
Supplemental Information 

1.  Theory of probability distribution functions and their convolution as applied to NBS. 

 In this article probability distribution functions of the type shown in Figure 1 have been 

presented.  The best known probability distribution function, PDF, is the Normal or Gaussian 

distribution, ����, which is a continuous function of the variable z.  For the Normal distribution: 
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Here, � is the enzymatic activity, µ and σ  are the mean enzymatic activity and standard deviation 

of the enzymatic activity for the newborn population, respectively.  The probability distribution 

function in terms of �, ���� is easily related to  ���� as:   ����� = ��
�� ����.  In this case ��
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 As described in the main text, the Log-Normal probability distribution function is more 

appropriate for NBS.  In this case: 
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The log-normal probability distribution function in terms of  � is: 
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A typical ������ is shown as Figure 1 in the main text.  In practice, if � ≥ 5� it is difficult to 

distinguish between the normal and the log-normal distributions, and hence unnecessary.  This 

would correspond to the case where the mean enzymatic activity is large enough such that the 

number of newborns in the population with enzymatic activity close to 0 is very small.   Or said 

another way, skewing of the Gaussian due to fact that x must be a positive number is very small. 

 In the context of NBS, there are two Log-Normal distributions, one for the healthy 

newborns,  ���,����, and one for the diseased newborns,  ���,-���.  Each distribution has its own 

mean (�� and �-) and width (�� and �- ). 

 The assay of enzymatic activity has a degree of imprecision (also called error), which we 

call the standard imprecision of the measurement, �..  To measure the imprecision, one takes 



multiple 3 mm punches from the same dried blood spots and submits each punch to the same assay.   

This is what the Centers for Disease Control and Prevention (CDC) does for their Quality Control 

dried blood spots, for which data is provided as certificate reports 

(https://www.cdc.gov/labstandards/nsqap_resources.html).  The measurements are fit to a 

Gaussian distribution to obtain the mean µM and standard error σM. 

 The observed PDF  (i.e. Figure 1 in the main text) contains variation due to the imprecision 

and variation in the population due to all other factors.  The latter is referred to as the no-

imprecision PDF.  The mathematics of how to combine these two PDFs is well founded and is 

generally treated as a convolution.  The appropriate convolutions, /����, for the normal newborns, 

and the one for the disease newborns, /-���, are given below: 
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Note that the variable of integration, 1, runs over all possible values of the enzymatic activity, �, 

in the dried blood spot.  The function G in the above equation is the Gaussian function for the 

imprecision in the measurement.  The above two equations for the convolution are based on a 

single imprecision distribution, wherein the standard error of measurement does not depend on the 

mean assay value.  However, the data shown in Figure 2 in the main text shows that �. does vary 

with �..  This is the general case with most measurements in dried blood spots.  We can 

incorporate this dependence in the above convolution equations by noting that, in general, �. =
 �.�1�.  For example, in Figure 2, we show a possible model function that could be used in the 

above convolution equations. The identity of this model function is not important as long as it well 

fits the data.  The function G in the above equation is the Gaussian function for the imprecision in 

the measurement.   

 From the distribution of newborn assays, one can obtain the fraction of patients between 

0 and any specific assay value, �7. 
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The fraction,  8��7�,  is zero as �7 → 0 and is one as �7 → ∞.  The fraction monotonically 

increases as �7 increases.  This applies to both the normal and the disease population: 
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 One would like a clear distinction between the normal and disease population.  However, 

with continuous distributions, this is not possible; there will always be some amount of overlap.  

In the case of NBS assays, the mean of the normal group is much greater than that of the disease 

group, �� ≫ �-.  If we consider any specific assay threshold value, �7, the fraction of the disease 



group with a value less than �7 belongs to the truly positive group.  The fraction in this group is 

the true positive rate, TPR,  @AB = 8-��7�.  Those in the disease group with a value larger than �7 

are in the false negative group, �C-; and the false negative rate, FNR, is �CB = �C- = 1 −
8-��7� ("false negatives").  The fraction of the normal group with assay values less than �7, called 

�A�, has the false positive rate, FPR, �AB = �A� = 8���7� ("false positives"), and those with 

values greater than �7 are truly negative. Therefore, the true negative rate, TNR, is @CB = 1 −
�A� = 1 − 8���7�.  We assign this value �7 as the screen cutoff, and all of these rates are 

continuous functions of the screen cutoff. A typical receiver operating characteristic (ROC) plot is 

a plot of TPR vs FPR.   

Because the TPR and FPR are both continuous functions of the screen cutoff (which is not 

shown or even knowable from the plot), the plot is also called a parametric plot. A plot of this sort 

emphasizes the sensitivity of the test as a tradeoff with the probability of false alarm. However, 

for heuristic reasons we choose to plot the FPR as a function of the FNR, which emphasizes the 

probability of false alarm as a trade off with missing disease positives. 

 The goal now is twofold: to identify a proper way to distinguish between the two groups 

and a way to characterize what is an acceptable overlap.  As an example:  If there are C�  

newborns in the normal distribution and C- newborns in the disease distribution, then the total 

number of false identifications would be CD = C� ∙ �C� + C- ∙ �A- .  Therefore, if one wished 

to minimize the total number of false observations (we want CD  to be as small as possible) then 

that happens when  C�/���7� = C-/-��7�.  Thus, it is possible to uniquely define an �7 that 

minimizes the total number of falsely placed individuals.  Unfortunately this is not the only 

criterion, but it is an interesting starting point for defining the best cutoff and provides insight 

into the approximate region where the cutoff probably will be found. 

 

2.  Procedure for carrying out the convolutions. 

 All calculations were done using Octave version 4.4.0.  Octave is Matlab compliant. The 

functions were evaluated as described above, and the convolution integral was done pointwise for 

each value of x using the trapezoid rule,  where the upper limit on the integral was increased until 

no detectable change in the integral was observed.  Generally x > 20 was sufficient, and the integral 

was represented by 5000 intervals.  The computer code is available upon request.  Contact the 

authors if you prefer to have your data analyzed by them. 

 

3.  The convolution process. 

 To illustrate the convolution process, we refer to Supplemental Figure 1.  Shown is a no-

imprecision PDF (green curve) as well as an imprecision PDF (blue curve), with the latter 

positioned somewhere along the X-axis (i.e. with its mean value at some specific enzymatic 

activity, x, in this case 5 µmol/h/L).  The imprecision PDF also is described by the standard 

deviation of the measurement, σM, which determines the width of this PDF.  To compute the 



convolution PDF at this x value we multiply the value of the no-imprecision PDF at some other 

value x' by the value of the imprecision PDF at x' and repeat this pairwise multiplication for all 

values of x' to cover the full range of enzymatic activities.  All products are added together.  For 

values of x' far away from the mean value of the imprecision PDF, the contributions to the sum are 

small because the imprecision PDF is close to zero in these regions.  To obtain the convolution at 

some new value of x we move the imprecision PDF to the new value along the X-axis and repeat 

the process again.    

 Imagine the case where the imprecision PDF has a very small σM.  The products are close 

to zero except for x' close to the mean value of the imprecision PDF, and then the product is close 

to the value of the no-imprecision PDF at the same position.  When this is repeated for all values 

along the X-axis, the convolution is nearly identical to the original no-imprecision PDF. However, 

as σM increases the convolution is broader than the no-imprecision PDF at the tails and reduced in 

height near the mean of the no-imprecision PDF (since the area of PDFs must be unity).   

 

 

Supplemental Figure 1.  Shown in green is the Log-Normal PDF for the healthy newborns (mean 

= 10 µmole/h/L and width = 3.8 µmole/h/L). The blue curve is a Normal distribution with mean 5 

µmole/h/L and width 0.5 µmole/h/L (a typical imprecision data set carried out with multiple 

punches of a Quality Control dried blood spot).  The blue curve is re-scaled to touch the green 

curve at 5 µmole/h/L.  The black curve is the product of the two PDFs (not scaled). Notice the 

slight shift to the right for the maximum value along this curve.  The area under the black curve is 

the value of the convolved function for x = 5 µmole/h/L.  This process is repeated for all values of 

x to give the convolution. 

 

 

 

 

 



 

 

 

 

 


