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Abstract: (1) Background: The impacts of metal artifacts (MAs) on the contouring workload for head
and neck radiotherapy have not yet been clarified. Therefore, this study evaluated the relationship
between the contouring time of the MAs area and MAs on head and neck radiotherapy treatment
planning. (2) Methods: We used treatment planning computed tomography (CT) images for head
and neck radiotherapy. MAs were classified into three severities by the percentage of CT images
containing MAs: mild (<25%), moderate (25–75%), and severe (>75%). We randomly selected
nine patients to evaluate the relationship between MAs and the contouring time of the MAs area.
(3) Results: The contouring time of MAs showed moderate positive correlations with the MAs volume
and the number of CT images containing MAs. Interobserver reliability of the extracted MAs volume
and contouring time were excellent and poor, respectively. (4) Conclusions: Our study suggests that
the contouring time of MAs areas is related to individual commitment rather than clinical experience.
Therefore, the development of software combining metal artifact reduction methods with automatic
contouring methods is necessary to reducing interobserver variability and contouring workload.
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1. Introduction

Radiotherapy is a widely used treatment modality for head and neck cancer. However,
metallic dental restorations (MDRs) make it difficult to contour the target volumes (TVs)
and organs at risk (OARs) because MDRs generate metal artifacts (MAs) in radiotherapy
treatment planning computed tomography (CT) images [1,2]. In addition, MAs decrease
the accuracy of dose calculation [2–4].

Currently, there are two measures against MDRs for radiotherapy treatment plan-
ning [5]. One measure against MDRs is MDR removal, in which all MDRs are removed
before radiotherapy treatment planning CT. Another is non-MDR removal, in which MAs
are replaced with the CT value of soft tissue or water as much as possible and magnetic
resonance imaging or positron emission tomography–CT is used to identify the TVs and
OARs. In practice, MDR removal is often unrealistic for the following reasons: it is likely
to cause tooth extraction, patients often refuse to undergo MDR removal, and no dental
service is available within or around the cancer treatment facilities. In addition, the medical
cost of MDR removal has been estimated to be higher than that of non-MDR removal [6].
On the other hand, non-MDR removal increases the contouring workload more than MDR
removal. However, the impacts of MAs on the contouring workload for head and neck
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radiotherapy have not yet been clarified. Therefore, this study evaluated the relationship
between the contouring time of the MAs area and MAs on head and neck radiotherapy
treatment planning.

2. Materials and Methods
2.1. Patients

Patients who underwent two-step IMRT (70 Gy in 35 fractions) for head and neck
cancer at our institution between January 2018 and December 2020 were enrolled in this
study. Patients without MAs in the oral cavity were excluded. In this study, CT slices that
included the oral cavity were defined as the area between the root apex of the maxillary and
mandibular canines. Streaking artifacts of less than −200 and more than 400 Hounsfield
units (HU) generated from MDRs were defined as MAs. MAs in the oral cavity were
classified by an oral radiologist (K.K.) into three severities by the percentage of CT images
containing MAs: mild (<25%), moderate (25–75%), and severe (>75%). We randomly se-
lected a total of nine patients, with three patients from each severity group. The calculation
formula was as follows:

(i) The percentage of CT images containing MAs in the oral cavity

= 100 × the number o f CT slices containing MAs in the oral cavity
the number o f CT slices in the oral cavity

Informed consent was obtained as an opt-out approach on our institutional website,
on which information about the study objectives and procedures was published, instead
of using written informed consent. This study was approved by the institutional review
board of our hospital (no. 202-0265).

2.2. Radiotherapy Treatment Planning Computed Tomography Data

Each patient was immobilized using a thermoplastic mask (CIVCO Co., Orange City,
IA, USA) and a mouthpiece composed of an ethylene–vinyl acetate copolymer (Erkodent
Erich Kopp GmbH, Pfalzgrafenweiler, Germany). Then, a radiotherapy treatment planning
CT scan was conducted using a 16-slice CT scanner (Lightspeed RT, General Electric
Medical Systems, Waukesha, WI, USA) with the following parameters: tube voltage,
120 kVp; tube current, auto-exposure control; slice thickness, 1.25 mm; and field of view,
50 cm. All CT image data were reconstructed with a thickness of 2.5 mm.

2.3. Contouring of the Dental Metal Artifacts Area

Radiotherapy treatment planning was conducted using an Eclipse treatment planning
system (version 15.5; Varian Medical Systems Inc., Palo Alto, CA, USA). The process of
contouring works, including measures against MAs, is shown in Figure 1. Based on the
radiotherapy treatment planning CT images (Figure 1a), three medical physicists (clinical
experience: 1, 4, and 12 years, respectively) contoured the MAs area. Streaking artifacts of
less than −200 and more than 400 Hounsfield units (HU) generated from MDRs as the MAs
area were manually extracted as much as possible. Finally, the CT values of the extracted
MAs areas were replaced with a value of 0 HU (Figure 1b).
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(a) (b) 

Figure 1. The process of contouring works of metal artifacts (MAs) for head and neck radiotherapy. 

(a) Radiotherapy treatment planning computed tomography (CT) images with MAs. (b) 

Replacement of MAs with Hounsfield units equal to water. 
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were interpreted as >0.90, 0.9.0–0.75, 0.75–0.50, and <0.50 as excellent, good, fair, and poor, 
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Figure 1. The process of contouring works of metal artifacts (MAs) for head and neck radiotherapy.
(a) Radiotherapy treatment planning computed tomography (CT) images with MAs. (b) Replacement
of MAs with Hounsfield units equal to water.

2.4. Evaluation

We defined the contouring time as the time from when a contour was selected to edit
the artifact to when the contour-editing window in Eclipse was closed. The relationships
between the severities of MAs and the volume of extracted MAs, as well as the severities of
MAs and the contouring time of MAs, were evaluated using the Kruskal–Wallis test and
Bonferroni’s post hoc test. In addition, the correlations with the contouring time of MAs to
the volume of extracted MAs and the number of images containing MAs were evaluated
using Spearman’s rank correlation coefficient. Correlation coefficient (r) values were
interpreted as r ≥ 0.7, 0.7 > r > 0.4, and r ≤ 0.4 as strong, moderate, and weak, respectively.
The interobserver reliability of the contouring for the MAs area was evaluated using the
intraclass correlation coefficient (ICC) (Model 2,1). The ICC values were interpreted as
>0.90, 0.9.0–0.75, 0.75–0.50, and <0.50 as excellent, good, fair, and poor, respectively [7].
Statistical analyses were conducted using IBM SPSS Statistics 23.0 for Windows (IBM Japan
Ltd., Tokyo, Japan). p-values < 0.05 were considered significant.

3. Results

The characteristics of the selected patients are shown in Table 1. The median number
of CT images in the oral cavity was 24 (range: 21–27). In addition, the median number of CT
images containing MAs, the median volume of extracted MAs, and the median contouring
time of the MAs areas were 11 images (range: 4–18), 105.3 cc (range: 16.8–245.4), and
19.3 min (range: 6.4–72.7), respectively.

Table 1. Characteristics of the selected patients.

Characteristics N = 9

Age, range (median) 55–76 years (66)

Gender
Male

Female
9
0

Primary tumor site
Nasopharynx

Oropharynx
Larynx
Maxillary sinus

2
4
2
1

Tumor classification
T1
T2
T3
T4a
T4b

3
2
2
1
1
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Table 1. Cont.

Characteristics N = 9

Node classification
N0
N1
N2b
N2c

1
4
3
1

Cancer stage
I
II
III
IVA
IVB

1
2
2
3
1

Number of CT images
Oral cavity, range (median)
MAs, range (median) 21–26 images (24)

4–18 images (11)

Volume of extracted MAs, range (median) 16.8–245.4 cc (105.3)

Contouring time of MAs area (median) 6.4–72.7 min (19.3)

CT = computed tomography, MAs = metal artifacts. The tumor and node classification and cancer stage followed
the 8th edition of the UICC TNM classification and AJCC cancer staging system.

The relationships between the severities of MAs and the contouring time of the MAs
areas, as well as the severities of MAs and the volume of extracted MAs, are shown in
Table 2 and Figure 2. The volume of extracted MAs and the contouring time of the MAs
area increased statistically significantly as the severities of MAs increased (p = 0.001 and
p = 0.014, respectively).

Table 2. Relationships between the severities of MAs and the contouring time of the MAs area, and
the severities of MAs and the volume of extracted MAs.

Severities of MAs

Mild (<25%)
Median (Range)

Moderate (25–75%)
Median (Range)

Severe (>75%)
Median (Range) p

Volume of extracted MAs 49.2 cc (16.8–72.4) 108.8 cc (53.9–142.7) 209.8 cc (98.3–245.4) <0.001
Contouring time of MAs area 16.1 min. (6.4–32.7) 25.8 min. (11.4–46.2) 40.3 min. (14.7–72.7) <0.014

CT = computed tomography, MAs = metal artifacts, min. = minutes. The Kruskal–Wallis test was used for the analyses.
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Figure 2. The relationship between the severities of metal artifacts (MAs) and the contouring time
of the MAs area. A statistically significant difference between mild and severe MAs is shown
(p = 0.020). Box plots indicate median, quartiles (25th and 75th percentiles), and extreme values for
the contouring times in the three groups classified by the percentage of CT slices containing MAs.
Bonferroni’s post hoc test was used for the statistical analyses. The level of statistical significance was
set at 0.05. * p < 0.05. NS = not significant.

The correlations between the contouring time of MAs to the volume of extracted
MAs and the number of images containing MAs are shown in Table 3. The contouring
times showed moderate positive correlations with the volume of extracted MAs (r = 0.535,
p = 0.004) and the number of CT images containing MAs (r = 0.596, p < 0.001).
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Table 3. Correlations with the contouring time of the MAs area to the volume of extracted MAs and
the number of slices containing MAs.

Contouring Time of MAs Area p

Volume of extracted MAs r = 0.535 0.004
Number of CT slices containing MAs r = 0.596 <0.001

CT = computed tomography, MAs = metal artifacts. Spearman’s rank correlation was used for the analyses.

The interobserver reliability of the volume of extracted MAs and the contouring time of
the MAs area are shown in Table 4. The interobserver reliability was excellent (ICC = 0.934:
95% confidence interval = 0.78–0.98) for the volume of extracted MAs. On the other hand,
the interobserver reliability was poor (ICC = 0.312: 95% confidence interval = −0.01–0.72)
for the contouring times of the MAs area.

Table 4. Interobserver reliability of the extracted MAs volume and the MAs area contouring time.

Volume of Extracted MAs Contouring Times of MAs Area

Observer
(Clinical Experience)

Volume
Median (Range) ICC 95% CI Contouring Time

Median (Range) ICC 95% CI

A (1 year) 96.9 cc (19.2–245.4)
0.934 0.78–0.98

40.4 min. (16.1–53.2)
0.312 −0.01–0.72B (4 years) 112.9 cc (22.9–243.6) 14.1 min. (6.4–25.4)

C (12 years) 127.6 cc (31.2–283.5) 18.5 min. (9.1–90.9)

MAs = metal artifacts, ICC = intraclass correlation coefficient, CI = confidence interval, min. = minutes. The
intraclass correlation coefficient (Model 2,1) was used for the interobserver reliability.

4. Discussion

Accurate contouring of TVs and OARs is critical in head and neck radiotherapy
because the contouring of these regions is directly associated with cancer control and
the incidence and severity of radiation-induced adverse events. Therefore, the recent
contouring of head and neck radiotherapy requires extensive time and expertise because
of the number of OARs and complex anatomical structures and the measures against
MAs. In fact, the German Society of Radiation Oncology reported that contouring was
the most time-consuming procedure for head and neck radiotherapy [8]. Three previous
studies evaluating the workload of radiotherapy treatment planning for head and neck
radiotherapy reported that mean contouring times were 105 [8], 108 [9], and 180 min
per patient [10]. Our study showed that the median contouring time of the MAs area
was 19.3 min per patient. This contouring time of the MAs area is estimated to range
from approximately 11% to 18% of the contouring time for head and neck radiotherapy
treatment planning. In addition, a previous study reported that head and neck radiotherapy
patients had dental restorations on approximately half of the teeth in the radiation field [11].
Therefore, the actual contouring time of the MAs area might be significantly longer than
our results.

Our results showed that the contouring time of the MAs area and the volume of ex-
tracted MAs increased as the percentage of CT images containing MAs increased. Moreover,
the contouring time of the MAs area showed moderate positive correlations with both
the percentage of CT images containing MAs and the volume of extracted MAs. These
results indicate that MAs have a negative impact on contouring workload for head and
neck radiotherapy treatment planning. Therefore, measures against MAs are necessary for
head and neck radiotherapy treatment. One strategy against MAs is MDR removal before
radiotherapy treatment planning CT. However, it may not be possible to remove MDRs
because of the possibility of tooth extraction, a lack of patient consent, or the unavailability
of dental services in or around the cancer treatment facilities. Another strategy is to reduce
MAs without MDRs using megavoltage CT (MVCT), dual energy computed tomography
(DECT), or metal artifact reduction (MAR) methods.

MVCT can both improve the delineation of TVs and OARs in the MAs region and
enable more accurate dose calculation for head and neck radiotherapy treatment plan-
ning [12]. However, MVCT has limitations such as poor soft tissue contrast, wide slice
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thickness of radiotherapy planning CT scans, and increased doses received by the patient.
DECT is a virtual mono-energetic image reconstruction technique using a high-energy and
a low-energy X-ray. Some authors have reported that DECT could both reduce MAs [13]
and positively affect the contouring workload of radiotherapy treatment planning [14].
However, they also reported that DECT could not remove strong MAs [13], and the dose
in the MAs region calculated using DECT was not significantly improved versus the ref-
erence [14]. The MAR method detects the MAs area and replaces it with the estimated
corrected HU value automatically. It has been reported that the MAR method both reduces
the MAs volume and improves the accuracy of the HU of the MAs area [15]. In addition,
the MAR method has been reported to improve the dose-calculation accuracy [16], alleviate
uncertain delineation attributable to MAs [17], and improve the ease of contouring [18].
Therefore, the MAR method might be the best of these measures against MAs in head and
neck radiotherapy treatment planning.

Our study only defined the HU of the MAs. Nevertheless, the volume of removed
MAs had excellent reliability among the observers. On the other hand, regardless of
clinical experience, the contouring time for measures against MAs had poor reliability
among the observers. These results suggest that the manual contouring time of the MAs
area is related to individual commitment rather than clinical experience. Several studies
reported that automatic contouring could reduce the contouring time compared to manual
contouring [9,10,19]. Van Dijk et al. reported that automatic contouring using deep-learning
results was within or near the interobserver variability for manually edited contours [19],
and Teguh et al. reported that an expert panel scored all automatic contouring as a “minor
deviation, editable” or “better” compared to manual contouring [10]. Therefore, developing
software combining the MAR method with the automatic contouring method is necessary to
reduce the contouring workload and the interobserver variability in head and radiotherapy
treatment planning.

Concerning the study limitations, this study only evaluated the relationship between
the contouring time of the MAs area and MAs on the contouring workload for head and
neck radiotherapy. Therefore, it is necessary to prospectively evaluate the impact of MAs
on actual overall contouring time, including TVs and OARs’ delineation in head and neck
radiotherapy treatment planning.

5. Conclusions

Our study suggested that MAs have a large impact on the contouring times for head
and neck radiotherapy treatment planning, and the manual contouring time of the MAs
area is related to individual commitment rather than clinical experience. Therefore, it is
necessary to evaluate the actual clinical impacts of MAs for head and neck radiotherapy
treatment planning. In addition, we believe that it will be essential to develop software
combining the MAR method with automatic contouring to reduce the contouring workload
and interobserver variability for head and neck radiotherapy treatment planning.
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