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Abstract: Background: Training machine learning (ML) models in medical imaging requires large
amounts of labeled data. To minimize labeling workload, it is common to divide training data among
multiple readers for separate annotation without consensus and then combine the labeled data for
training a ML model. This can lead to a biased training dataset and poor ML algorithm prediction
performance. The purpose of this study is to determine if ML algorithms can overcome biases caused
by multiple readers’ labeling without consensus. Methods: This study used a publicly available chest
X-ray dataset of pediatric pneumonia. As an analogy to a practical dataset without labeling consensus
among multiple readers, random and systematic errors were artificially added to the dataset to
generate biased data for a binary-class classification task. The Resnet18-based convolutional neural
network (CNN) was used as a baseline model. A Resnet18 model with a regularization term added as
a loss function was utilized to examine for improvement in the baseline model. Results: The effects
of false positive labels, false negative labels, and random errors (5–25%) resulted in a loss of AUC
(0–14%) when training a binary CNN classifier. The model with a regularized loss function improved
the AUC (75–84%) over that of the baseline model (65–79%). Conclusion: This study indicated that it
is possible for ML algorithms to overcome individual readers’ biases when consensus is not available.
It is recommended to use regularized loss functions when allocating annotation tasks to multiple
readers as they are easy to implement and effective in mitigating biased labels.

Keywords: machine learning; annotation bias; labeling consensus; chest X-ray; convolutional
neural network

1. Introduction

The availability of great computing power and large amounts of medical imaging data
have allowed machine learning (ML) to assist radiologists when making a diagnosis. One
of the most recent applications is image classification using supervised learning algorithms,
which require a large amount of expert-labeled medical image data. However, the labeling
process can be a time-consuming and laborious work for many experts [1].

In many practical settings, as a single expert cannot deal with enormous amounts of
data, it is common to divide training data among multiple readers to alleviate the labeling
workload. Another common situation is when combining labeled datasets from different
sources/institutions. The multiple datasets labeled by different readers are combined
for training. However, labeled data from multiple readers can generate biased labels
for various reasons, such as variance in expertise, prior information provided by other
readers/clinicians, and ambiguous pixels [2,3]. In addition to these systematic errors,
random errors can also occur among readers due to increased fatigue, for example [3,4]

Although achieving a perfect gold standard in medical imaging is often challenging [5],
labels that can reach consensus among readers can be seen as a better imperfect gold stan-
dard than individual readers’ annotations because biases caused by readers’ background
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and random errors could be reduced in labels agreed among multiple readers. However,
reviewing other readers’ labels and coming to an agreement through discussions can be
costly and time-consuming for readers. Recently, some studies [6,7] proposed ways to
construct machine learning models for noisy datasets, but it is still unknown if ML models
can amend for the biases caused by multiple readers.

The purpose of this study is to determine if ML algorithms can overcome the biases
generated by multiple readers and more closely match a consensus than individual readers.
The objectives of this study are as follows: (1) demonstrate that a ML model trained on
datasets labeled by multiple readers with biases can closely match the consensus of the
readers than individual readers who have biases; (2) compare the model performances by
introducing some artificial biases while varying their strength; and (3) introduce a robust
loss function to reduce the effect of biases.

2. Materials and Methods
2.1. Datasets

The experiments of this study were conducted using a binary-class dataset of chest
X-ray images of pediatric pneumonia [8]. We chose the chest X-ray dataset since it is one of
the medical imaging modalities in which reading errors have been reported in a previous
study [3]. The labels which come with the dataset were assumed to be the consensus of the
simulated readers, as they are the closest labels that we could obtain to the ground-truth
labels. The chest X-ray dataset of pediatric pneumonia was collected from the Guangzhou
Women and Children’s Medical Center, consisting of a total of 5863 images. The original
training set included 3883 pneumonia images (2538 bacterial and 1345 viral) and 1349 nor-
mal images. The original test set included 234 normal images and 390 pneumonia images.
To resolve the class imbalance issue in the training set due to the lack of normal images
and reduce the time needed for training, 500 normal images and 500 pneumonia images
were randomly sampled from the original training set as a new training set: 109 normal
images and 109 pneumonia images were used for validation, and 234 normal images and
390 pneumonia images were used for testing the model.

2.2. Problem Setting

In this study, we focused on the following two types of errors that could be made by
multiple readers during their labeling process:

1. Random error: readers accidentally introduce wrong labels.
2. Systematic error: readers make mistakes when interpreting an image due to a bias.

Random errors could happen when readers experience increased symptoms of fatigue
and oculomotor strain, resulting in reduced ability to detect abnormalities [3,4]. Systematic
errors could occur due to variance in radiological experience, prior information provided
by another clinician/reader, or even a difference in viewing environment (e.g., poor lighting
conditions) [3]. We called readers who made systematic errors biased readers. In this study,
two kinds of labeling generated based on systematic errors were introduced: false positive
labels (original negative labels were treated as positive labels) and false negative labels
(original positive were treated as negative labels). Bias was introduced to a percentage
(5–25%) of randomly selected (without replacement) labels. The strength of the random
and systematic errors applied to the training dataset is shown in Table 1. For a set of input
images, we assumed they were assigned with biased labels by multiple readers and the
ground-truth labels were not available during the training phase. It was also assumed that
each reader’s labeling work was equally allocated.
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Table 1. Strengths and types of biased and erroneous labels introduced to the dataset. fp: false
positive labels. fn: false negative labels. Random error contains a mixture of fp and fn labels because
a set of labels containing a mixture of different types of systematic error may be viewed as containing
random error.

Error Type
% Level of Introduced Error

5% 10% 15% 20% 25%

Random error 5% each 10% each 15% each 20% each 25% each

Systematic
error

False positive labeling 10% fp 20% fp 30% fp 40% fp 50% fp

False negative labeling 10% fn 20% fn 30% fn 40% fn 50% fn

2.3. Model and Loss Functions

In this study, we employed the convolutional neural network (CNN) architecture of
Resnet18 [9] with a two-class output in the last layer. The Resnet18 has been used in a
previous study [10] and can save training time as it has a relatively small architecture. In
our experiment, a baseline model and an improved model were trained on the datasets with
different kinds of reader biases introduced. The former has the architecture of Resnet18 with
a cross-entropy loss Lcross_entropy. The latter has the Resnet18 architecture with Lcross_entropy
and a paired softmax divergence regularization (PSDR) loss LPSDR [7], that is, the total loss
function is a sum of these two functions,

Lcross_entropy + αLPSDR

with a hyperparameter α. The PSDR loss, originally proposed by Chen et al. [7], is defined
as follows:

LPSDR(x; θ) = ∑
t

KL
(

f
(

x′t ; θ)|| f
(
x′′t ; θ

)
,

where f (x; θ) denotes a neural network parameterized by θ, which predicts a probability
distribution over all classes for any input image x, and x′t and x′′t are generated from random
data augmentation of the original image xt. Kullback–Leibler (KL) divergence is denoted
by KL(·), which measures the similarity between the two outputs. The PSDR loss that
serves as a regularization term consists of the sum of KL divergence between the output of
two images randomly generated from the original image using data augmentation. The
PSDR loss is known to provide a powerful and simple way for improving robustness to
various kinds of noise in a training dataset, and it can be used as a supplementary to the
cross-entropy loss [7].

In the context of PSRD loss, applying a wide variety of data augmentation techniques is
recommended so that the regularization term of the PSDR loss is able to explicitly penalize
the difference between the predictions from paired samples generated by data augmenta-
tion. Therefore, in our study, horizontal random flipping and vertical random flipping were
both applied to the training data as data augmentation. However, in an applied study, it is
often advisable to maintain anatomical symmetry when applying augmentation techniques,
and this should be verified. It should be noted that data augmentation was only applied to
the training dataset; the original test set was left unchanged.

2.4. Environment and Implementation Details

The experiments were run using a Python 3.7 interpreter on a machine with one
RTX2080 GPU and an AMD Ryzen 5 3600X 6-Core Processor as the CPU. The codes were
implemented using Pytorch.

The optimizer used for training was Adam with a learning rate of 1 × 10−3. The train-
ing went for 50 epochs, and the training was stopped at the point when no improvement
in training accuracy and training loss was observed. The hyperparameter α in the PSDR
loss function was tuned using a clean validation set every time the model was trained.
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During the preprocessing phase, we applied resizing and normalization to each input
image. Resizing of chest X-ray images to (224, 224, 224) pixels was performed to fit the
input shape of Resnet18. After that, we normalized the input images with mean of 0.5 and
a standard deviation of 0.2365, as recommended in a previous study [9].

2.5. Experimental Methodology

The metric used for evaluating reader performance and model performance was the
area under ROC curve score (AUC). Different biases were introduced to the dataset to
investigate how they affected the models’ test AUC. For each bias and each model, the
following steps were performed: (1) introduce readers’ biases to the training labels and
validation labels to generate a new training set and a validation set with biased labels;
(2) train the model on the biased training set. The hyperparameter was tuned using the
validation dataset; (3) evaluate the models on the test set; and (4) repeat steps 2 and 3 for
5 repetitions (seed = 42).

To investigate the differences in the models’ AUC slopes depending on the type
and strength of biases, descriptive statistics were performed. The means with standard
deviations were provided. A comparison of the means was tested with ANCOVA using R
(version 4.2.2).

3. Results

We conducted experiments on each combination of bias strength and type for five
repeats. The hyperparameter was tuned on a clean validation set every time the model was
trained. The AUC observed in the baseline model and the improved model is depicted in
Figure 1. The vertical axis indicates the AUC, and the horizontal axis shows the percentage
of the introduced labeling error. The error bars show the standard deviations of the AUC
with respect to five repeats. It is observed that, as the percentage of overall error increases,
the baseline model’s AUC decreases, whereas the improved model with the PSDR loss is
less affected.
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The statistical analysis indicated that the differences in the models’ AUC slopes be-
tween false negative and false positive biases for both models are not statistically significant
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(false positive: β = −0.005 with p = 0.005; false negative: β = −0.0045 with p = 0.002; and
random error: β = −0.0043 with p = 0.0002. The difference between the slopes: p = 0.74 for
the baseline model; false positive: β = −0.0037 with p = 0.02; false negative: β = −0.0012
with p = 0.36; and random error: β = −0.0006 with p = 0.66. The difference between the
slopes: p = 0.18 for the improved model). All descriptive statistics of the models trained
using different strengths and types of biases are shown in Supplementary Table S1.

It is also observed from Figure 1 that as the AUC decreases due to bias, the baseline
model’s accuracy decreases. This is mainly due to overfitting, when the model learns the
training data so well that it fails to generalize to unseen data. The training and validation
accuracy throughout the training process is illustrated in Figure 2. The figure indicates that
the gap between training and validation accuracy is larger in the baseline model than that
in the improved model.
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4. Discussion

Our study demonstrated that a regularized model achieved a higher AUC than indi-
vidual readers with biases and closely matched the consensus with a higher AUC in most
cases. This implied that the effect of biased labels that could inevitably happen among
multiple readers could be reduced solely by adding regularizing terms when constructing
ML-based classification models. This simple but effective approach could significantly help
ML-driven medical imaging studies that require large datasets without labeling consensus.

4.1. Dose Effect of Increasing Errors

In this study, we focused on two types of error: random error and systematic error. A
random error occurs when readers accidentally assign wrong labels, whereas a systematic
error can be introduced when readers interpret an image in a different, planned way. As
seen in the results provided through our analysis, systematic errors lead to models with
lower predictability. This is a limitation when developing ML models in medical imaging,
especially for improving diagnostic accuracy to support healthcare professionals [11]. A
previous study led by Tanno et al. [6] proposed a regularized loss function applicable to
biased labels, but it did not investigate the effects of type and strength of biases. Our study
systematically analyzed various types and strengths of errors and evaluated their effects
on classification performance in a widely used medical imaging dataset.

It can be observed in Figure 1 that increasing bias results in decreased AUC of the ML
binary classifier models and that a model using regularized loss function is less influenced
by labeling bias. This is supported by the trend shown in the training and validation
accuracy. As shown in Figure 2, training in the baseline model does not enhance validation
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accuracy and results in a larger gap between training and validation accuracy compared to
the model with the PSDR regularization loss. This is a typical phenomenon observed in
overfitting cases. Since the regularization loss encourages the model to learn a smoother
decision boundary and is less likely to be influenced by outliers, the model with the PSDR
loss could achieve more robust predictions than the baseline model.

4.2. Effects of Different Types of Biases

In this study, in addition to random errors, two kinds of labeling generated based on
systematic errors were introduced: false positive labels and false negative labels. The differ-
ences in the fitted slopes of both models’ AUC for different bias types are not statistically
significant. When researchers request multiple readers to label datasets for developing
ML models, the types and strengths of biases are not known in advance. This reinforces
the usefulness of the regularized loss function in these circumstances as it is shown to
be useful in alleviating a wide range of types and strengths of labeling errors. In the
situation where a training dataset is labeled by multiple readers with different medical
expertise and the training dataset contains a single type of bias, either false negative or false
positive labels, as described in Figure 1, labels with a small number of systematic errors
(not shared by all readers) could be corrected by adopting the regularized loss function
in many cases. However, in order to make sure that these small amounts of single-sided
biases are successfully corrected, an additional evaluation is needed by using an external
test dataset when deploying ML models in medical settings. Another possible situation is
where a similar bias is equally shared by all readers caused by, for example, ambiguous
pixels around lesions [2]. In this case, training a model will be successful, but it will be
challenging (near impossible) to correct for the biased labels as the resulting model will be
accurate but biased. An evaluation on an external test dataset is again effective to assess
generalizability and identify the bias.

4.3. Limitations

Although this study managed to show how ML algorithms could reduce the effect
of biases and errors made by human readers, there were some limitations. First, the bias
introduced in this study was artificial and might not fully represent a real-life observer
error. Further study would be needed using a dataset in which the findings could be
related to specific artifact or improper exposure, or other technical features. The second
limitation was the number of datasets used in the analysis. Since we only used a chest X-ray
dataset, further investigation using datasets from other medical modalities is still needed
to understand more about the general effect of the regularization. The third limitation was
the number of predicted classes. We focused on a binary classification task in this study, but
there are medical imaging problems involving multi-class classification tasks. Verifying the
effectiveness of our approach in multi-class problems would be an important future work.
Another limitation was the assumption of the conditional independence of readers’ biases
on the input images, given the true latent variable. For example, for the task of classifying
digit 3 and digit 8, some images of digit 3 might look more like digit 8 than other images
for some readers, but not for others. For further improvement, the dependence of readers’
biases on the input images could be taken into consideration [12].

4.4. Recommendation for Amending Biases

In real-world applications where multiple readers annotate a dataset and the PSDR
loss-based method is applied to train ML models, it is recommended to sample a small
portion of data points from the whole dataset and obtain readers’ consensus on the samples.
This dataset can be used as a test set to see how far it is from the consensus.

This study focused on a regularized loss function in a binary classification task to
reduce the effect of biased labels on ML model training. From a methodological viewpoint,
there are some other approaches to deal with labeling errors, including transition matrix, ro-
bust losses, sample weighting, sample selection, meta-learning, and their combination [11].
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In addition to binary classification tasks, there are many other important tasks in medical
imaging that ML contributes to (e.g., multi-class classification and segmentation tasks). As-
sessment of these methodologies and their effectiveness for various ML tasks are important
for future work.

5. Conclusions

In conclusion, this study demonstrated that it is possible for machine learning algo-
rithms to overcome individual readers’ biases in training a binary classifier. The perfor-
mance of the classifier was investigated with the introduction of artificial and random
biases among multiple readers to the training dataset. We found that a regularized loss
function was effective in alleviating the degradation of classification performance caused
by the introduced biases. These findings need to be verified using a real dataset where
biases are related to reader training and experience.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/tomography9030074/s1. Table S1: Descriptive statistics (mean ± sd) of
the models trained using different strengths and types of biases.
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