Engineering Ag43 Signal Peptides with Bacterial Display and Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Cloning
2.2. Mutant Library Construction
2.3. Expression of Autotransporter System
2.4. Cell Sorting and Flow Cytometry
2.5. Flow Cytometric and FACs Assay Setup
2.6. Screening of the Mutant Clones
2.7. Data Analysis
3. Results and Discussion
3.1. FACs Selection for Single-Cell Mutants with High Levels of Display and Expression
3.2. Characterization of Bulk sfGFP Expression in Mutants
Clone | Mutation |
---|---|
C10, B2, C2, and B11 | 70 G > A (A24T), |
74 T > G (S25A), | |
86 G > C (R29P) | |
104 G > A (G35D) | |
116 T > A (V39D) | |
121 C > G (L41V) | |
D4, B9 | G156C (silent) |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Gutiérrez, I.; Moss-Acosta, C.; Trujillo-Martinez, B.; Gosset, G.; Martinez, A. Ag43-mediated display of a thermostable β-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Microb. Cell Factories 2014, 13, 106. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hörnström, D.; Larsson, G.; Van Maris, A.J.; Gustavsson, M. Molecular optimization of autotransporter-based tyrosinase surface display. Biochim. Et Biophys. Acta (BBA) Biomembr. 2019, 1861, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, M.; Hörnström, D.; Larsson, G.; Gustavsson, M.; van Maris, A.J. Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor. J. Hazard. Mater. 2019, 365, 74–80. [Google Scholar] [CrossRef]
- Schroeder, J.; Brown, N.; Kaye, P.; Aebischer, T. Single Dose Novel Salmonella Vaccine Enhances Resistance against Visceralizing L. major and L. donovani Infection in Susceptible BALB/c Mice. PLoS Neglected Trop. Dis. 2011, 5, e1406. [Google Scholar] [CrossRef][Green Version]
- Gustavsson, M.; Bäcklund, E.; Larsson, G. Optimisation of surface expression using the AIDA autotransporter. Microb. Cell Factories 2011, 10, 72. [Google Scholar] [CrossRef][Green Version]
- Burdette, L.A.; Wong, H.T.; Tullman-Ercek, D. An optimized growth medium for increased recombinant protein secretion titer via the type III secretion system. Microb. Cell Factories 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Kylilis, N.; Riangrungroj, P.; Lai, H.-E.; Salema, V.; Fernández, L.; Stan, G.-B.V.; Freemont, P.S.; Polizzi, K.M. Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. ACS Sensors 2019, 4, 370–378. [Google Scholar] [CrossRef]
- Ramesh, B.; Sendra, V.G.; Cirino, P.C.; Varadarajan, N. Single-cell Characterization of Autotransporter-mediated Escherichia coli Surface Display of Disulfide Bond-containing Proteins. J. Biol. Chem. 2012, 287, 38580–38589. [Google Scholar] [CrossRef][Green Version]
- Duraj-Thatte, A.M.; Manjula-Basavanna, A.; Rutledge, J.; Xia, J.; Hassan, S.; Sourlis, A.; Rubio, A.G.; Lesha, A.; Zenkl, M.; Kan, A.; et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat. Commun. 2021, 12, 6600. [Google Scholar] [CrossRef]
- Glass, D.S.; Riedel-Kruse, I.H. A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell 2018, 174, 649–658. [Google Scholar] [CrossRef]
- Jin, X.; Riedel-Kruse, I.H. Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression. Proc. Natl. Acad. Sci. USA 2018, 115, 3698–3703. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Widmaier, D.M.; Tullman-Ercek, D.; Mirsky, E.A.; Hill, R.; Govindarajan, S.; Minshull, J.; Voigt, C.A. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 2009, 5, 309. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.L.; Tan, H.Q.; Chua, K.J.; Kang, A.; Lim, K.H.; Ling, K.L.; Yew, W.S.; Lee, Y.S.; Thiery, J.P.; Chang, M.W. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2018, 2, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Tsao, C.; Quan, D.N.; Cheng, Y.; Servinsky, M.D.; Carter, K.K.; Jee, K.J.; Terrell, J.L.; Zargar, A.; Rubloff, G.; et al. Autonomous bacterial localization and gene expression based on nearby cell receptor density. Mol. Syst. Biol. 2013, 9, 636. [Google Scholar] [CrossRef]
- Veiga, E.; de Lorenzo, V.; Fernández, L.A. Neutralizationof Enteric Coronaviruses with Escherichia coli CellsExpressing Single-Chain Fv-AutotransporterFusions. J. Virol. 2003, 77, 13396–13398. [Google Scholar] [CrossRef][Green Version]
- Cui, M.; Sun, T.; Li, S.; Pan, H.; Liu, J.; Zhang, X.; Li, L.; Li, S.; Wei, C.; Yu, C.; et al. NIR light-responsive bacteria with live bio-glue coatings for precise colonization in the gut. Cell Rep. 2021, 36, 109690. [Google Scholar] [CrossRef]
- Daugherty, P.S.; Chen, G.; Iverson, B.L.; Georgiou, G. Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc. Natl. Acad. Sci. USA 2000, 97, 2029–2034. [Google Scholar] [CrossRef][Green Version]
- Ling, W.-L.; Lua, W.-H.; Poh, J.-J.; Yeo, J.Y.; Lane, D.P.; Gan, S.K.-E. Effect of VH–VL Families in Pertuzumab and Trastuzumab Recombinant Production, Her2 and FcγIIA Binding. Front. Immunol. 2018, 9, 469. [Google Scholar] [CrossRef][Green Version]
- Ling, W.-L.; Yeo, J.Y.; Ng, Y.-L.; Wipat, A.; Gan, S.K.-E. More Than Meets the Kappa for Antibody Superantigen Protein L (PpL). Antibodies 2022, 11, 14. [Google Scholar] [CrossRef]
- Su, C.T.-T.; Lua, W.-H.; Poh, J.-J.; Ling, W.-L.; Yeo, J.Y.; Gan, S.K.-E. Molecular Insights of Nickel Binding to Therapeutic Antibodies as a Possible New Antibody Superantigen. Front. Immunol. 2021, 12, 676048. [Google Scholar] [CrossRef]
- Su, C.T.-T.; Lua, W.-H.; Ling, W.-L.; Gan, S.K.-E. Allosteric Effects between the Antibody Constant and Variable Regions: A Study of IgA Fc Mutations on Antigen Binding. Antibodies 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Starr, T.N.; Greaney, A.J.; Hilton, S.K.; Ellis, D.; Crawford, K.H.D.; Dingens, A.S.; Navarro, M.J.; Bowen, J.E.; Tortorici, M.A.; Walls, A.C.; et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020, 182, 1295–1310.e1220. [Google Scholar] [CrossRef] [PubMed]
- Warszawski, S.; Katz, A.B.; Lipsh, R.; Khmelnitsky, L.; Ben Nissan, G.; Javitt, G.; Dym, O.; Unger, T.; Knop, O.; Albeck, S.; et al. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLoS Comput. Biol. 2019, 15, e1007207. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alessa, A.H.A.; Tee, K.L.; Gonzalez-Perez, D.; Ali, H.E.M.O.; Evans, C.A.; Trevaskis, A.; Xu, J.-H.; Wong, T.S. Accelerated directed evolution of dye-decolorizing peroxidase using a bacterial extracellular protein secretion system (BENNY). Bioresour. Bioprocess. 2019, 6, 20. [Google Scholar] [CrossRef][Green Version]
- Ling, W.-L.; Su, C.T.-T.; Lua, W.-H.; Poh, J.-J.; Ng, Y.-L.; Wipat, A.; Gan, S.K.-E. Essentially Leading Antibody Production: An Investigation of Amino Acids, Myeloma, and Natural V-Region Signal Peptides in Producing Pertuzumab and Trastuzumab Variants. Front. Immunol. 2020, 11, 604318. [Google Scholar] [CrossRef]
- Heng, Z.S.-L.; Yeo, J.Y.; Koh, D.W.-S.; Gan, S.K.-E.; Ling, W.-L. Augmenting recombinant antibody production in HEK293E cells: Optimizing transfection and culture parameters. Antib. Ther. 2022, 5, 30–41. [Google Scholar] [CrossRef]
- VanArsdale, E.; Hörnström, D.; Sjöberg, G.; Järbur, I.; Pitzer, J.; Payne, G.F.; Van Maris, A.J.A.; Bentley, W.E. A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synth. Biol. 2020, 9, 1117–1128. [Google Scholar] [CrossRef]
- Kleiner-Grote, G.R.M.; Risse, J.M.; Friehs, K. Secretion of recombinant proteins from E. coli. Eng. Life Sci. 2018, 18, 532–550. [Google Scholar] [CrossRef][Green Version]
- Ahan, R.E.; Kırpat, B.M.; Saltepe, B.; Seker, U.O.S. A Self-Actuated Cellular Protein Delivery Machine. ACS Synth. Biol. 2019, 8, 686–696. [Google Scholar] [CrossRef]
- Azam, A.; Li, C.; Metcalf, K.J.; Tullman-Ercek, D. Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins. Biotechnol. Bioeng. 2016, 113, 2313–2320. [Google Scholar] [CrossRef]
- Meuskens, I.; Saragliadis, A.; Leo, J.C.; Linke, D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front. Microbiol. 2019, 10, 1163. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gonzalez-Perez, D.; Ratcliffe, J.; Tan, S.K.; Wong, M.C.M.; Yee, Y.P.; Nyabadza, N.; Xu, J.-H.; Wong, T.S.; Tee, K.L. Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli. Sci. Rep. 2021, 11, 5290. [Google Scholar] [CrossRef] [PubMed]
- Castiñeiras, T.S.; Williams, S.G.; Hitchcock, A.; Cole, J.A.; Smith, D.C.; Overton, T.W. Development of a generic β-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci. Rep. 2018, 8, 6986. [Google Scholar] [CrossRef]
- DeLisa, M.P.; Samuelson, P.; Palmer, T.; Georgiou, G. Genetic Analysis of the Twin Arginine Translocator Secretion Pathway in Bacteria. J. Biol. Chem. 2002, 277, 29825–29831. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Taw, M.N.; Li, M.; Kim, D.; Rocco, M.A.; Waraho-Zhmayev, D.; DeLisa, M.P. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth. Biol. 2021, 10, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Haitjema, C.H.; Boock, J.T.; Natarajan, A.; Dominguez, M.A.; Gardner, J.G.; Keating, D.H.; Withers, S.T.; DeLisa, M.P. Universal Genetic Assay for Engineering Extracellular Protein Expression. ACS Synth. Biol. 2014, 3, 74–82. [Google Scholar] [CrossRef]
- Natarajan, A.; Haitjema, C.H.; Lee, R.; Boock, J.T.; DeLisa, M.P. An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli. ACS Synth. Biol. 2017, 6, 875–883. [Google Scholar] [CrossRef]
- van der Woude, M.W.; Henderson, I.R. Regulation and Function of Ag43 (Flu). Annu. Rev. Microbiol. 2008, 62, 153–169. [Google Scholar] [CrossRef]
- Kjærgaard, K.; Hasman, H.; Schembri, M.A.; Klemm, P. Antigen 43-Mediated Autotransporter Display, a Versatile Bacterial Cell Surface Presentation System. J. Bacteriol. 2002, 184, 4197–4204. [Google Scholar] [CrossRef][Green Version]
- Beal, J. Bridging the Gap: A Roadmap to Breaking the Biological Design Barrier. Front. Bioeng. Biotechnol. 2015, 2, 87. [Google Scholar] [CrossRef]
- Georgiou, G. Analysis of Large Libraries of Protein Mutants Using Flow Cytometry. In Advances in Protein Chemistry; Evolutionary Protein Design; Academic Press: Cambridge, MA, USA, 2001; Volume 55, pp. 293–315. [Google Scholar]
- Holowko, M.B.; Frow, E.K.; Reid, J.C.; Rourke, M.; Vickers, C.E. Building a biofoundry. Synth. Biol. 2020, 6, ysaa026. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.L.; Wong, A.; Chua, N.; Teo, W.S.; Yew, W.S.; Chang, M.W. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 2017, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.D.; Tawfik, D. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 2003, 22, 24–35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Buchmuller, B.C.; Dröden, J.; Singh, H.; Palei, S.; Drescher, M.; Linser, R.; Summerer, D. Evolved DNA Duplex Readers for Strand-Asymmetrically Modified 5-Hydroxymethylcytosine/5-Methylcytosine CpG Dyads. J. Am. Chem. Soc. 2022, 144, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Townshend, B.; Kennedy, A.B.; Xiang, J.; Smolke, C.D. High-throughput cellular RNA device engineering. Nat. Methods 2015, 12, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.D.; Garruss, A.S.; Moretti, R.; Chan, S.; Arbing, M.A.; Cascio, D.; Rogers, J.K.; Isaacs, F.J.; Kosuri, S.; Baker, D.; et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 2016, 13, 177–183. [Google Scholar] [CrossRef][Green Version]
- Poh, J.G. The Determination of Factors involved in Column-Based Nucleic Acid Extraction and Purification. J. Bioprocess. Biotech. 2014, 4, 157. [Google Scholar] [CrossRef]
- Chan, W.-T.; Verma, C.S.; Lane, D.P.; Gan, S.K.-E. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 2013, 33, e00086. [Google Scholar] [CrossRef]
- Sim, J.-Z.N. 5. Republication—GelApp: Mobile gel electrophoresis analyser. Sci. Phone apps Mob. Device 2019, 5, 4. [Google Scholar] [CrossRef]
- Wong, C.-F.; Yeo, J.Y.; Gan, S.K.-E. Republication—APD Colony Counter App: Using Watershed Algorithm for improved colony counting. Sci. Phone Apps Mob. Device 2019, 5, 5. [Google Scholar] [CrossRef]
- Jing, K.; Guo, Y.; Ng, I.-S. Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins. Bioresour. Bioprocess. 2019, 6, 14. [Google Scholar] [CrossRef][Green Version]
- Maurer, J.; Jose, J.; Meyer, T.F. Autodisplay: One-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J. Bacteriol. 1997, 179, 794–804. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koh, D.W.-S.; Chan, K.-F.; Wu, W.; Gan, S.K.-E. Yet Another Quick Assembly, Analysis and Trimming Tool (YAQAAT): A Server for the Automated Assembly and Analysis of Sanger Sequencing Data. J. Biomol. Tech. JBT 2021, 32, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.-V.; Verma, C.S.; Gan, S.K.-E. DNAApp: A mobile application for sequencing data analysis. Bioinformatics 2014, 30, 3270–3271. [Google Scholar] [CrossRef][Green Version]
- Chiang, C.F.; Okou, D.T.; Griffin, T.B.; Verret, C.R.; Williams, M.N. Green Fluorescent Protein Rendered Susceptible to Proteolysis: Positions for Protease-Sensitive Insertions. Arch Biochem Biophys 2001, 394, 229–235. [Google Scholar] [CrossRef]
- Dinh, T.; Bernhardt, T.G. Using Superfolder Green Fluorescent Protein for Periplasmic Protein Localization Studies. J Bacteriol. 2011, 193, 4984–4987. [Google Scholar] [CrossRef][Green Version]
- Fisher, A.C.; DeLisa, M.P. Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control. PLoS One 2008, 3, e2351. [Google Scholar] [CrossRef][Green Version]
- Nakamura, Y. Codon Usage Table. Available online: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=155864 (accessed on 4 July 2022).
- Nakamura, Y.; Gojobori, T.; Ikemura, T. Codon Usage Tabulated from International DNA Sequence Databases: Status for the Year 2000. Nucleic Acids Res. 2000, 28, 292. [Google Scholar] [CrossRef][Green Version]
- Shen, X.; Song, S.; Li, C.; Zhang, J. Synonymous Mutations in Representative Yeast Genes Are Mostly Strongly Non-Neutral. Nature 2022, 606, 725–731. [Google Scholar] [CrossRef]
- Jiang, Y.; Neti, S.S.; Sitarik, I.; Pradhan, P.; To, P.; Xia, Y.; Fried, S.D.; Booker, S.J.; O’Brien, E.P. How Synonymous Mutations Alter Enzyme Structure and Function over Long Timescales. Nat. Chem. 2022, 1–11. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Binder, D.; Probst, C.; Grünberger, A.; Hilgers, F.; Loeschcke, A.; Jaeger, K.-E.; Kohlheyer, D.; Drepper, T. Comparative Single-Cell Analysis of Different E. Coli Expression Systems during Microfluidic Cultivation. PLoS ONE 2016, 11, e0160711. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsirigotaki, A.; Chatzi, K.E.; Koukaki, M.; De Geyter, J.; Portaliou, A.G.; Orfanoudaki, G.; Sardis, M.F.; Trelle, M.B.; Jørgensen, T.J.D.; Karamanou, S.; et al. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure 2018, 26, 695–707.e5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smets, D.; Tsirigotaki, A.; Smit, J.H.; Krishnamurthy, S.; Portaliou, A.G.; Vorobieva, A.; Vranken, W.; Karamanou, S.; Economou, A. Evolutionary Adaptation of the Protein Folding Pathway for Secretability. EMBO J. 2022, 41, e111344. [Google Scholar] [CrossRef]
- Burdette, L.A.; Leach, S.A.; Wong, H.T.; Tullman-Ercek, D. Developing Gram-Negative Bacteria for the Secretion of Heterologous Proteins. Microb. Cell Factories 2018, 17, 196. [Google Scholar] [CrossRef][Green Version]
- Halperin, S.O.; Tou, C.J.; Wong, E.B.; Modavi, C.; Schaffer, D.V.; Dueber, J.E. CRISPR-Guided DNA Polymerases Enable Diversification of All Nucleotides in a Tunable Window. Nature 2018, 560, 248–252. [Google Scholar] [CrossRef]
- Wang, H.H.; Isaacs, F.J.; Carr, P.A.; Sun, Z.Z.; Xu, G.; Forest, C.R.; Church, G.M. Programming Cells by Multiplex Genome Engineering and Accelerated Evolution. Nature 2009, 460, 894–898. [Google Scholar] [CrossRef][Green Version]
- Chory, E.J.; Gretton, D.W.; DeBenedictis, E.A.; Esvelt, K.M. Enabling High-throughput Biology with Flexible Open-source Automation. Mol. Syst. Biol. 2021, 17, e9942. [Google Scholar] [CrossRef]
- DeBenedictis, E.A.; Chory, E.J.; Gretton, D.W.; Wang, B.; Golas, S.; Esvelt, K.M. Systematic Molecular Evolution Enables Robust Biomolecule Discovery. Nat. Methods 2022, 19, 55–64. [Google Scholar] [CrossRef]
Component | Stock Concentration | Amount |
---|---|---|
10× Mutazyme II reaction buffer | 10× | 10 |
dNTP | 40 mM | 2 µL |
Ag43epPCR_F(5′- CTG TAG AAA TAA TTT TGT TTA ACT TTA ATA AGG AGA TAT ACC ATG -3′) | 10 µm | 5 µL |
Ag43epPCR_R (5′- CTT TTT CAA ATT GGG GGT GTG ACC ATG CAG CGC TAG CCG CAG C -3′) | 10 µm | 5 µL |
Mutazyme | 2.5 U/μL | 2 µL |
Template | Variable | 2.5 ng |
Water | Up to 100 µL | |
PCR Profiles | ||
Step | Temperature | Time |
Initial Denaturation | 120 s | |
Stage 1 (Touchdown PCR, 15 cycles) | ||
Denaturation | 95 °C | 30 s |
Annealing | 72 °C (−1 °C each cycle) | 30 s |
Extension | 72 °C | 30 s |
Stage 2 (Conventional PCR, 25 cycles) | ||
Denaturation | 95 °C | 30 s |
Annealing | 57 °C | 30 s |
Extension (269bp product) | 72 °C | 30 s |
Component | Stock Concentration | Amount |
---|---|---|
SuperFi II Green PCR master mix | 2× | 25 |
Mutagenized Ag43 megaprimer libraries | 250 ng | Variable |
Template | 50 ng | Variable |
Nuclease-free water | Up to 50 µL | |
PCR Profiles | ||
Step | Temperature | Time |
Initial Denaturation | 98 °C | 120 s |
25 cycles | ||
Denaturation | 98 °C | 30 s |
Annealing | 60 °C | 30 s |
Extension (6375 bp product) | 72 °C | 210 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, D.W.-S.; Tay, J.-H.; Gan, S.K.-E. Engineering Ag43 Signal Peptides with Bacterial Display and Selection. Methods Protoc. 2023, 6, 1. https://doi.org/10.3390/mps6010001
Koh DW-S, Tay J-H, Gan SK-E. Engineering Ag43 Signal Peptides with Bacterial Display and Selection. Methods and Protocols. 2023; 6(1):1. https://doi.org/10.3390/mps6010001
Chicago/Turabian StyleKoh, Darius Wen-Shuo, Jian-Hua Tay, and Samuel Ken-En Gan. 2023. "Engineering Ag43 Signal Peptides with Bacterial Display and Selection" Methods and Protocols 6, no. 1: 1. https://doi.org/10.3390/mps6010001