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Abstract: This study introduces a Multi-Stage Automated Classification (MSTAC) system for COVID-19
chest X-ray (CXR) images, utilizing stacked Convolutional Neural Network (CNN) models. Suspected
COVID-19 patients often undergo CXR imaging, making it valuable for disease classification. The
study collected CXR images from public datasets and aimed to differentiate between COVID-19,
non-COVID-19, and healthy cases. MSTAC employs two classification stages: the first distinguishes
healthy from unhealthy cases, and the second further classifies COVID-19 and non-COVID-19
cases. Compared to a single CNN-Multiclass model, MSTAC demonstrated superior classification
performance, achieving 97.30% accuracy and sensitivity. In contrast, the CNN-Multiclass model
showed 94.76% accuracy and sensitivity. MSTAC’s effectiveness is highlighted in its promising
results over the CNN-Multiclass model, suggesting its potential to assist healthcare professionals in
efficiently diagnosing COVID-19 cases. The system outperformed similar techniques, emphasizing
its accuracy and efficiency in COVID-19 diagnosis. This research underscores MSTAC as a valuable
tool in medical image analysis for enhanced disease classification.
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) was formally named Severe Acute Respira-
tory Syndrome Coronavirus-2 (SARS-CoV-2) by the International Committee on Taxonomy
of Viruses [1]. According to the primary studies, SARS-CoV-2 was originally transmit-
ted from bats to humans by unknown intermediate animals [2,3]. Most patients exhibit
symptoms such as fever, dry cough, headache, chest pain, and shortness of breath [4,5],
even though some patients may experience asymptomatic COVID-19 [6,7]. For diagnosing
COVID-19, a throat swab is the gold standard [8–10]. Typically, a chest X-ray (CXR) is
essential for high-risk patients or Patients Under Inspection (PUI) to detect lung infection.
The CXR examination is widely considered the gold standard for diagnosing pneumo-
nia [11]. Specifically, the severity of COVID-19 is exacerbated when patients have risk
factors such as older age, high blood pressure, and chronic respiratory disease [12]. The
causes of pneumonia include viruses, bacteria, and fungi [13].

Deep learning (DL) serves as an advanced tool for image analysis, object classification,
and pattern recognition. DL models accurately identify and classify objects within images,
automatically learning complex patterns and representations directly from raw input
data. Moreover, they can differentiate patterns and features that are challenging to extract
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from large datasets. Consequently, these models can be leveraged to develop computer-
aided diagnosis (CADx) systems to effectively analyze medical information. With the
assistance of artificial intelligence algorithms, CADx systems enable physicians to provide
valuable information and support to fellow healthcare professionals. Furthermore, CADx
reduces the workload on them by efficiently analyzing a large amount of medical data.
However, it is essential to note that CADx systems are designed to assist rather than
substitute for physicians. Final diagnostic decisions should always be made by qualified
healthcare professionals, drawing on their clinical knowledge, patient history, and other
relevant information.

According to previous studies, CADx may help clinicians identify COVID-19 pneumo-
nia using CXR images [14,15]. Currently, CADx of medical images is becoming increasingly
viable. State-of-the-art DL approaches have shown promising results in identifying CXR
images of COVID-19 infections [16–18]. Chowdhury et al. [19] proposed a transfer learning
approach with binary classification: normal and COVID-19, and three-class classification:
normal, viral pneumonia, and COVID-19. The binary classification achieved 99.7% accu-
racy and sensitivity, while the three-class classification obtained 97.4% accuracy, sensitivity,
and F-measure. Afshar et al. [20] proposed the COVID-CAPS modeling framework based
on capsule networks, which achieved accuracy and sensitivity of 95.7% and 90.0%, re-
spectively. Wang et al. [21] introduced COVID-net, a deep convolutional neural networks
(CNN) design tailored to classify COVID-19, non-COVID-19, and healthy. COVID-net
achieved an accuracy of 93.3% and a sensitivity of 93.3%. Ahmad et al. [22] proposed a
hybrid ensemble model for identifying COVID-19 infections in CXR images. MobileNet
and InceptionV3 models were fine-tuned for the learned weights. The authors performed
four-fold cross-validation. The results showed accuracy, precision, and specificity of 94.2%,
89.9%, and 88.3%, respectively.

Furthermore, Khuzani, Heidari, and Shariati [23] used a dimensionality reduction
method to generate a set of optimal features of CXR images to develop a COVID-classifier that
distinguishes COVID-19 cases from non-COVID-19 cases. The proposed COVID-classifier
achieved an accuracy of 94.05%. Yang et al. [24] used VGG16 to detect multiclass COVID-19
CXR and CT-scan images. The accuracy of the three-class classification of CXR images
was 97%. Hong et al. [25] proposed a lightweight CNN, MGMADS-CNN that classifies
COVID-19 CXR images with an accuracy of 96.75%. Nishio et al. [26] developed Efficient-
Net to classify COVID-19 pneumonia, non-COVID-19 pneumonia, and healthy CXR images.
Three-class classification accuracy was 86.67%. According to Table 1, DL and pre-trained
models for COVID-19 detection on CXR images dominated this research field. However,
several studies used small and unbalanced datasets to develop models. This raises potential
problems with generalization and bias. Small datasets may restrict the model’s ability to
understand the full complexity of cases, and unbalanced datasets can result in biased per-
formance towards the majority class. Even with the prevalence of CXR-pretrained models,
researchers should be careful about the size and balance of their datasets to ensure strong
and unbiased model performance in detecting COVID-19.

Our retrospective study mainly aimed to classify COVID-19, non-COVID-19, and
healthy CXR images using a stacked CNN model. Using stacked CNN models, multi-
stage automated classification (MSTAC) of COVID-19 CXR images was realized based
on two CNN-based binary classification models. The first model differentiates healthy
and unhealthy CXR images. Consequently, all the unhealthy CXR images are passed to
the second CNN-based binary classification model. The second model mainly classifies
COVID-19 and non-COVID-19 CXR images. We compared MSTAC with the CNN model
that classifies COVID-19 pneumonia, non-COVID-19, and healthy. However, only a few
studies have used multi-stage automated detection for classifying COVID-19 based on
CXR images.
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Table 1. Summary of previous studies on COVID-19 CXR detection.

Author Methods Classes Dataset

Chowdhury et al. [19] Different pre-trained CNN model 3 COVID-19 = 423, Viral pneumonia = 1485,
and Normal = 1579

Afshar et al. [20] COVID-CAPS framework consists of
4 convolutional layers and 3 capsule layers 4 Not specified

Wang et al. [21] COVID-Net network architecture 3 13,975 CXR images

Ahmad et al. [22] Hybrid ensemble model 4
COVID-19 = 1050, Viral

pneumonia = 1050, Bacterial
pneumonia = 1050, and Normal = 1050

Khuzani et al. [23] Dimensionality reduction method of CXR
images to build classifier 3 COVID-19 = 140, non-COVID-19 = 140,

and Normal = 140

Yang et al. [24] VGG16 3 COVID-19 = 3616, Pneumonia = 1345,
and Normal = 3500

Hong et al. [25] MGMADS-CNN model 4
COVID-19 = 1341, Viral

pneumonia = 1733, Bacterial
pneumonia = 2705, and Normal = 2916

Nishio et al. [26] Several transfer learning techniques 3 Three datasets

Our MSTAC Stacked CNN-based 3 COVID-19 = 1050, non-COVID-19 = 1050,
and Normal = 1050

The following are the main contributions of our study that aim to address these issues:

(1) We propose the Multi-Stage Automated Classification (MSTAC) for COVID-19 detec-
tion using two stacked CNN-based binary classification models and a large dataset of
CXR images.

(2) The first model for MSTAC (stage-1) is a DL model that classifies between healthy
and unhealthy CXR images.

(3) The second model for MSTAC (stage-2) is a DL model that classifies between COVID-
19 and non-COVID-19 CXR images.

(4) The proposed MSTAC model stacks stage-1 and stage-2. This stacking allows MSTAC
to identify three classes of CXR images: COVID-19, non-COVID-19, and healthy.

(5) MSTAC achieves high accuracy in identifying COVID-19 pneumonia cases from CXR im-
ages. This proposed model enhances the efficiency and accuracy of COVID-19 detection.

(6) We also compare MSTAC with previous studies that classify COVID-19 pneumonia,
non-COVID-19, and healthy cases. This comparison demonstrates the promising
results of MSTAC in COVID-19 classification and its effectiveness for medical image
analysis and diagnosis.

Overall, the MSTAC for COVID-19 model aims to make a precise contribution to the
ongoing struggle with the COVID-19 pandemic.

The study’s structure is organized as follows: The methodology and proposed models
are discussed in Section 2. The experimental findings are presented in Section 3. In Section 4,
discussions are provided. Finally, Section 5 presents the conclusion.

2. Materials and Methods
2.1. Dataset

Three publicly available data repositories were used: (1) CXR images (pneumonia)
dataset available on Mendeley data, which contains CXR images of healthy and non-
COVID-19 pneumonia [27]; (2) augmented COVID-19 X-ray images dataset [28]; and
(3) COVID-19 image data [29] for CXR images of COVID-19 pneumonia. The representative
CXR images of healthy, non-COVID-19 pneumonia, and COVID-19 in the combined dataset
are shown in Figure 1.
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Figure 1. Sample of CXR images: (A) healthy, (B) non-COVID-19, and (C) COVID-19. 
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is necessary to standardize the image size. To ensure uniformity, the CXR images were 
standardized to dimensions of 224 × 224. Scaling CXR images to 224 × 224, despite their 
relatively low resolution, this study was conducted under the influence of resource con-
straints. Despite the reduced resolution, these previous studies have consistently demon-
strated the feasibility of developing highly efficient models for tasks such as classification. 
The initial batch normalization layer played a crucial role in normalizing inputs, signifi-
cantly reducing the required training epochs for deep networks. The sequential CNN in-
cludes three convolutional layers (Conv) of 3 × 3 size. There are different sizes of Conv filters, 
the first two layers have 64 filters, and the third has 32 filters. Next to each Conv is a 3 × 3 
max pooling layer. The third Conv’s pooling output is fed to the first fully connected layer, 

Figure 1. Sample of CXR images: (A) healthy, (B) non-COVID-19, and (C) COVID-19.

The dataset used comprised 3150 CXR images. Specifically, 1050 images were ran-
domly selected from dataset (1) for both the healthy and non-COVID-19 pneumonia classes.
For COVID-19 pneumonia, 912 CXR images were collected from dataset (2). A total of
138 CXR images were randomly selected from dataset (3) to prevent a class imbalance. Our
dataset included 3150 CXR images from all three classes, as shown in Table 2, and was used
to develop and validate our proposal.

Table 2. Dataset distribution of CXR images.

Dataset Classes Number of Images

CXR Images (Pneumonia) dataset [27] Healthy 1050

CXR Images (Pneumonia) dataset [27] Non-COVID-19 1050

Augmented COVID-19 X-ray Images Dataset [28] COVID-19 912

COVID-19 Image Data Collection [29] COVID-19 138

2.2. DL Architecture

The DL architecture employed in our study utilizes a sequential CNN for the classi-
fication of CXR images. As the CXR images were gathered from various public sources,
it is necessary to standardize the image size. To ensure uniformity, the CXR images were
standardized to dimensions of 224 × 224. Scaling CXR images to 224 × 224, despite their rel-
atively low resolution, this study was conducted under the influence of resource constraints.
Despite the reduced resolution, these previous studies have consistently demonstrated
the feasibility of developing highly efficient models for tasks such as classification. The
initial batch normalization layer played a crucial role in normalizing inputs, significantly
reducing the required training epochs for deep networks. The sequential CNN includes
three convolutional layers (Conv) of 3 × 3 size. There are different sizes of Conv filters, the
first two layers have 64 filters, and the third has 32 filters. Next to each Conv is a 3 × 3 max
pooling layer. The third Conv’s pooling output is fed to the first fully connected layer,



Tomography 2023, 9 2237

which includes 128 neurons. A dropout of 0.35 was applied in the second Conv, the third
Conv, and the fully connected layers. We used the Adam optimizer to update weights and
perform the cross-entropy loss function. The CNN model was trained using 20 epochs with
a batch size of 32. The architecture of the proposed CNN model is shown in Figure 2.
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Figure 2. Architecture of the CNN model.

2.3. Multi-Stage Automated Classification (MSTAC)

The MSTAC stacked multiple binary classification models to classify COVID-19, non-
COVID-19, and healthy CXR images. The model stacking approach was inspired by
the stacked machine learning model used to classify sleep stages automatically [30]. In
this study, MSTAC was designed to have two stages. The stage-1 model performs the
classification of healthy CXR images from unhealthy ones. The stage-2 model classifies
between COVID-19 and non-COVID-19 CXR images. Figure 3. illustrates the block diagram
of our proposed experiments and the evaluation of MSTAC. From the block diagram, the
CXR images were diagnosed as unhealthy by the stage-1 model. After that, unhealthy
images were diagnosed by the stage-2 model to determine whether they were COVID-
19 or non-COVID-19. The development and test set were used to develop and evaluate
classification model performance. We randomly split the CXR image dataset into training
and test sets at an 80:20 ratio. The test set had 630 CXR images, comprising COVID-19
pneumonia, non-COVID-19 pneumonia, and normal.

To elaborate, in the initial step, the stage-1 model successfully classified 630 CXR
images into categories of healthy and unhealthy. Upon completion of the stage-1 pre-
dictions, the algorithm automatically stored the images predicted as belonging to the
healthy class. Subsequently, the stage-2 model took charge of classifying the unhealthy
class images to discern whether they were indicative of COVID-19 or non-COVID-19
conditions. The predictions generated by the stage-2 model were then saved utilizing
the same algorithm. Finally, we employed the recorded predictions, stored by the algo-
rithm, to conduct a comparative analysis with the true labels of the CXR images. This
facilitated the creation of a confusion matrix, serving as a robust tool to evaluate the
overall performance of MSTAC.
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For the stage-1 model, we used the training set by combining the COVID-19 class with
the non-COVID-19 class. Considering the design, this process imbalanced the classes and
caused bias in the evaluation. We applied the synthetic minority oversampling technique
(SMOTE) to solve the imbalanced classes problem [31]. SMOTE synthesized new data
from existing data using k-nearest neighbors (kNN) and inserted them into the original
dataset [32]. Originally, there were 840 subjects in the healthy class and 1680 in the un-
healthy class. The healthy class became a minority in the training set for the stage-1 model.
Consequently, we synthesized 840 healthy images using SMOTE to balance both classes.
The stage-1 model was finally performed with 1680 CXR healthy and 1680 CXR unhealthy
images. To build the stage-2 model, we eliminated the healthy class from the training set.
The stage-2 model was trained using 840 COVID-19 and 840 non-COVID-19 CXR images.
Table 3. summarizes the CXR images used for developing the CNN model. The use of
SMOTE was intended to address the effects of class imbalance. This ensures that the CNN
model of the stage-1 could effectively learn and make accurate predictions for both the
healthy and unhealthy classes in the CXR images.

Table 3. CXR image distribution used to develop each CNN model.

CNN-Based Classes
No. of Images in Training Set (80%)

Original SMOTE

stage-1
Healthy 840 1680

Unhealthy 1680 1680

stage-2
COVID-19 840 -

Non-COVID-19 840 -

2.4. CNN-Multiclass

In our comparison, we also made a separate deep model named CNN-Multiclass
to classify CXR images into COVID-19, non-COVID-19, and healthy classes. The ar-
chitecture of CNN-Multiclass mirrors that of MSTAC’s CNN model, with a singular
modification—expanding the input dimension from 2 to 3 to accommodate the multiclass
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prediction task. This adjustment ensures that CNN-Multiclass aligns with the structure of
MSTAC, enabling us to assess and compare the classification performance of each model
for specific health conditions in CXR images.

CNN-Multiclass was trained using 840 CXR images for each of the three categories:
COVID-19, non-COVID-19, and healthy, as detailed in Table 4. To maintain consistency
in the evaluation process, we employed the same test set used for MSTAC to assess
CNN-Multiclass. This test set consisted of 630 CXR images, covering cases of COVID-19,
non-COVID-19, and healthy conditions. This test set of images served as the standardized
benchmark for evaluating the performance of both CNN-Multiclass and MSTAC, as shown
in the diagram in Figure 4.

Table 4. CXR image distribution used to develop CNN-Multiclass model.

Model Classes No. of Images in Training Set (80%)

CNN-based

Healthy 840

Non-COVID-19 840

COVID-19 840
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By using the identical test set, potential biases were minimized. This ensures a fair com-
parison of how well each model can accurately classify and distinguish among COVID-19,
non-COVID-19 pneumonia, and normal CXR images. This approach enhances the reliabil-
ity of the evaluation results. It provides a robust basis for comparing the effectiveness of
the two models in the context of their diagnostic performance on standardized data.

3. Results

In this section, we present the experimental results to demonstrate the ability of the
MSTAC model to identify COVID-19 instances from CXR images.

3.1. Performance Evaluation

The evaluation included several performance measures: accuracy (ACC), sensitivity
(TPR), precision (PPV), F1-score (F1), and the area under the curve (AUC) [33]. ACC gauges
the overall correctness of classifications, indicating the proportion of accurately classified
cases among all assessed cases. TPR quantifies the proportion of correctly identified
positive cases among all actual positive cases, signaling low false negatives when high.
PPV measures the proportion of true positive cases among all cases classified as positive
by the system, highlighting low false positives when high. F1 strikes a balance between
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sensitivity and precision, offering a single metric to assess both true positives and false
positives. AUC reflects the system’s overall discriminative power in distinguishing between
different classes, particularly crucial for imbalanced datasets.

The performance measure formulae are presented in Equations (1)–(5), involving true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). Additionally,
we employed the area under the receiver operating characteristic curve (AUC of ROC)
to assess performance. The DL algorithms were implemented using Python 3.8.13 with
TensorFlow 2.4, CUDA 11.0, cuDNN v8.0.5 on an NVIDIA GeForce-1050 GPU (Nvidia,
Santa Clara, CA, USA) with 4 GB GDDR5 onboard memory. The system ran on an Intel
Core i3-8100 3.6 GHz processor (Intel, Santa Clara, CA, USA), paired with 8 GB DDR4 RAM.

ACC =
TP + TN

(TP + FP) + (TN + FN)
(1)

TPR =
TP

(TP + FN)
(2)

PPV =
TP

(TP + FP)
(3)

F1 =
2TP

(2TP + FP + FN)
(4)

AUC =
1
2
( TP

TP + FN
+

TN
TN + FP

)
(5)

3.2. Performance Results

Figure 5 shows the training and validation performance of the stage-1 model. The
stage-1 model was trained with 20 epochs to classify healthy and unhealthy CXR images.
The training accuracy was stable at 99.2% after epoch 15. The training and validation losses
were similar, representing a good fit for the stage-1 model, and were not overfitted. In
Figure 6, the accuracy plot of the stage-2 model shows a good training and validation trend.
Despite a slight difference in the gap between the training and validation curves in both
accuracy and loss plots, this indicates that the stage-2 model is effective. It is effective in
distinguishing between COVID-19 and non-COVID-19 CXR images. The results of the
combined stage-1 and stage-2 models are showcased in MSTAC, as depicted in Figure 3.
To assess the performance of MSTAC and CNN-Multiclass, a set of 630 CXR images was
utilized. The training and validation results, displayed in the figures, suggest the efficacy of
the proposed multi-stage approach in classifying different health conditions in CXR images.

Table 5 compares the outcomes of the three-class classification for CNN-Multiclass and
MSTAC. The test set comprised 210 CXR images for each of the three classes that had not
been part of the training or testing sets. Initially, MSTAC attained accuracy, precision, recall,
f1-score, and AUC values of 97.30%, 97.34%, 97.30%, 97.30%, and 97.98%, respectively.
MSTAC showed a three-class classification result that was better than CNN-Multiclass in
terms of effectiveness. Figure 7 displays the confusion matrix, showcasing robust sensitivity
for COVID-19 and non-COVID-19 pneumonia. In confusion matrix (a), CNN-Multiclass
accurately classified 207 out of 210 COVID-19 cases and 208 out of 210 non-COVID-19
cases, achieving sensitivities of 98.57% and 99.05%, respectively. In confusion matrix (b),
MSTAC correctly classified 208 out of 210 COVID-19 pneumonia cases and 206 out of
210 non-COVID-19 pneumonia cases, with sensitivities of 99.05% and 98.10%, respectively.
However, this suggests that the accuracy in classifying COVID-19 and non-COVID-19
was higher than that for the healthy class. Nevertheless, the high sensitivity of COVID-19
detection can reduce the burden on the healthcare system.

The ROC curves displayed in Figure 8a,b offer a comprehensive overview of the
classification performance of our proposed MSTAC and the CNN-Multiclass model. For
CNN-Multiclass, the Area Under the Curve (AUC) values for healthy, non-COVID-19, and
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COVID-19 were 0.930, 0.961, and 0.992, respectively. These values collectively resulted in
an overall AUC of 0.961 for the three-class classification. The AUC of MSTAC for healthy,
non-COVID-19, and COVID-19 was 0.969, 0.9774, and 0.993, respectively. This represents
0.980 of the classification. Consequently, the findings suggest that our proposed MSTAC
outperforms CNN-Multiclass in terms of overall performance, specifically in COVID-19
detection and AUC-ROC.
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Table 5. Classification performance comparison in classifying the three-class CXR images. The best
results are shown in bold.

Three-Classes
Classification

Performance Metric (%)

Accuracy Precision Sensitivity F1-Score

CNN-Multiclass 94.76 95.22 94.76 94.75

MSTAC 97.30 97.34 97.30 97.30
Bold characters indicate higher values.
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4. Discussion

This retrospective study represents a significant advance in the development of MSTAC,
a model designed for the challenging task of three-class classification—distinguishing be-
tween COVID-19 pneumonia, non-COVID-19 pneumonia, and healthy cases through the
analysis of CXR images. The utilization of stacked multiple binary models was a detailed
process, demanding considerable effort in the reconstruction of the development set and
the subsequent training of each model. The proposed CNN exhibited efficiency, converging
in 20 epochs, each lasting approximately 18 s. The paramount outcome of our investigation
is the noteworthy diagnostic accuracy achieved by MSTAC, surpassing the 97% threshold
across the three distinctive classes. In the field of deep learning, numerous studies have
investigated a range of preprocessing techniques, feature extraction methodologies, and
classification approaches. Notably, customized CNNs and ensemble learning have emerged
as pivotal strategies. Given the gravity of potential risks associated with misdiagnoses,
our primary objective was to craft a model that excels in accuracy. Table 6 compares the
performances achieved in compared studies. With an accuracy exceeding 95%, our model
establishes itself as a statistical benchmark. We observed that our proposed approach of
stacking multiple binary models achieved better performance than that achieved in studies
that used a similar number of CXR image datasets. Comparatively, the performance of
MSTAC places it among the top-performing models in the field. It outperforms the accuracy
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achieved in several notable studies including Wang et al. [21], Khuzani et al. [23], Yang
et al. [24], and Nishio et al. [26] in terms of three-class classification. Another strength
of MSTAC is its competitive sensitivity of 97.30%, indicating its effectiveness in correctly
identifying true positive cases across all three classes. This sensitivity outperforms several
existing models, highlighting MSTAC’s robustness in detecting COVID-19, non-COVID-19
pneumonia, and healthy CXR images. Compared to the various transfer learning techniques
utilized by Yang et al. [24] and Nishio et al. [26], MSTAC demonstrates notably higher
performance. This underscores the effectiveness of our approach in achieving superior
results. Additionally, the robustness of the MSTAC model is significantly influenced by
the dataset size. The use of a well-balanced dataset, comprising 1050 images for each class
and totaling 3150 CXR images, contributes to a more comprehensive and diverse set for
both training and evaluation. This stands in clear contrast to studies employing smaller
datasets, as shown by Khuzani et al. [23]. It emphasizes MSTAC’s advantage in efficiently
addressing diverse features and enhancing its overall effectiveness in detecting COVID-19.

Table 6. Comparison of classification results of our MSTAC with other COVID-19 DL studies on
CXR images.

Author Methods Classes Dataset Accuracy (%) Sensitivity (%)

Chowdhury et al. [19] Different pre-trained
CNN model 3

COVID-19 = 423, Viral
pneumonia = 1485,
and Normal = 1579

97.9 97.9

Afshar et al. [20]
COVID-CAPS framework
consists of 4 convolutional
layers and 3 capsule layers

4 Not specified 95.7 90

Wang et al. [21] COVID-Net network
architecture 3 13,975 CXR images 93.3 93.3

Ahmad et al. [22] Hybrid ensemble model 4

COVID-19 = 1050, Viral
pneumonia = 1050, Bacterial

pneumonia = 1050,
and Normal = 1050

94.2 88.4

Khuzani et al. [23]
Dimensionality reduction
method of CXR images to

build classifier
3

COVID-19 = 140,
non-COVID-19 = 140, and

Normal = 140
94.05 -

Yang et al. [24] VGG16 3
COVID-19 = 3616,
Pneumonia = 1345,
and Normal = 3500

97 97

Hong et al. [25] MGMADS-CNN model. 4

COVID-19 = 1341, Viral
pneumonia = 1733, Bacterial

pneumonia = 2705, and
Normal = 2916

96.75 96.60

Nishio et al. [26] Several transfer
learning techniques 3 Three datasets 86.76 -

MSTAC (our
proposed model) Stacked CNN-based 3

COVID-19 = 1050,
non-COVID-19 = 1050, and

Normal = 1050
97.30 97.30

The MSTAC architecture is intentionally designed for optimal performance in detecting
COVID-19. The two-stage classification process initially categorizes cases into healthy and
unhealthy, followed by a precise classification into COVID-19 and non-COVID-19 categories.
The stacking approach integrates the strengths of individual models. This allows for a
comprehensive analysis of the three distinct classes within CXR images.

The clinical importance of MSTAC extends beyond its technical strengths. The model’s
potential for high accuracy and efficiency promises to significantly reduce misdiagnoses,
thereby minimizing risks for patients. The efficient diagnostic workflow streamlined by
MSTAC shows potential for integration into current healthcare systems. This is especially
important in environments where rapid and accurate COVID-19 detection is crucial.
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While MSTAC has demonstrated considerable success, it is crucial to acknowledge
a limitation in its accuracy for healthy cases when compared to its robust performance
in identifying COVID-19 and non-COVID-19 cases. In the future, we could improve
the model by looking at more detailed features, using advanced training methods, and
maybe including more data sources to make it better at identifying healthy cases. Our
approach utilizes existing resources without the need for extensive processing, providing a
straightforward and efficient means of detecting COVID-19 CXR images.

Our distinctive stacking model technique, which has played a crucial role in the
success of MSTAC, explores a less-traveled path in the field of CXR image analysis for
detecting COVID-19. The simplicity and efficiency of our approach allow it to utilize
existing resources without the need for extensive processing. These attributes position
MSTAC as a promising system in the realm of diagnostic tools for respiratory conditions.

5. Conclusions

The MSTAC model offers a promising method for accurately and efficiently detecting
COVID-19 from CXR images. By using stacked CNN models and a two-stage classification
strategy, MSTAC achieves high diagnostic performance. The system showcases impressive
accuracy, sensitivity, precision, F1-score, and AUC. This suggests its potential as an effective
tool for COVID-19 diagnosis. Our study makes significant contributions, such as develop-
ing a three-class classification system that can distinguish COVID-19, non-COVID-19, and
healthy cases. Additionally, we validated MSTAC on publicly available datasets to ensure
transparency and reproducibility. Comparisons with traditional CNN models underscore
MSTAC’s superiority in COVID-19 detection.

In the future, we will implement image data augmentation techniques on CXR images
to enhance classification accuracy. Additionally, our current study focused on classifying
three categories. However, our future plans involve expanding the dataset and creating
a model capable of classifying four classes. This will involve incorporating a new binary
classification model for distinguishing between viral and bacterial pneumonia.

Furthermore, our future objectives include developing a classification model that
utilizes a pretrained model to identify abnormal regions in CXR images. Lastly, we aim to
create a prototype of a web-based CADx system. This system could serve as an alternative,
bringing the technique into clinical settings as a valuable tool to support medical staff in
improving COVID-19 detection accuracy. At the core of this system is the diagnosis of CXR
images uploaded by users, which are classified by MSTAC into healthy, pneumonia, or
COVID-19 cases.
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Abbreviations

MSTAC Multi-Stage Automated Classification.
CXR Chest X-Ray.
CNN Convolutional Neural Networks.
DL Deep Learning.
CADx Computer-Aided Diagnosis.
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