highest and 0.8 being the cut off for pathogenic mutations) and then loaded the
new sample data into the Patient Matching database (Figure 2C). Additionally, the code
checked whether the number of rows and a ratio of the number of rows to the total number
of genes in the sample report were within normal ranges. Files with less than 32 total gene
and mutation combinations, or that had a ratio of mutations to genes greater than 0.25,
were flagged as potentially having an issue with the genetic sequencing for research and
clinical consideration. This issue was also notable in the patient similarity analysis below.

A manual review of more than 600 unique liquid biopsy samples compared to this
automated methodology successfully identified all previously known pathogenic muta-
tions for the samples at a benchmark of a FATHMM score greater than 0.8 (Figure 2D).
Additionally, several mutations were identified as pathogenic that had not been isolated
during the manual review. The subsequent quality check indicated that the programmatic
method of classifying genetic mutations was sufficient. In combination with the benefit of
liquid biopsy results as a non-invasive alternative to identifying cancer patients that have
ctDNA detectable in the blood, this program results in a greater speed for obtaining final
liquid biopsy analysis results for research and, potentially, clinical use.

3.2. Patient Matching

As presented in the Materials and Methods section, we utilized a cosine similarity
algorithm [10] to perform the patient matching required for the longitudinal monitoring of
the liquid phase biopsy results. A simplified version of a 3D vector is shown in Figure 3A,
in which the line joining OP is a vector pointing towards P. The x, y, and z components are
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the dimensions of the vector while Px, Py, and Pz are their corresponding magnitudes. Ex-
trapolating this to the liquid biopsy reports, we represented each row of Figure 1 as a vector
with genes as the dimensions and their allele frequency as the corresponding magnitude.
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Figure 3. Patient matching. (A) Mathematical representation of a point P in cartesian three-
dimensional coordinates that describes the vector notation. (B) Cosine similarity of two vectors: a
mathematical measure to find the similarity of two vectors by the angle made between them. The
smaller the angle, ‘theta’, the higher the similarity. (C) Similarity score calculation process in the
form of a flowchart. (D) Similarity scores of 7 liquid biopsy reports—sample results are based on the
described methodology (in yellow, score range between 0.95 and 0.98).

In Figure 3B, we present two vectors with an angle, ‘theta’, between them. Assuming
the vectors are of an equal length, when ‘theta’ is zero, they are most similar (similarity of
1), and when the angle is 90 degrees, they are least similar (similarity of 0). This method
involves the computation of the cosine projection [10]. We used this technique to compute
the similarity scores of any two liquid biopsy reports. Using the panel that comprised
56 genes, we based the similarity score not on the pathogenic mutations but on genes
carrying germline mutations or specific polymorphisms, which point to the uniqueness of
the patient. All the non-pathogenic mutations correspond to irrelevant mutations that are
part of the ccfDNA produced by normal cells.

The overall patient matching process is described in Figure 3C, in which the final
output has similarity scores for all the liquid biopsy reports, and the best reports (scores
closer to 1) are grouped together. K-means clustering, which uses most of the available
irrelevant/non-tumorigenic gene mutations (including germlines, polymorphisms, and
synonymous mutations), was performed to split all samples into two clusters or split
the liquid biopsy results into groups that were more similar to one another. The cosine
similarity analysis was then run for each file in comparison to the others in the bucket. If
no match was identified for a patient report, it was rerun against the others. Lastly, the
algorithm provided an output that indicated which files were most similar to one another,
with these groups being essentially patients. The number of clusters (K = 2 in this study)



Methods Protoc. 2023, 6, 46 7 of 11

was chosen based on the sample set available and could be changed when the sample
size increased.

The testing and confirmation indicated that the cosine similarity technique was ef-
fective in identifying similar reports by quantifying their similarity. The empirical cut-off
identification was based on a manual test set of 10% of the samples for which we knew
belonged to the same patient. For 56 genes and 60 samples, our score of 0.98 yielded 0 false
positives. When we used this threshold on the rest of the unknown samples, the theoretical
likelihood of incorrect matches was based on the likelihood of having twins in the sample
set or the likelihood of missing critical germline mutations/polymorphisms in the genetic
sequencing process. For the 600 samples considered, we reached a threshold score of 0.98
above which the likelihood of incorrect matching approaches 0 (no false positives). Scores
over 0.98 belonged to the same patient in 100% of the cases based on external validation.
Due to the presence of noise and inaccuracy in the sequencing of ctDNAs from the blood,
some reports that belonged to the same patient could have scores less than 0.98. We have
identified a score range, between 0.95 and 0.98, which contained reports that had the poten-
tial to belong to the same patient, i.e., a range that could have a potential match but not
with 100% accuracy. An example of a result set is shown in Figure 3D. In some cases, these
patients might be closely related to each other, having a high similarity in their genome,
while some correspond to the same patients, but the inaccuracy stems out of sequencing
errors. Even though, in a few cases, as described above, it could miss reports that belonged
to the same patient, overall, our model performed well with no false positive matches.

3.3. Longitudinal Visualization

Final results from the pathogenic matching and the patient similarity analysis were
uploaded via the same Python script into an output database as structured in Figure 4A.
Tableau software integrated this database and provided the dashboards shown in Figure 4B,C.
We built the longitudinal analysis by combining the gene classification with the patient
matching. Once we determined which anonymous liquid biopsies belonged to the same
patient, it was possible to check how each pathogenic gene mutation evolved over time.
From an efficiency perspective, this monitoring could be helpful as an indicator of the
effectiveness of specific treatments and to spot additional cancer signals that would require
further testing and clinical follow-up. Time is a crucial factor in cancer care. The opportunity
to monitor the genes more closely and to be able to respond quickly can be lifesaving.

Figure 5A,B provide an overview of two case studies used for longitudinal patient
monitoring. Figure 5A shows the ongoing monitoring of a single pancreatic cancer patient
that indicates the detection of a KRAS mutation in the third longitudinal blood draw.
Figure 5B shows an overview of a second patient with colorectal cancer. A BRAF mutation
was detected in the first blood draw, a subsequent sample indicated remission, and then a
new pathogenic mutation in KRAS was detected in a third blood draw, suggesting cancer
recurrence, which could prompt clinical staff for further follow-up.



Methods Protoc. 2023, 6, 46 8 of 11

Methods Protoc. 2023, 6, x FOR PEER REVIEW 8 of 12 
 

 

3.3. Longitudinal Visualization 
Final results from the pathogenic matching and the patient similarity analysis were 

uploaded via the same Python script into an output database as structured in Figure 3A. 
Tableau software integrated this database and provided the dashboards shown in Figure 
3B,C. We built the longitudinal analysis by combining the gene classification with the pa-
tient matching. Once we determined which anonymous liquid biopsies belonged to the 
same patient, it was possible to check how each pathogenic gene mutation evolved over 
time. From an efficiency perspective, this monitoring could be helpful as an indicator of 
the effectiveness of specific treatments and to spot additional cancer signals that would 
require further testing and clinical follow-up. Time is a crucial factor in cancer care. The 
opportunity to monitor the genes more closely and to be able to respond quickly can be 
lifesaving.  

 
Figure 3. Longitudinal Visualization (A) MySQL Table Schema for the visualized Tableau output 
data. (B) Search & Overview page on the Tableau visualization. The following describes the ele-
ments in the Tableau interface: 1. Sample Name Selection: User can choose the sample based on the 
names available in the dataset; 2. Sample Sequencing Output Quality Check: A measure to deter-
mine the quality of the sequencing based on pre-identified factors that contribute to poor quality 
sequencing; 3. Pathogenic Mutations in the Sample: The number of pathogenic mutations that are 
seen in the sample based on our gene matching methodology; 4. Similar Samples: The number of 
similar samples in the database that are likely from the same patient based on our patient matching 
methodology; 5. Allele Frequency: Summarization of the allele frequency of gene mutations as per 
the report; 6. FATHMM Score: The pathogenicity indicator on a scale from 0 to 1, as reported by the 
COSMIC dataset hosted by the Sanger Institute, UK; 7. Genes: The name of the genes, as per the 
report; 8. Mutations: The identity of the mutations, as per the report; 9. Germline Mutations: The 
indication as to whether the gene mutation is germline. (C) Report page on the Tableau visualiza-
tion. The following describes the elements in the Tableau interface: 1. Report Name: The indication 
of the report that is being reported in the page; 2. Allele Frequency Filter: The function used to filter 

Figure 4. Longitudinal Visualization (A) MySQL Table Schema for the visualized Tableau output
data. (B) Search & Overview page on the Tableau visualization. The following describes the elements
in the Tableau interface: 1. Sample Name Selection: User can choose the sample based on the names
available in the dataset; 2. Sample Sequencing Output Quality Check: A measure to determine the
quality of the sequencing based on pre-identified factors that contribute to poor quality sequencing; 3.
Pathogenic Mutations in the Sample: The number of pathogenic mutations that are seen in the sample
based on our gene matching methodology; 4. Similar Samples: The number of similar samples in the
database that are likely from the same patient based on our patient matching methodology; 5. Allele
Frequency: Summarization of the allele frequency of gene mutations as per the report; 6. FATHMM
Score: The pathogenicity indicator on a scale from 0 to 1, as reported by the COSMIC dataset hosted
by the Sanger Institute, UK; 7. Genes: The name of the genes, as per the report; 8. Mutations: The
identity of the mutations, as per the report; 9. Germline Mutations: The indication as to whether the
gene mutation is germline. (C) Report page on the Tableau visualization. The following describes
the elements in the Tableau interface: 1. Report Name: The indication of the report that is being
reported in the page; 2. Allele Frequency Filter: The function used to filter mutations above 1%
variant allele frequency; 3. Predicted Patient Matches: The patient name provided if the methodology
clearly identifies a patient match based on previous available reports in the database; 4. Potential
ID Check: A summary of the other potential patient matches if they exist. Otherwise, it shows the
predicted match; 5. Pathogenic List: A list of identified pathogenic mutations in the report; 6. Neutral
List: A list of identified mutations that are not clearly pathogenic; 7. Lower List: A list of identified
mutations with a very low pathogenicity score.
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4. Discussion

ctDNA analysis in peripheral blood is a liquid biopsy that contains representative
tumor information, which includes information concerning gene mutations found in pri-
mary tumors [5]. These specific genetic changes found in ctDNA can have diagnostic value
and can predict responses to treatment and patient survival. Additionally, as these liquid
biopsies are easily obtainable, repeated samples can be taken for the real-time monitoring
of both cancer patients’ response during the course of treatment and disease progression
over time. As such, peripheral blood liquid biopsies that contain tumor-representative
ctDNA have been proposed as an alternative to solid tumor biopsies [12].

The longitudinal visualization of the pathogenic gene mutations can improve patient
monitoring [3]. With a limited test sample set, a way to address the theoretical likelihood
of incorrect matches is to build a confidence interval of the empirical cut-off by randomly
sampling the test set and applying the proposed methodology to identify the probabilistic
occurrence of the score that makes the false positives equal to zero. Overall, this longitudinal
visualization offers a non-invasive alternative to checking how the pathogenic genes are
evolving. It can be used for the following strategies. First, it can help assess the effectiveness
of a drug in treating the patient’s cancer. By monitoring the evolution of a known pathogenic
mutation, the physician can measure the effect of a specific treatment in dealing with a
particular kind of cancer. This is the principle of precision medicine [1]: to use information
about a person’s gene abnormalities to use targeted treatment. Second, it can help identify
new pathogenic gene mutations, which could be the consequence of clonal expansion
within a heterogeneous tumor. Cancer is a disease in which tumor cells proliferate rapidly
and, over time, can spread to other parts of the body. By monitoring the liquid biopsy
reports, it might be possible to identify pathogenic mutations at an earlier stage, when the
treatment is easier and more effective.

The methodology presented here would help any team in a research context to build
a data platform to automatically map identified mutations with their pathogenicity score
and link reports to the same patient based on their genetic identity, i.e., their germline
mutations, polymorphisms, and synonymous mutations originating from normal tissues.
With improved technology, it might be possible to detect fragments of RNAs and/or
proteins in the blood that might serve as a hint to signal disease or disorder in certain
parts of the human body. Blood can serve as an important medium of inspection due to
the presence of cell components circulating throughout the body [13]. The potential of
detecting such fragments of DNA/RNA/protein could help identify and track the health
of a patient over time. With the use of such data platforms, it would then be possible to
evaluate many approaches for tracking patient health by using cellular fragments present
in the blood to detect and/or monitor a variety of diseases including cancer.
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