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Abstract: Purpose: Reliable and objective measures of abdominal fat distribution across imaging
modalities are essential for various clinical and research scenarios, such as assessing cardiometabolic
disease risk due to obesity. We aimed to compare quantitative measures of subcutaneous (SAT) and
visceral (VAT) adipose tissues in the abdomen between computed tomography (CT) and Dixon-based
magnetic resonance (MR) images using a unified computer-assisted software framework. Materials
and Methods: This study included 21 subjects who underwent abdominal CT and Dixon MR imaging
on the same day. For each subject, two matched axial CT and fat-only MR images at the L2-L3 and
the L4-L5 intervertebral levels were selected for fat quantification. For each image, an outer and an
inner abdominal wall regions as well as SAT and VAT pixel masks were automatically generated by
our software. The computer-generated results were then inspected and corrected by an expert reader.
Results: There were excellent agreements for both abdominal wall segmentation and adipose tissue
quantification between matched CT and MR images. Pearson coefficients were 0.97 for both outer
and inner region segmentation, 0.99 for SAT, and 0.97 for VAT quantification. Bland–Altman analyses
indicated minimum biases in all comparisons. Conclusion: We showed that abdominal adipose tissue
can be reliably quantified from both CT and Dixon MR images using a unified computer-assisted
software framework. This flexible framework has a simple-to-use workflow to measure SAT and VAT
from both modalities to support various clinical research applications.

Keywords: abdominal adipose tissue; computed tomography; magnetic resonance imaging; fat
quantification; image segmentation

1. Introduction

Obesity is a growing global health problem, with emerging evidence suggesting
that accumulation of abdominal fat is more strongly associated with health risks such
as type 2 diabetes mellitus, atherosclerosis, and hypertension [1]. Intraabdominal fat is
composed of both subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT).
VAT, in particular, is a risk factor for the development of clinically significant metabolic
syndrome [2] and cardiometabolic disease [3]. Measuring waist circumference is a rapid
and easy method to obtain an estimate of the abdominal adipose tissues, but it does not
accurately differentiate SAT from VAT. For more accurate quantification and assessment of
abdominal adipose tissue distribution, the standard method for fat distribution analysis is
by cross-sectional imaging such as computed tomography (CT) and/or magnetic resonance
imaging (MRI). A robust software tool that allows for accurate assessment of SAT and VAT
on either CT or MR imaging would be clinically beneficial because of its flexibility and
potential cost savings.

Abdominal CT imaging can acquire high-resolution images with less motion artifact
than MRI due to a very rapid scan time [4]. CT uses a standardized Hounsfield Unit (HU)
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to express the attenuation differences of tissues that correspond to inherent tissue charac-
teristics, allowing for accurate identification of SAT and VAT. CT imaging is the clinically
preferred method of adipose tissue quantification, but the risk from ionizing radiation ex-
posure makes CT suboptimal for serial measurements, especially in children. MRI does not
use ionizing radiation, but MRI tissue signal characteristics, unlike computed tomography
(CT), depend on both tissue properties and acquisition protocol and can therefore vary
from scan to scan. MRI does not have standardized units to measure signal intensity levels
for different tissues and relies on arbitrary units that remain susceptible to magnetic field
inhomogeneities [4,5]. Among various MR imaging techniques, the multipoint Dixon-based
fat and water separation technique has emerged as an effective approach for the assessment
of adipose tissue because a fat-only image can be generated to provide excellent signal
intensity contrast, highlighting adipose tissue in different abdominal compartments [6,7].

To quantify abdominal adipose tissues and to differentiate SAT versus VAT, segmenta-
tion of abdominal wall muscle layers from the axial images is often required. While manual
segmentation by experienced readers has been conducted in previous studies [8–11], it is
a tedious and time-consuming process that is impractical for large image datasets. Thus,
there is a continued demand for computer-assisted automated methods that are easy to use
and can quickly and accurately segment and quantify abdominal adipose tissue on both
CT and MR images.

Several approaches have been proposed to computerize the quantification of SAT and
VAT from either CT or MR abdominal images [5,12]. However, none of these methods
have been shown to be able to automatically quantify SAT and VAT from both imaging
modalities. Furthermore, while both CT and MR imaging are commonly used to measure
adipose tissue in the abdomen, few studies have provided a cross-modality comparison of
SAT and VAT from the same individuals scanned on the same day.

In this study, we aimed to compare quantitative measures of abdominal adipose tissue
in the same subjects who underwent same-day CT and MR imaging. We presented a
universal computer-assisted software framework that can quantify SAT and VAT from
both CT and Dixon MR images. This software platform provides the flexibility, ease of
use, and simple workflow integration for routine abdominal adipose tissue quantification
from CT and MR images interchangeably and facilitates internal comparison between these
two modalities.

2. Materials and Methods
2.1. Study Subjects

This study was conducted under quality improvement of the Clinical Image Pro-
cessing Service within the Radiology and Imaging Sciences department of the National
Institutes of Health (NIH) Clinical Center, which was exempted from informed consent
by the institutional review board. Between April 2021 and 21 July 2021, subjects who
underwent both CT and MR abdominal imaging on the same day were included in this
study prospectively to evaluate an in-house-developed computer software for abdominal
fat quantification.

2.2. Image Acquisition

Both CT and MR image acquisition were performed at NIH Clinical Center Radi-
ology Imaging and Sciences. All abdominal CT images were acquired using a Siemens
SOMATOM scanner (Siemens Healthineers, Erlangen, Germany) with typical scanning pa-
rameters of 90–120 kVp tube voltage with CARE Dose automatic exposure control enabled,
2 mm axial slice thickness, field of view 384 × 381 mm2–500 × 500 mm2, acquisition matrix
size of 512 × 512, and at feet-first prone position.

All abdominal MR scans were acquired on a 1.5T Siemens MAGNETOM scanner
(Siemens Healthineers, Erlangen, Germany) using standard three-dimensional two-point
Dixon T1 weighted imaging sequence with typical acquisition parameters of 6.71 ms
repetition time, 1.19 ms and 2.39 ms echo time, 10◦ flip angle, 475 Hz/pixel bandwidth,
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81.25 percent phase field of view, 3 mm slice thickness, 365 mm × 450 mm field of view,
320 × 195 acquisition matrix, and 320 × 260 reconstruction matrix. Two axial image series
were acquired to cover L2–L3 and L4–L5 spine segments separately.

2.3. Image Processing

De-identified CT and MR images were requested from the NIH Biomedical Transla-
tional Research Information System and retrieved from a Carestream Vue Picture Archiving
and Communication System (PACS, Carestream Health, Rochester, NY, USA). For each
subject, an experienced radiologist selected two matched CT and MR image pairs, one at
the level of L2–L3 and the other at the level of L4–L5 lumbar disc spaces, using Vue Desktop
Diagnostic Client (version 12.2). A total of 42 pairs of images were selected and analyzed.
For the MR scans, fat-only Dixon images were used for processing and comparison.

In-house software was developed and used for processing, segmentation, and mea-
surement of abdominal adipose tissue compartments for both CT and MR images. The
software was developed in Interactive Data Language (IDL, Harris Geospatial Solutions,
Melbourne, FL, USA) with DCM4CHE Java-based programming library for Digital Imaging
and Communications in Medicine (DICOM) networking and file handling. An outline
of the proposed software system is shown in Figure 1. This framework is similar to the
previous methods [13,14] but developed in an independent software platform and with
separate image processing functions. To facilitate a practical workflow for routine clinical
image processing, our software also incorporates an integrated graphical user interface
to improve image segmentation and quantification accuracy, as well as DICOM network
functionality for image transmission and storage.
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Figure 1. Image processing pipeline for the proposed computer-assisted approach for CT and MR
abdominal adipose tissue quantification.

After loading the image, the software automatically generates an outer body mask and
an inner body mask to delineate the abdominal wall muscle layer based on signal intensity
thresholding where −190 HU was used for the CT, and 50% of the max intensity was used
for the MR. For MR images, a separated processing step for correcting B1-field-related
signal inhomogeneity was implemented before thresholding [15]. Next, the outer and inner
abdominal wall tracing was performed based on an active contour model, or snake, [16]
using initial body masks from region growing. The snake is an energy-minimizing spline
steered by external constraint and image forces that pull it toward nearby edges. The energy
of the snake is calculated from its shape and location within the image. The snake method
has been proved to be an effective method in contour detection, and it has been employed
in many medical image applications [17]. On each MR and CT image, an outer contour
around the abdominal wall was detected by shrinking the convex hull of the external body
mask. An inner contour was then detected by shrinking the outer contour further toward
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the internal abdominal wall. These contours were generated automatically without any
user input.

For fat quantification on the CT images, an intensity window of −190 to −45 HU was
selected to measure the total adipose tissue area (in cm2) in each slice. On the MR images, a
signal intensity threshold at 50% of the maximum intensity range was used to calculate the
total adipose tissue area (in cm2) in each slice. The SAT area was calculated by summing the
total adipose tissue pixels between the outer and inner contour space. The VAT area was
calculated by summing the total adipose tissue pixels within the inner contour space. After
the automatic contour detection and fat quantification, the user can adjust the contours, as
well as modify the adipose pixel masks, using built-in contour and mask editing tools in
the software.

Both CT and MR images were processed independently and blindly. After the au-
tomated abdominal wall segmentation and adipose tissue quantification, the computer-
generated results were quality checked by an experienced radiologist with 28 years of
experience (HB) and edited if necessary to remove false positive pixels. Areas of fat in-
side the spinal canal and within the neural foramina as well as intramuscular fat in the
paravertebral muscles were considered as unwanted false positive adipose pixels. The
resultant images and masks were saved in secondary capture DICOM format and ready to
be archived in the PACS.

2.4. Statistical Analysis

Outer and inner abdominal region segmentation as well as VAT and SAT pixel classifi-
cation were evaluated separately with results of MR compared against CT. Results were
recorded as mean ± standard deviation (SD). Agreement between the CT and MR mea-
sured results was evaluated using Pearson correlation coefficient and Bland–Altman plot.
A Kolmogorov–Smirnov test was used to assess the normality of the variables using SPSS
statistical software (IBM Corp., Armonk, NY, USA). A two-tailed, paired Student’s t-test
was used to determine statistical significance. A p-value < 0.05 was considered statistically
significant for each test.

3. Results

There were 12 male and 9 female subjects included in the study. The mean length
of time between CT and MR imaging was 2.8 ± 2.3 h (range 0.6–8.0 h), and 8 CT scans
were performed before MRI. The mean age was 56 ± 14 years (range 31–78 years). The
mean body mass index (BMI) was 27.5 ± 4.6 kg/m2 (range 18.7–37.9 kg·m−2). Table 1
summarizes the demographic information for the study participants.

Table 1. Demographic information for 21 study participants undergoing same day abdominal CT
and MR Imaging.

Sex Male: 12 (57%); Female: 9 (43%)

Mean SD Max Min

Age (year) 56 14 78 31
Height (cm) 169.7 10.6 190.0 155.0
Weight (kg) 79.1 14.3 100.0 51.0

Body Mass Index (kg/m2) 27.5 4.6 37.9 18.7

The automatic computer segmentation time per image was less than a second for CT
and two seconds for MR images. The software framework automatically generated a set of
contours to delineate inner and outer abdominal wall, as well as two color masks to depict
SAT and VAT pixels. The time for manual editing varies from a few seconds to a minute or
two for removing false positive fat pixels and correcting body contours if needed.

Figure 2 provides an example of the segmentation results for the inner and outer
abdominal cavity, as well as the quantified SAT and VAT areas. A matched CT and
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MR image pair of the same patient is shown in Figure 2a. The computer automatically
generated abdominal wall boundaries and adipose tissue masks on both images are shown
in Figure 2b. The outer and inner body contours as well as SAT and VAT pixel masks
after manual corrections are shown in Figure 2c. Typical false positive fat pixels include
intramuscular fat within paravertebral muscles, small islands of fat in the neural foramina
and spinal canal on the MR images, as well as intracolonic contents on the CT images, since
these pixels could share similar signal intensities with SAT and VAT.
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Figure 2. Qualitative comparison of CT (top row) and MR (bottom row) image segmentation and fat
quantification based on the proposed approach. (a) An example matched image pair at the level of
L4–L5 vertebrae. (b) Computer automatically generated abdominal wall boundary and adipose tissue
masks, where the outer contour is displayed in green and the inner contour in red; SAT and VAT
regions are shown in magenta and cyan color masks, respectively. (c) The outer and inner contours as
well as SAT and VAT masks after the manual corrections.

For quantitative comparison of CT versus MR image segmentation and fat quan-
tification, Table 2 summarizes the mean, standard deviation, and the range of the outer
and inner abdominal regions as well as the SAT and VAT areas. To assess the agreement
between CT and MR measurements, Pearson coefficients were 0.97 for both outer and
inner region segmentation, 0.99 for SAT, and 0.97 for VAT quantification (all p < 0.01).
Bland–Altman analyses showed there were minimum biases of −1.90 cm2, −1.51 cm2,
−0.13 cm2, and −1.96 cm2 for outer, inner, SAT, and VAT areas comparing MR against CT
measurements. Furthermore, the normality test using the Kolmogorov–Smirnov test shows
that all variables follow a normal distribution (all p > 0.05). Student’s t-test shows the
difference between CT and MR measurements is not statistically significant for comparing
outer (p = 0.59) and inner (p = 0.58) regions, as well as SAT (p = 0.96) and VAT (p = 0.26)
quantification. Overall, our results showed there were excellent agreements for SAT, VAT,
and abdominal cavity areas measurements between CT and MR images.
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Table 2. Summary comparison of abdominal regions and adipose tissues measured from 42 matched
CT and MR images.

CT Mean SD Max Min

Outer (cm2) 736.3 163.2 996.2 400.3
Inner (cm2) 489.3 121.2 727.2 297.1
SAT (cm2) 242.1 127.2 582.5 46.9
VAT (cm2) 149.4 81.2 363.5 9.5

MR Mean SD Max Min

Outer (cm2) 717.3 159.0 952.4 382.3
Inner (cm2) 474.2 124.8 701.4 253.6
SAT (cm2) 240.7 126.7 555.7 52.8
VAT (cm2) 129.8 77.8 330.4 5.6

For the comparison of initial computer automatically generated segmentations versus
the final manually corrected results, there were 0.15% (p = 0.97), −0.45% (p = 0.93), 0.47%
(p = 0.97), and 5.33% (p = 0.64) changes on the CT images, as well as −0.53% (p = 0.91),
−1.41% (p = 0.81), 0.39% (p = 0.97), and 5.61% (p = 0.66) changes on the MR images, for
the outer, inner, SAT, and VAT measurements, respectively. The difference between initial
computer-automated versus final manual-corrected results was not statistically significant
in all comparisons.

4. Discussion

In this study, we demonstrated there was excellent cross-modality agreement for
abdominal adipose tissue quantification using the proposed computer-assisted software
framework. We obtained these measurements from the same subjects who underwent CT
and MR imaging on the same day. We showed the amount of SAT and VAT can be reliably
measured by both imaging modalities with consistent results using this flexible software
framework. The presented software provides a unified image processing platform that
enables the user to quantify and compare body fat by both modalities interchangeably,
along with providing a simple user interface for manual correction as well as DICOM
network functions for practical workflow integration.

Several studies have compared adipose tissue measurements in the abdomen by CT
and MR in animals [8] and humans [9,10,18–20]. Their results in general found that both
modalities shared a high level of agreement for quantifying abdominal adipose tissue.
However, one study found a lesser amount of visceral fat in MR compared to CT, possibly
attributable to partial volume effects in early MR technology [9], and another study found a
greater amount of visceral fat in MR compared to CT, perhaps attributable to the suboptimal
CT thresholds used [19].

In our comparisons, Table 2 showed similar results between CT and MR measurements
of outer and inner abdominal regions as well as SAT and VAT. The scatter plots in Figure 3a
also confirmed their good agreement. Bland–Altman plots in Figure 3b showed small
variability in outer, inner, SAT, and VAT measurements between CT and MR. For our
results overall, CT measurements had slightly but non-significantly higher values than the
MR, particularly for the VAT.

In the literature, most of the methodologies developed for abdominal fat quantification
have been designed to work with either CT or MR imaging but not both modalities. For
example, Kim et al., [21], Takahashi et al. [22], Parikh et al. [23], and Ozola-Zālı̄te et al. [24]
presented dedicated methods for abdominal fat quantification, but they only worked for
CT images. Heckman et al. [19], Positano et al. [25], Liou et al. [26], Zhou et al. [27],
Würslin et al. [28], and Kullberg et al. [29] developed different techniques for quantifying
abdominal adipose tissues only for the MR images.
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Figure 3. Scatter plots comparing the agreements between CT and MR image segmentation and
adipose tissue quantification based on the proposed approach. (a) Linear regression analysis shows
excellent correlations among outer (green dots) and inner (red dots) abdominal areas, as well as SAT
(cyan dots) and VAT (magenta dots) measurements between CT versus MR. (b) Bland–Altman plots
also show small variability in outer, inner, SAT, and VAT measurements between the two modalities.
The horizontal color solid and dashed lines in Bland–Alman plots represent the bias and limits of
agreement (LOA = mean ± 1.96 SD), and vertical lines represent the 95% confidence intervals.

Several commercial software platforms have been used to quantify abdominal fat
in CT and MR scans, but their analysis workflow required manual delineation of the
abdominal wall muscle layer. These include SliceOmatic (TomoVision, Montreal, Canada)
for CT analysis [24,30,31] and MR analysis [32,33], Aquarius (TeraRecon, San Mateo, CA,
USA) for CT analysis [11], Analyze (AnalyzeDirect, Overland Park, KS, USA) for CT and
MR analysis [10,33], and EasyVision (Philips Medical Systems, Bothell, WA, USA) for MR
analysis [33]. A public domain software ImageJ (National Institutes of Health, Bethesda,
MD, USA) has also been used interactively for assessing abdominal fat in MR [34] and in
both CT and MR [20].
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Most of the aforementioned approaches used histogram-based thresholding to dif-
ferentiate adipose tissue from muscle, bone, and background regions. Similar to our
framework, the majority of these software defined a preset range of pixel intensity thresh-
olds on the CT images [20–24] or a default threshold value on the MR image [9,20,25,26,30]
to classify fat tissues. It is worth noting that these threshold values might have been ad-
justed within the software and were often varied among different studies. Fuzzy c-means
clustering (FCM) [35] is an alternative method to intensity thresholding for unsupervised
pixel classification. FCM-based approach was also used in several studies for abdominal
fat quantification [13,14,25,28,34].

These intensity-based thresholding techniques require another step to detect abdomi-
nal wall layers for differentiating between SAT and VAT for fat distribution analysis. As
in our implementation, active contouring or snake-based technique was used previously
to extract these abdominal body contours and define tissue boundaries [13,14,25,28,33].
After the body contour detection and fat pixel classification, the results were then visually
examined by experienced readers, and corrections were made to improve the final results.

In our analysis of CT images, a HU threshold range from −190 to −45 was selected
to measure SAT and VAT that produced consistent results with MRI quantification by
a 50% of the maximum intensity threshold. While a HU range from −190 to −30 was
more commonly used for identifying adipose tissue in CT [20–24], a HU range from
−190 to −50 HU was found to produce excellent reproducibility and repeatability for
CT-based abdominal SAT and VAT quantification [35]. Other HU thresholds have also
been used on the CT images—for example, from −150 to −30 and from −205 to −51 to
measure abdominal visceral fat [19,36], from −140 to −30 for measuring adipose tissue in
a PET/CT system [37], and from −190 to −40 and from −190 to −45 to measure epicardial
adipose tissue [38]. Therefore, there is no standard CT threshold range for measuring
adipose tissue, and these thresholds may need to be adjusted and optimized for different
imaging applications.

Recent developments in supervised machine learning have also shown promising
results for both abdominal CT and MR fat quantification [39]. An area of particular interest
is the deep learning-based approach with convolutional neural network for assessment of
abdominal adipose tissue distribution by CT and MRI. The development of these newer
image processing models can be very useful for generating reliable fat segmentation based
on deep learning algorithms, speeding up volumetric fat quantification for the whole image
scan [40], or potentially extending abdominal fat and muscle quantification for a more
comprehensive body composition analysis [41–43]. However, none of these deep learning-
based approaches were shown to work on multi-modality imaging studies, and they would
require different labelled dataset to retrain new models for out-of-domain applications.

In this work, we compared abdominal fat quantification from 2D axial cross-section
CT and MR images of the same subjects. Previous studies have shown that adipose tissue
area quantified from a single-slice image sampled at various intervertebral disc levels had
strong correlations with total abdominal and visceral adipose tissue volume among various
clinical applications [44–47]. For this reason, our comparison was only focused on the level
of L2–L3 and L4–L5 interspaces instead of processing the entire 3D image stack. However,
this framework may also be used to quantify abdominal fat volume in a 3D image stack on
a slice-by-slice basis.

There are some potential limitations in our work. The matching of different slice
locations between MR and CT images may be discrepant due to tissue deformation as well
as slightly varied transverse planes among two different scans. Discrepancies between CT
and MR results may also come from the shape variation of the bowel during peristalsis
and from different amount of food materials presented in the digestive tract at different
imaging times. We have not performed an analysis of the time required for this computer-
assisted approach versus manual methods, but our results suggest that the proposed
framework could offer significant time savings for routine clinical application and workflow
improvement. Intra- and inter-operator variability were not assessed in the current study.
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However, this limitation is mitigated as the operator only needs to remove false positive
pixels based on the computer-generated masks. Finally, there is a need to evaluate the
software on a larger population in future studies.

5. Conclusions

We showed that the two main abdominal adipose tissues (VAT and SAT) can be
reliably quantified from both CT and Dixon MR images of the same subjects with excellent
agreement using a unified computer-assisted software framework. This flexible image
processing platform offers a simple-to-use workflow to facilitate consistent abdominal wall
segmentation and adipose tissue quantification for both imaging modalities. The presented
framework will be applied to support various clinical research applications for routine
abdominal fat quantification.

Author Contributions: Conceptualization, L.-Y.H. and H.B.; methodology, L.-Y.H.; software, L.-Y.H.;
validation, L.-Y.H. and H.B.; formal analysis, L.-Y.H. and H.B.; data curation, H.B. and B.A.R.;
resources, E.C.J.; writing—original draft preparation, L.-Y.H., Z.A. and F.H.; writing—review and
editing, all authors; funding acquisition, E.C.J.; All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the intramural research program at the National Institutes of
Health Clinical Center (Award Number Z99CL999999).

Institutional Review Board Statement: This study was conducted as part of the quality improvement
for clinical image processing service. The imaging data used were de-identified and exempted from
the requirement of informed consent by the institutional review board.

Informed Consent Statement: Patient informed consent was waived due to the use of de-identification
imaging data.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge support from the Intramural Research Program of the
National Institutes of Health Clinical Center.

Conflicts of Interest: The authors declare no competing interests.

Abbreviations

CT computed tomography
DICOM digital imaging and communications in medicine
HU Hounsfield unit
MRI magnetic resonance imaging
PACS picture archiving and communication system
SAT subcutaneous adipose tissue
VAT visceral adipose tissue

References
1. Després, J.-P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; LaRose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal

Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. Arter. Thromb. Vasc. Biol. 2008, 28, 1039–1049.
[CrossRef] [PubMed]

2. Kwon, H.; Kim, D.; Kim, J.S. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study.
Sci. Rep. 2017, 7, 1–8. [CrossRef]

3. Elffers, T.W.; De Mutsert, R.; Lamb, H.J.; De Roos, A.; Van Dijk, K.W.; Rosendaal, F.R.; Jukema, J.W.; Trompet, S. Body fat distribution, in
particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS ONE 2017, 12, e0185403. [CrossRef]

4. Fang, H.; Berg, E.; Cheng, X.; Shen, W. How to best assess abdominal obesity. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 360–365.
[CrossRef] [PubMed]

5. Hu, H.H.; Chen, J.; Shen, W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magn. Reson.
Mater. Physics, Biol. Med. 2016, 29, 259–276. [CrossRef] [PubMed]

6. Dixon, W.T. Simple proton spectroscopic imaging. Radiology 1984, 153, 189–194. [CrossRef] [PubMed]
7. Ma, J. Dixon techniques for water and fat imaging. J. Magn. Reson. Imaging 2008, 28, 543–558. [CrossRef] [PubMed]

https://doi.org/10.1161/ATVBAHA.107.159228
https://www.ncbi.nlm.nih.gov/pubmed/18356555
https://doi.org/10.1038/s41598-017-09723-y
https://doi.org/10.1371/journal.pone.0185403
https://doi.org/10.1097/MCO.0000000000000485
https://www.ncbi.nlm.nih.gov/pubmed/29916924
https://doi.org/10.1007/s10334-015-0498-z
https://www.ncbi.nlm.nih.gov/pubmed/26336839
https://doi.org/10.1148/radiology.153.1.6089263
https://www.ncbi.nlm.nih.gov/pubmed/6089263
https://doi.org/10.1002/jmri.21492
https://www.ncbi.nlm.nih.gov/pubmed/18777528


Tomography 2023, 9 1050

8. Ross, R.; Leger, L.; Guardo, R.; de Guise, J.; Pike, B. Adipose tissue volume measured by magnetic resonance imaging and
computerized tomography in rats. J. Appl. Physiol. 1991, 70, 2164–2172. [CrossRef]

9. Seidell, J.C.; Bakker, C.J.; van der Kooy, K. Imaging techniques for measuring adipose-tissue distribution–a comparison between
computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 1990, 51, 953–957. [CrossRef] [PubMed]

10. Klopfenstein, B.J.; Kim, M.S.; Krisky, C.M.; Szumowski, J.; Rooney, W.D.; Purnell, J.Q. Comparison of 3 T MRI and CT for the
measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 2012, 85, e826–e830. [CrossRef]

11. Maurovich-Horvat, P.; Massaro, J.; Fox, C.S.; Moselewski, F.; O’Donnell, C.J.; Hoffmann, U. Comparison of anthropometric, area-
and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed
tomography. Int. J. Obes. 2007, 31, 500–506. [CrossRef]

12. Borga, M. MRI adipose tissue and muscle composition analysis—A review of automation techniques. Br. J. Radiol. 2018, 91, 20180252.
[CrossRef] [PubMed]

13. Sussman, D.L.; Yao, J.; Summers, R.M. Automated fat measurement and segmentation with intensity inhomogeneity correction.
Proc. SPIE Med. Imaging 2010, 7623, 1198–1205. [CrossRef]

14. Yao, J.; Sussman, D.L.; Summers, R.M. Fully automated adipose tissue measurement on abdominal CT. Proc. SPIE Med. Imaging
Med. Imaging 2011, 7965, 79651Z–79651Z-6. [CrossRef]

15. Hsu, L.-Y.; Aletras, A.H.; Arai, A. Correcting surface coil intensity inhomogeneity improves quantitative analysis of cardiac
magnetic resonance images. In Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, Paris, France, 14–17 May 2008; pp. 1425–1428. [CrossRef]

16. Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [CrossRef]
17. Hemalatha, R.; Thamizhvani, T.; Dhivya, A.J.A.; Joseph, J.E.; Babu, B.; Chandrasekaran, R. Active Contour Based Segmentation

Techniques for Medical Image Analysis. Med. Biol. Image Anal. 2018, 4, 2. [CrossRef]
18. Gomi, T.; Kawawa, Y.; Nagamoto, M.; Terada, H.; Kohda, E. Measurement of visceral fat/subcutaneous fat ratio by 0.3 tesla MRI.

Radiat. Med. 2005, 23, 584–587. [PubMed]
19. Heckman, K.M.; Otemuyiwa, B.; Chenevert, T.L.; Malyarenko, D.; Derstine, B.A.; Wang, S.C.; Davenport, M.S. Validation of

a DIXON-based fat quantification technique for the measurement of visceral fat using a CT-based reference standard. Abdom.
Imaging 2019, 44, 346–354. [CrossRef]

20. Waduud, M.A.; Sharaf, A.; Roy, I.; Lopez-Gonzalez, R.; Hart, A.; McGill, D.; Roditi, G.; Biddlestone, J. Validation of a semi-
automated technique to accurately measure abdominal fat distribution using CT and MRI for clinical risk stratification. Br.
J. Radiol. 2017, 90, 20160662. [CrossRef]

21. Kim, Y.J.; Lee, S.H.; Kim, T.Y.; Park, J.Y.; Choi, S.H.; Kim, K.G.; Kim, Y.J.; Lee, S.H.; Kim, T.Y.; Park, J.Y.; et al. Body Fat Assessment
Method Using CT Images with Separation Mask Algorithm. J. Digit. Imaging 2013, 26, 155–162. [CrossRef]

22. Takahashi, N.; Sugimoto, M.; Psutka, S.; Chen, B.; Moynagh, M.R.; Carter, R.E. Validation study of a new semi-automated
software program for CT body composition analysis. Abdom. Imaging 2017, 42, 2369–2375. [CrossRef] [PubMed]

23. Parikh, A.M.; Coletta, A.M.; Yu, Z.H.; Rauch, G.M.; Cheung, J.P.; Court, L.E.; Klopp, A.H. Development and validation of a rapid
and robust method to determine visceral adipose tissue volume using computed tomography images. PLoS ONE 2017, 12, e0183515.
[CrossRef] [PubMed]

24. Ozola-Zālı̄te, I.; Mark, E.; Gudauskas, T.; Lyadov, V.; Olesen, S.S.; Drewes, A.; Pukitis, A.; Frokjær, J.B. Reliability and validity of
the new VikingSlice software for computed tomography body composition analysis. Eur. J. Clin. Nutr. 2019, 73, 54–61. [CrossRef]

25. Positano, V.; Gastaldelli, A.; Sironi, A.M.; Santarelli, M.F.; Lombardi, M.; Landini, L. An accurate and robust method for
unsupervised assessment of abdominal fat by MRI. J. Magn. Reson. Imaging 2004, 20, 684–689. [CrossRef]

26. Liou, T.-H.; Chan, W.P.; Pan, L.-C.; Lin, P.-W.; Chou, P.; Chen, C.-H. Fully automated large-scale assessment of visceral and
subcutaneous abdominal adipose tissue by magnetic resonance imaging. Int. J. Obes. 2006, 30, 844–852. [CrossRef]

27. Zhou, A.; Murillo, H.; Peng, Q. Novel segmentation method for abdominal fat quantification by MRI. J. Magn. Reson. Imaging
2011, 34, 852–860. [CrossRef] [PubMed]

28. Würslin, C.; Machann, J.; Rempp, H.; Claussen, C.; Yang, B.; Schick, F. Topography mapping of whole body adipose tissue using
A fully automated and standardized procedure. J. Magn. Reson. Imaging 2010, 31, 430–439. [CrossRef]

29. Kullberg, J.; Ahlström, H.; Johansson, L.; Frimmel, H. Automated and reproducible segmentation of visceral and subcutaneous
adipose tissue from abdominal MRI. Int. J. Obes. 2007, 31, 1806–1817. [CrossRef]

30. Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to
quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl.
Physiol. Nutr. Metab. 2008, 33, 997–1006. [CrossRef]

31. Kjønigsen, L.J.; Harneshaug, M.; Fløtten, A.-M.; Karterud, L.K.; Petterson, K.; Skjolde, G.; Eggesbø, H.B.; Weedon-Fekjær, H.;
Henriksen, H.B.; Lauritzen, P.M. Reproducibility of semiautomated body composition segmentation of abdominal computed
tomography: A multiobserver study. Eur. Radiol. Exp. 2019, 3, 42–48. [CrossRef]

32. Demerath, E.W.; Ritter, K.J.; Couch, W.; Rogers, N.L.; Moreno, G.M.; Choh, A.; Lee, M.; Remsberg, K.; Czerwinski, S.; Chumlea,
W.C.; et al. Validity of a new automated software program for visceral adipose tissue estimation. Int. J. Obes. 2007, 31, 285–291.
[CrossRef] [PubMed]

https://doi.org/10.1152/jappl.1991.70.5.2164
https://doi.org/10.1093/ajcn/51.6.953
https://www.ncbi.nlm.nih.gov/pubmed/2349931
https://doi.org/10.1259/bjr/57987644
https://doi.org/10.1038/sj.ijo.0803454
https://doi.org/10.1259/bjr.20180252
https://www.ncbi.nlm.nih.gov/pubmed/30004791
https://doi.org/10.1117/12.843860
https://doi.org/10.1117/12.878063
https://doi.org/10.1109/isbi.2008.4541274
https://doi.org/10.1007/BF00133570
https://doi.org/10.5772/intechopen.74576
https://www.ncbi.nlm.nih.gov/pubmed/16555570
https://doi.org/10.1007/s00261-018-1678-x
https://doi.org/10.1259/bjr.20160662
https://doi.org/10.1007/s10278-012-9488-0
https://doi.org/10.1007/s00261-017-1123-6
https://www.ncbi.nlm.nih.gov/pubmed/28389787
https://doi.org/10.1371/journal.pone.0183515
https://www.ncbi.nlm.nih.gov/pubmed/28859115
https://doi.org/10.1038/s41430-018-0110-5
https://doi.org/10.1002/jmri.20167
https://doi.org/10.1038/sj.ijo.0803216
https://doi.org/10.1002/jmri.22673
https://www.ncbi.nlm.nih.gov/pubmed/21769972
https://doi.org/10.1002/jmri.22036
https://doi.org/10.1038/sj.ijo.0803671
https://doi.org/10.1139/H08-075
https://doi.org/10.1186/s41747-019-0122-5
https://doi.org/10.1038/sj.ijo.0803409
https://www.ncbi.nlm.nih.gov/pubmed/16770332


Tomography 2023, 9 1051

33. Bonekamp, S.; Ghosh, P.; Crawford, S.; Solga, S.F.; Horska, A.; Brancati, F.L.; Diehl, A.M.; Smith, S.; Clark, J.M. Quantitative
comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance
imaging. Int. J. Obes. 2008, 32, 100–111. [CrossRef] [PubMed]

34. Maddalo, M.; Zorza, I.; Zubani, S.; Nocivelli, G.; Calandra, G.; Soldini, P.; Mascaro, L.; Maroldi, R. Validation of a free software for
unsupervised assessment of abdominal fat in MRI. Phys. Medica 2017, 37, 24–31. [CrossRef]

35. Udupa, J.K.; Samarasekera, S. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image
Segmentation. Graph. Model. Image Process. 1996, 58, 246–261. [CrossRef]

36. Lee, Y.-H.; Hsiao, H.-F.; Yang, H.-T.; Huang, S.-Y.; Chan, W.P. Reproducibility and Repeatability of Computer Tomography-based
Measurement of Abdominal Subcutaneous and Visceral Adipose Tissues. Sci. Rep. 2017, 7, 40389. [CrossRef] [PubMed]

37. Kim, W.H.; Kim, C.G.; Kim, D.-W. Optimal CT Number Range for Adipose Tissue When Determining Lean Body Mass in
Whole-Body F-18 FDG PET/CT Studies. Nucl. Med. Mol. Imaging 2012, 46, 294–299. [CrossRef] [PubMed]

38. Yin, L.; Yan, C.; Yang, C.; Dong, H.; Xu, S.; Li, C.; Zeng, M. Measurement of epicardial adipose tissue using non-contrast routine
chest-CT: A consideration of threshold adjustment for fatty attenuation. BMC Med Imaging 2022, 22, 114. [CrossRef]

39. Greco, F.; Mallio, C.A. Artificial intelligence and abdominal adipose tissue analysis: A literature review. Quant. Imaging Med.
Surg. 2021, 11, 4461–4474. [CrossRef]

40. Grainger, A.T.; Krishnaraj, A.; Quinones, M.H.; Tustison, N.J.; Epstein, S.; Fuller, D.; Jha, A.; Allman, K.L.; Shi, W. Deep Learning-
based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Acad. Radiol. 2021, 28, 1481–1487.
[CrossRef]

41. Bridge, C.P.; Rosenthal, M.; Wright, B.; Kotecha, G.; Fintelmann, F.; Troschel, F.; Miskin, N.; Desai, K.; Wrobel, W.; Babic, A.; et al.
Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks. In OR 2.0
Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis,
Proceedings of the First International Workshop, OR 2.0 2018, 5th International Workshop, CARE 2018, 7th International Workshop, CLIP
2018, Third International Workshop, ISIC 2018, Held in Conjunction with MICCAI, Granada, Spain, 16–20 September 2018; Stoyanov, D.,
Taylor, Z., Sarikaya, D., McLeod, J., Ballester, M.A.G., Codella, N.C.F., Martel, A., Maier-Hein, L., Malpani, A., Zenati, M.A., et al.,
Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 204–213. [CrossRef]

42. Paris, M.T.; Tandon, P.; Heyland, D.K.; Furberg, H.; Premji, T.; Low, G.; Mourtzakis, M. Automated body composition analysis of
clinically acquired computed tomography scans using neural networks. Clin. Nutr. 2020, 39, 3049–3055. [CrossRef]

43. Koitka, S.; Kroll, L.; Malamutmann, E.; Oezcelik, A.; Nensa, F. Fully automated body composition analysis in routine CT imaging
using 3D semantic segmentation convolutional neural networks. Eur. Radiol. 2021, 31, 1795–1804. [CrossRef] [PubMed]

44. Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Visceral adipose tissue:
Relations between single-slice areas and total volume. Am. J. Clin. Nutr. 2004, 80, 271–278. [CrossRef]

45. Demerath, E.W.; Shen, W.; Lee, M.; Choh, A.C.; Czerwinski, S.; Siervogel, R.M.; Towne, B. Approximation of total visceral adipose
tissue with a single magnetic resonance image. Am. J. Clin. Nutr. 2007, 85, 362–368. [CrossRef] [PubMed]

46. Maislin, G.; Ahmed, M.M.; Gooneratne, N.; Thorne-Fitzgerald, M.; Kim, C.; Teff, K.; Arnardottir, E.S.; Benediktsdottir, B.;
Einarsdottir, H.; Juliusson, S.; et al. Single Slice vs. Volumetric MR Assessment of Visceral Adipose Tissue: Reliability and Validity
Among the Overweight and Obese. Obesity 2012, 20, 2124–2132. [CrossRef] [PubMed]

47. Sun, J.; Lv, H.; Zhang, M.; Li, M.; Zhao, L.; Zeng, N.; Liu, Y.; Wei, X.; Chen, Q.; Ren, P.; et al. The Appropriateness Criteria of Abdominal
Fat Measurement at the Level of the L1-L2 Intervertebral Disc in Patients with Obesity. Front. Endocrinol. 2021, 12, 1680. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/sj.ijo.0803696
https://www.ncbi.nlm.nih.gov/pubmed/17700582
https://doi.org/10.1016/j.ejmp.2017.04.002
https://doi.org/10.1006/gmip.1996.0021
https://doi.org/10.1038/srep40389
https://www.ncbi.nlm.nih.gov/pubmed/28071718
https://doi.org/10.1007/s13139-012-0175-3
https://www.ncbi.nlm.nih.gov/pubmed/24900077
https://doi.org/10.1186/s12880-022-00840-3
https://doi.org/10.21037/qims-21-370
https://doi.org/10.1016/j.acra.2020.07.010
https://doi.org/10.1007/978-3-030-01201-4_22
https://doi.org/10.1016/j.clnu.2020.01.008
https://doi.org/10.1007/s00330-020-07147-3
https://www.ncbi.nlm.nih.gov/pubmed/32945971
https://doi.org/10.1093/ajcn/80.2.271
https://doi.org/10.1093/ajcn/85.2.362
https://www.ncbi.nlm.nih.gov/pubmed/17284730
https://doi.org/10.1038/oby.2012.53
https://www.ncbi.nlm.nih.gov/pubmed/22395811
https://doi.org/10.3389/fendo.2021.784056

	Introduction 
	Materials and Methods 
	Study Subjects 
	Image Acquisition 
	Image Processing 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

