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Abstract: Breast cancer was the most diagnosed cancer around the world in 2020. Screening programs,
based on mammography, aim to achieve early diagnosis which is of extreme importance when it
comes to cancer. There are several flaws associated with mammography, with one of the most
important being tissue overlapping that can result in both lesion masking and fake-lesion appearance.
To overcome this, digital breast tomosynthesis takes images (slices) at different angles that are later
reconstructed into a 3D image. Having in mind that the slices are planar images where tissue
overlapping does not occur, the goal of the work done here was to develop a deep learning model
that could, based on the said slices, classify lesions as benign or malignant. The developed model was
based on the work done by Muduli et. al, with a slight change in the fully connected layers and in the
regularization done. In total, 77 DBT volumes—39 benign and 38 malignant—were available. From
each volume, nine slices were taken, one where the lesion was most visible and four above/below. To
increase the quantity and the variability of the data, common data augmentation techniques (rotation,
translation, mirroring) were applied to the original images three times. Therefore, 2772 images
were used for training. Data augmentation techniques were then applied two more times—one
set used for validation and one set used for testing. Our model achieved, on the testing set, an
accuracy of 93.2% while the values of sensitivity, specificity, precision, F1-score, and Cohen’s kappa
were 92%, 94%, 94%, 94%, and 0.86, respectively. Given these results, the work done here suggests
that the use of single-slice DBT can compare to state-of-the-art studies and gives a hint that with
more data, better augmentation techniques and the use of transfer learning might overcome the use
of mammograms in this type of studies.
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1. Introduction

The prevalence of breast cancer (BC) has been growing for several years and, in 2020,
it became the most commonly diagnosed type of cancer [1]. The nefarious effects of this
disease also represent a significant weight in the cancer paradigm: one in six deaths by
cancer in women is caused by BC [2].

The emergence of breast cancer is related to both genetic predisposition (BRCA1 and
BRCA 2 gene mutations put women at higher risk [3]) and environmental risk factors. Age
and increased breast density are two of the most studied factors that contribute to the
risk of developing this disease [4]. Several studies related dense breast patterns with an
increased risk of BC [5].

One of the best weapons to fight the potential effects of breast cancer is to have
an early diagnosis, which is currently aimed through generalized screening programs.
Most of the worldwide screening programs use mammography as the standard imaging
technique; however, its benefits and harms have been a topic of discussion in the scientific
community [6].
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The probability, in Europe, of a woman of age 50–69 with a biennial screening having
a false positive result is 20%. On the other hand, in the United States of America, 50% of
women will suffer the consequences of a false positive. Nonetheless, getting a false negative
is also a possible outcome of screening with mammography: 28–33% of the cancers detected
in women that undergo screening are interval cancer [6].

Since mammography is a two-dimensional image of the breast—which is
a 3D volume—there will be tissue overlapping [7]. This fact can, consequently, lead to both
tumour masking or false lesions appearance, hence contributing to false positive/negative
rates. One way to surpass the barriers imposed by overlapping tissue is to use digital breast
tomosynthesis (DBT). The fact that the DBT slices are so thin is what guarantees that the
problem with overlapping tissue does not occur in DBT in the same way that it appears in
mammography. Despite the fact that a DBT exam consists of several slice acquisitions, the
dose of radiation is similar to that used in common mammography routines [8].

Nonetheless, it is important to verify how DBT compares with full-field digital mam-
mography (FFDMG) in several other parameters. The use of DBT alongside FFDMG
compared to the use of FFDMG alone increases the cancer detection rate [9]. These results
should be looked upon carefully; even though detection of more cancers, and earlier, might
positively impact women’s lives (less aggressive treatment and better outcomes), it is
important to assure that this increase in detection rate is not related to overdiagnosis [10].
The use of DBT+FFDMG also has positive impacts in recall rates, which results in a higher
specificity compared to the use of FFDMG alone [10].

Therefore, given that DBT alone can overcome the problem of tissue overlapping and
that its use in clinical practice helps to improve the detection rate while decreasing recall
rates, this study focuses on the use of DBT.

Artificial intelligence (AI) has made its way into medical diagnosis and more specifi-
cally into the field of breast cancer imaging. A review of several applications of AI to breast
imaging, done by our team, can be found elsewhere [11]. Given that, the classification of
DBT images into healthy/diseased classes or into benign/malignant lesions can also be
done through AI.

A group of researchers [12] aimed to classify DBT images and whole mammograms
using convolutional neural networks (CNN). In order to do that, they used both well-
established algorithms—AlexNet [13] and ResNet [14]—and self-developed models. Differ-
ent variations of the established models were used depending on the type of classification
being made: 3D models if they wanted to classify DBT, and 2D models if the goal was to
classify mammograms. Moreover, the authors also aimed to compare model performance
for the AlexNet and ResNet with and without transfer learning [15].

The idea of combining the information of 2D mammograms and 3D DBT was pro-
posed by Liang et al. [16]. There, 2D models were used both for mammogram and DBT
classification. In order to do that, the authors did not use the entire volume to make a
classification but rather extracted a “fixed slice” from the volume, which aimed to represent
the observed changes across the different slices. Their model could be divided into a
“backbone” architecture—a fully convolutional network (AlexNet, ResNet, SqueezeNet,
or DenseNet) that served as a feature extractor—and an ensemble of classifiers, each one
composed of a convolutional layer succeeded by two fully connected layers. There were
three classifiers: one that classified the features extracted from mammography images,
another that classified the features driven from DBT, and a third classifier that was focused
on classifying the concatenation of the features extracted from each imaging modality. To
decide the final output, a majority voting algorithm was applied.

The concept of retrieved fixed slices or dynamic images from a DBT volume has
been used in other studies with the rationale of diminishing the computational burden
that is associated with big 3D volumes. Zhang et al. [17] aimed to implement that and
compare it with an alternative methodology where features were extracted from each
slice and a final feature map was obtained by a pooling procedure across the different
feature maps. Besides comparing these methods between themselves, the authors also
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compared both their methodologies with classic AlexNet architectures for 3D volumes.
The authors found that any of the variations of their proposed methodology outperformed
the classical architectures, which achieved 0.63 as the maximum AUC value. With their
approach, they found out that the extraction of features from each slice and further pooling
them into a final feature map produced better results than using the dynamic image; the
maximum AUC values for each approach were 0.854 and 0.792, respectively, both using
AlexNet architectures.

Furthermore, there are several different researches that aim to differentiate benign
and malignant lesions. The work by Muduli et al. [18] that served as motivation for
this research, aimed to classify lesions present in mammograms and ultrasound. To do
that, the authors applied classic data augmentation techniques (translation, rotation, etc.)
and used a CNN model with five learnable layers. Another group of researchers [19], to
avoid the inflexible receptive field of 3D convolutions for DBT classification, developed
a hybrid model that was able to extract hierarchical feature representations using 2D
convolution in a slice-by-slice approach. Moreover, a self-attention module was used to
learn structural representations of benign and malignant lesions. The idea of combining 2D
and 3D convolution was also pursued by Xiao et al. [20] for slice feature extraction and
lesion structural information, respectively. While many works define a region of interest
to analyse the lesions, some authors [21] aim to use entire DBT slices for identifying the
presence of lesions through the use of self-built CNN.

As it can be seen, there are several studies that aim to use the advantages given by
DBT in relation to mammography, while maintaining the 2D convolution approach. These
approaches allow the authors to overcome the problem of overlapping tissue, leading to
lesion masking or fake lesion creation, while maintaining the low computational burden
that is associated with 2D CNN architectures.

Given that, the aim of this work was to develop a CNN model to differentiate malig-
nant lesions from benign lesions, using single DBT slices.

2. Materials and Methods
2.1. Dataset

The data used in this study came from the Breast Cancer Screening-Digital Breast
Tomosynthesis (BCS-DBT) dataset, publicly available in the Cancer Imaging Archive [22].
This dataset contains DBT images from healthy, actionable, benign, and malignant cases.
The cases were collected at Duke Health [23] System from 2014 to 2018 and were made
available in anonymized DICOM format. The number of patients present in this dataset
goes up to almost 14,000. Each case was annotated by expert radiologists, as was the DBT
slice where the lesion is most visible. The patient IDs with the associated class, the available
views, and the lesion slice information are also available at the referred website. The
available data consist of three sets of images: training, validation, and testing. However,
only the labels for the training set are available, so all of the data used in this study were
derived from the training set. This set is composed of nearly 22,000 scans but not all of
them were used. The rationale for the dataset constructed and used here was a balance
amongst the different classes used, meaning that it was aimed to have approximately the
same number of benign and malignant cases. Given that, the assembly of the dataset was
limited by the class with the fewest observations. There were 39 available volumes of
malignant images and, for that reason, 39 volumes from benign cases were also retrieved,
making a total of 78 volumes considered for this work. As already mentioned, the goal
was to make a single-slice classification and, for that reason, the single slice chosen was the
one where the lesion was most visible. Thus, each volume contributed with a 2D slice that
served to either train or test the developed model.

2.2. Image Preparation

Each of the 2D slices used in this study had to undergo a preprocessing methodology
before being fed to the model. First, and following the information present in the dataset,
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all the images were segmented in order to retrieve small regions of interest (ROIs) that
contained the lesions. For each DBT volume, experts annotated the slice where the lesion
was most visible. Moreover, a small region that encapsulated the lesion was also defined.
This information was used to manually extract the ROIs from each slice. After that, in
order to improve image quality to ensure that the model was not misled, image adjustment
techniques were applied to all ROIs. This technique aimed to improve the contrast of
the image by saturating both the bottom and superior 1% of intensity values. Finally, the
extracted regions of interest were normalized in terms of pixel intensity, so that the model
did not learn by mistake random pixel intensity patterns that could be present in the images.
A “min-max” normalization was applied (Equation (1)), which resulted in an image with
pixel values ranging from 0 to 1. In the equation, I is the original image, min(I) is the
overall minimum pixel intensity of image I, max(I) is the overall maximum pixel intensity
of image I, and Inormalized is the normalized image.

Inormalized =
I − min(I)

max(I)− min(I)
(1)

After that, each pixel value was multiplied by a scaling factor of 255. Given that each
volume contributed with an image, 78 slices were available, which was not a substantial
number of images for the proposed task. Actually, one of the malignant volumes was
compromised so only 77 slices could be used. In order to overcome this problem, common
data augmentation techniques were designed to increase both the variability and the
number of available images. First, for each volume, instead of taking just the lesion slice,
four slices above and four slices below the reference one were also extracted. The fact
that the slices were retrieved from a relatively small neighbourhood of the lesion slice
allowed us to guarantee that the lesion was still clearly visible, while still showing a slightly
different breast configuration. On the other hand, these slices shared a lot of characteristics
with the original lesion slice so the simple addition of them to the data pool could bias
classification. With the purpose of surpassing this obstacle, an augmentation routine was
applied three times to each of the slices. This routine consisted of randomly applying a
transformation or a combination of transformations to each of the slices. The possible
transformations defined were: a rotation ranging from −50◦ to 50◦; a vertical translation
ranging from 1 pixel to 5% of the vertical size of the image; a horizontal translation ranging
from 1 pixel to 5% of the horizontal size of the image; a horizontal reflection; and a vertical
reflection. The limits of the rotation and translation transformations were imposed with the
rationale of guaranteeing that while the variation of the images was increased, the lesion
remained within the image. Given the wide range of possibilities for the rotation transform
and for both translations, there was great confidence that besides augmenting the number
of available images, there was also considerable variability in the data used. This data
augmentation procedure was done four times to each image, hence increasing four times
the number of available 2D images. The original images and three of the four augmented
images groups were used for training, while one of the augmented image groups was
used for validation. Before feeding the images to the model, all of them were resized to
dimensions of 224 × 224. Given that, 2772 (77 volumes × 9 slices × 3 augmentations + 77
volumes × 9 original slices) images were used for training and 693 images (77 volumes ×
9 slices × 1 augmentation) were used for validation purposes. In order to test the model,
the data augmentation routine was applied again, this time to the validation set, and
predictions were made in this new augmented set of 693 images.

Figure 1 depicts the data selection and augmentation procedure for each DBT volume.
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Figure 1. Data selection and augmentation—image contrast modified just for illustration purposes.
From each original volume, the most representative slice and the four slices above and below were
extracted. The rotation was randomly preformed in a range from −50◦ to 50◦, the translation could
be horizontal or vertical, ranging from 1 pixel to 5% of the overall image size, and the reflection could
either be vertical or horizontal.

2.3. The Algorithm

As it was discussed during the introduction section, CNNs are widely used for the
classification of medical imaging and, in particular, of DBT images. For that reason, a
CNN model, inspired by the work of Muduli et al. [18], was developed from scratch. The
created model was composed of five different layers: a convolution layer, an activation
layer, a pooling layer, a fully connected layer, and a batch normalization layer. The con-
volutional layer is the base foundation of CNNs. These layers can be considered feature
extractors that combine both linear operations (convolution) and nonlinear calculations
(activation function). The convolution operation [24] is performed between a random array
of numbers—kernel—and the input. Thus, given that the aim is to extract characteristics
from the input, it can be said that the use of different kernels results in different feature
extractors [25]. The result of this operation is, therefore, a feature map. When applying a
convolution layer, one needs to predefine three convolution parameters: the kernel size,
the number of filters, and the stride. The first one defines how much of the input the kernel
sees at each convolution step; the second one has a self-explanatory name and defines the
feature map depth; the stride, on the other hand, defines the space between two successive
kernel positions during convolution. Moreover, it is known that the usual convolution
operation results in an output feature map with a reduced size in comparison to the input.
This is a problem if one wants to stack several sequential convolution layers—the size could
become too small. Padding a neighbourhood of the image with pixels of intensity zero
allows one to perform convolution operations while obtaining an output with the same
size as the input.

In order to increase the relevance of the learned features, a nonlinear operation is
applied to the feature map—an activation function. There are several activation functions
but one of the most used is the rectified linear unit (ReLU) which takes in the input and
outputs the maximum between the input and zero.
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The pooling layer aims to reduce the dimensionality of the learnable parameters by
summarizing the features present in a specific region of the feature map. This strategy,
besides introducing the capability of learning invariant features, is also important for
reducing the computational cost associated with a high number of parameters. For that
reason, training time can also be reduced using pooling strategies [25].

A batch normalization layer, as the name implies, normalizes its input while aiming to
maintain the activation values as stable as possible, so that it not only speeds up training
but also provides good results. In addition, this layer also helps to avoid problems with
overfitting [18].

Finally, fully connected layers usually receive as input the feature map derived from
the last layer and aim to map this input to the last output of the network. It is possible to use
several fully connected stacked layers and since in these layers, every input is connected
to every output, the number of learning parameters can be highly increased. The output
of the last fully connected layer is given as the input to the last activation function layer,
where the chosen activation function needs to match the task that it is being aimed at; a
softmax function is usually used.

Our model was inspired by the one developed by Muduli et al., so it was composed
of four convolution–batch normalization–ReLU–max pooling blocks. The max pooling
parameters were always the same with a (2,2) pooling size and a stride of 2, and a padding
routine that maintained the dimensions of the input in the output. On the other hand, the
convolution layers increased the number of filters as the network deepened: 16, 32, 64, and
128 filters, respectively. The kernel size, however, decreased along the network: 9 × 9, 7 ×
7, 5 × 5, and 3 × 3, respectively. After these blocks, two fully connected layers finalized
the network, one with 128 units, and another one with 2—the number of classes of our
dataset. The outputs of this last layer were mapped to a softmax layer. For learning, the
Adam Optimizer [26] was used, with an initial learning rate of 0.001, the loss metric used
was the sparse categorical cross-entropy, and the evaluation metric during training was the
accuracy. As said, at each epoch, the model was evaluated using the previously created
validation set; the training procedure continued until a maximum of 500 epochs unless the
performance of the model achieved a baseline accuracy value (0.905) that did not further
increase. In that case, the model stopped training before getting to the 500 epochs. In order
to avoid overfitting, L2 (factor = 0.001) and dropout (factor = 0.2) regularizations were used.
Between the fully connected layers the dropout factor was 0.5. Figure 2 generally depicts
our model, while Table 1 describes each layer in the model.

Figure 2. Outline of the developed deep learning algorithm—composed by four convolution–batch
normalization–ReLU–max pooling blocks, followed by two fully connected layers and a softmax
layer.
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Table 1. Layer-by-layer description for the developed model. As the model deepened, the number
of filter increased (16-32-64-128) and the kernel size diminished (9-7-5-3). Max pooling had a stride
and kernel size of 2 across the network. The numbers of units in the fully connected layers were 128
and 2.

Layer #Filters (Conv)
/Units (FC) Kernel Size Stride Padding

Convolution—1 16 9 1 None
Batch

Normalization - - - -

ReLU - - - -
Max Pooling - 2 2 Same

Convolution—2 32 7 1 None
Batch

Normalization - - - -

ReLU - - - -
Max Pooling - 2 2 Same

Convolution—3 64 5 1 None
Batch

Normalization - - - -

ReLU - - - -
Max Pooling - 2 2 Same

Convolution—4 128 3 - None
Batch

Normalization - - - -

ReLU - - - -
Max Pooling - 2 2 Same

Fully Connected 128 - - -
Fully Connected 2 - - -

Softmax - - - -

3. Results

Our methodology started with the preparation of the images before feeding them to
the model. First, in Figure 3, the overall results of the image adjustment in the entire image
are shown, so that the effect of this methodology is fully noticed. As it can be perceived, the
lesion becomes more visible, which is of extreme importance in the task of differentiating
benign and malignant lesions.

Figure 3. Results of the image adjustment procedure. On the left, the original image is shown with a
bounding box encapsulating the lesion. On the right, the same can be seen but for the image after
adjusting. It can be perceived how the lesion becomes more visible.
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However, as said in the methodology section, rather than using the entire image of the
breast, which could be a problem if the image had more than one lesion, ROIs were defined
in a way that encompassed the lesion within their borders. Figure 4 shows two examples
of defined ROIs, one for each of the considered classes.

Figure 4. ROI definition to encapsulate malignant (on the left) and benign (on the right) lesions.

After the image preparation, and given the sparse number of available images to train
the model, data augmentation techniques that consisted of random rotation, translations,
and mirroring were performed. Figure 5 compares the two previously shown original ROIs
with a version of the said images after a random transformation.

Figure 5. Data augmentation procedure applied to the previously seen ROIs. Random transforma-
tions that include rotation and/or translation and/or mirroring were applied to each ROI. As it can
be perceived, the images are substantially different from what can be observed in Figure 4, while still
maintaining the lesion within the image limits.

As it can be perceived, the images represent a clear distortion of the original images,
while maintaining the lesions within the limits of the ROI. This fact means that the data
augmentation technique used allowed us not only to increase the number and the variability
of images available for training, but also to keep the lesions inside the defined ROI, hence
not compromising the ground-truth labels given to the images. Table 2 specifies the
number of images used for training, validation, and testing, and their division into the
respective classes.
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Table 2. Data division. Number of planar images used for training, validation, and testing.

Training Validation Testing

Benign 1404 351 351

Malignant 1368 342 342

The model was evaluated through classical performance metrics: accuracy, sensitivity,
specificity, precision, and F1 score. Equations (2)–(6) show how to compute each one of
these metrics. In order to compute them, the confusion matrix of both the validation set and
the testing set is presented (Figures 6 and 7). For the validation set, used to tune the model,
the confusion matrix is seen in Figure 6. With those values, it was possible to compute the
accuracy (90.7%) achieved after 494 epochs. Sensitivity, specificity, precision, and F1-score
values were 92%, 89%, 89%, and 0.89 Regarding the testing set, the accuracy value was
93.2%. In terms of the previously mentioned metrics, their values in the testing set were
92%, 94%, 94%, and 0.94, respectively.

Accuracy =
Correct Cases

All Cases
(2)

Sensitivity =
True Positive

True Positive + False Negative
(3)

Speci f icity =
True Negative

True Negative + False Positive
(4)

Precision =
True Positive

True Positive + False Positive
(5)

F1 Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(6)

Figure 6. Confusion matrix obtained with the validation set. From the total 693 instances, the model
was capable of correctly classify 629 of them. It can also be noted that approximately 92% of the
benign lesions were correctly classified, while for the malignant lesions, the same happened for
approximately 89% of the instances.
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Figure 7. Confusion matrix obtained with the test set. From the total 693 instances, the model
was capable of correctly classify 646 of them. It can also be noted that approximately 92% of the
benign lesions were correctly classified, while for the malignant lesions, the same happened for
approximately 94% of them.

4. Discussion

The goal of our study was to develop a CNN model that was able to differentiate
malignant from benign lesions. In order to do that, ROIs that encapsulated lesions from the
two classes were defined. These ROIs were then passed through an image enhancement
algorithm that improved the contrast of the images with the goal of giving more visibility
to the lesions, which was important in the context of differentiating the nature of the said
lesions. As it was seen in the results section, the goal was achieved, as when comparing
the original image of the breast with the image after the adjustment, the improvement of
the image contrast was patent, specifically concerning the highlight of the lesions and their
borders. After the ROI definition and image adjustment, data augmentation methodologies
were employed with the aim of improving both the number of instances for model training
and their variability. To do that, to each image in the dataset was applied a random
transformation (or transformations) that consisted of rotations and/or translations and/or
mirroring. Given the wide range of possible transformations and looking at the results
shown in Figure 5, it is safe to say that the goal was accomplished. While the number of
images was highly increased, having three variations for each original image on the dataset
being used for training, the variability was also increased in a way that allowed the lesions
to remain within the margins of the defined ROI. Having achieved the proposed goals
in terms of image preparation, it was possible to look correctly at the results obtained in
terms of training, validation, and testing of the proposed model. This model was trained
from scratch, so, opposite to several of the papers reviewed in the introduction section,
no transfer learning methodology was followed. The main metric used to assess model
performance during training/validation was accuracy because it was the metric used by
Muduli et al., a work close to what was aimed at here, with a very similar network. That
being said, the results of the several metrics calculated both for the validation and the
testing set were very positive and gave confidence on the robustness of the developed
model. From the ten computed metrics, eight of them were above 90% and the remaining
ones were not lower than 89%, which was extremely good. However, a good accuracy value
by itself does not guarantee a good model. A model that arbitrarily defines all instances
as zero can achieve a good accuracy in a scenario where only negative data are given to
it. It was not the case in this study as the class balance was taken into account during
dataset construction. The remaining metrics gave a higher sense of the robustness of the
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model; however, it would be interesting to have a metric that gives a clear indication of
how much the predictions of the model agreed with the ground-truth labels. With that in
mind, Cohen’s Kappa coefficient of agreement, that translates into a number of how much
the agreement between two raters or readers is, was calculated. In the case of this paper,
the “raters” were the ground-truth labels and the predictions made by the model. The
calculation of this coefficient was done using Equation (7), where p0 is the observational
probability of agreement, and where pe is the expected probability of agreement [27].
Table 3 shows how to interpret this factor [27].

kappa =
po − pe

1 − pe
(7)

Table 3. Interpretation of kappa coefficient [27].

Coefficient Value Strength of Agreement

<0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

The results for the validation and testing sets were of approximately 0.82 and 0.86,
respectively, which according to Table 3 indicated an almost perfect agreement. All these
results combined gave us confidence in the model that was able to correctly differentiate
benign and malignant images from single slices of DBT images.

Most of the works reviewed in the introduction section used AUC as an evaluation
metric, so a comparison between these studies and the work developed here is not fair.
However, when looking at the obtained results, it is possible to say that our model achieved
a good discriminatory capacity, which was proven by the F1 score and the kappa coefficient
value. Thus, in that sense, it compared to most of the state-of-the-art papers reviewed in
the introduction. For example, in the work presented in [12], it was found that the AlexNet
models with transfer learning were the ones that presented better performance either for
mammography (AUC = 0.7274) or DBT (AUC = 0.6632). As it can be perceived, a better
performance was obtained with mammography than with DBT, which contradicted what
was expected in theory; the authors pointed out that this may have been due to the fact
the DBT volume was not entirely used and some of the discarded slices might have had
relevant information. Our work, besides achieving a very good performance, tackled some
of the problems that that research faced. On one hand, it used information present in the
DBT volume from the most relevant slices and on the other hand, we used a 2D image that
avoided the tissue overlapping present in mammography.

The authors of [16] compared the performance of their model with a classic AlexNet
model but also compared, within their model, the use of a single imaging modality with
the use of both modalities (FFDM + DBT). Their model, despite the use of a single or both
modalities, outperformed 2D and 3D AlexNet. On the other hand, the use of an ensemble of
imaging modalities outperformed the use of just DBT (AUCs of 0.97 and 0.89, respectively).
A fair comparison between the work by these authors and the work done here is with
their model using only DBT: for the four different backbone architectures, the accuracy
values were of 81% (AlexNet), 79% (ResNet), 85% (DenseNet), and 79% (SqueezeNet). Our
accuracy value on the testing set was 93.2%, which outperformed any of the models (the
same happened for their models trained only on mammography). As for the F1-scores
obtained by the authors, they ranged from 78 to 85%, which was lower than the value
obtained in this work, 94%.

Zhang et al. [17] found that any of the variations of their proposed methodology (either
late fusion of features, or a dynamic image) outperformed the classical architectures (3D
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convolution), which achieved 0.66 as the maximum AUC value. With their approach, they
found out that the extraction of features from each slice and further pooling them into a final
feature map produced better results than using the dynamic image, with maximum AUC
values for each approach of 0.854 and 0.792, respectively, both using AlexNet architectures.
Given the discrepancy in the metrics used, a fair comparison could not be made between
their work and ours. However, their conclusions were interesting in that it showed the
extraction of features from single slices not only outperformed the use of dynamic image
but also classical 3D convolution approaches for DBT volumes.

On the other hand, a fairer comparison could be made between the developed work
and the one presented by Muduli et al. These authors developed a model that could
differentiate malignant and benign lesions on mammograms and ultrasound images. The
architecture of the model was very similar to the one used here, differing in the number of
fully connected layers and in the parameters (and type) of regularization. The comparison
between the work done here and the one developed by Muduli’s team is important because
it allows us to understand how this novel way of learning breast characteristics through a
single slice of DBT can compare to the use of mammograms.

The three datasets of mammograms used by the authors achieved a performance, in
terms of accuracy, of 96.55%, 90.68%, and 91.28%, on each of the three mammography
datasets used. Considering our testing set, the model developed in this work reached an
accuracy of 93%, which outperformed the model of Muduli in two of the three datasets
used. In terms of sensitivity, our model was outperformed in two of the datasets used
and was comparable to the other (92% vs. 97.28%, 92.72%, 99.43%). Finally, in terms of
specificity, it is our model that outperformed Muduli’s work two out of three times (94% vs.
95.92%, 88.21%, 83.13%). As a result, overall, the model developed here was comparable
and outperformed the use of mammograms, which indicates the potential that the use of
single-slice DBT has in the field of AI applied to breast imaging.

Getting back to the works presented in the introduction section, the work proposed
by Sun et al. [19] which consisted of an hybrid method with both 2D and 3D convolutions
achieved an accuracy of nearly 80% while their F1 score was 83.54%. Both the results of
this methodology, which used 2D convolutions for hierarchical feature representation and
3D convolutions for structural lesion information extraction, were outperformed by our
methodology. A similar comparison could be made with the work of Xiao et al. [20], which
had the same goal as the work of Sun et al. There, the best accuracy result achieved was
82%, while the F1 score obtained was 85.71%. As it happened with other research works,
it was not fair to make a comparison between our work and the one done by [21] since
different metrics were used; however, this study showed that the use of single DBT slices
could yield very promising results.

However, it is important to analyse some flaws of the used methodology in order to
improve future work or even to make it suitable for a real-life application. Originally, the
dataset had 78 different 3D images before any strategy to augment the data. On the other
hand, the datasets used by Muduli’s team had 326, 1500, and 410 different images. This
discrepancy in original data, if overcome by the single-slice DBT annotated images, might
result in outperforming the classical research based on the use of mammograms.

On the other hand, the use of this classic data augmentation should also be looked
upon. While random rotations, translations, noise adding, or contrast variation help
to increase variability and the number of instances used for training, it is important to
understand, or to think about, how helpful they might be from the clinical point of view.
Two transformed images from the same women are in fact different and surely contribute
to the increase of variability in the dataset. However, these images are much closer to one
another in terms of breast patterns than what happens in clinical practice for two images
from different women. While the use of these augmentation techniques is important for
the development of novel and better diagnostic models, different methods for increasing
the quantity and the variability of data that are closer to real-world scenarios should be
followed, such as the use of GANs [28].
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Finally, there are several studies [12] that show how much transfer learning can help
to improve the performance of the developed models while reducing the computational
burden associated with training models. Here, we aimed to train the model completely
from scratch, which not only resulted in an increased training time but might also negatively
affect the performance of the model.

5. Conclusions

The work done throughout this study aimed to develop a CNN model that could
classify breast medical images into two categories: malignant and benign lesions. While
the used algorithm was inspired by another research work [18], we introduced the novel
use of single-slice DBT for the classification. After extracting ROIs from the images on
lesion locations and applying preprocessing methodologies to improve image quality, data
augmentation techniques were performed to increase the size of the dataset while also
increasing its variability. The results obtained in the several computed metrics showed
that the performance of the developed model compared with state-of-the-art research and
even overcame it in some cases. This fact suggests that the use of single slice DBT—which
overcomes the problem with overlapping tissue present in mammograms—could play a
major role once some of the identified flaws of this work are tackled. The information
present in single slices is also present in the 3D volume that constitutes DBT. The rationale
behind the use of a single-slice approach was based on a literary review where most of
the architectures that used 2D convolutions outperformed the models that used a 3D
approach. Therefore, it was with that in mind and considering the computational burden
of developing from scratch a model using 3D convolution, that the single-slice approach
was chosen in this work. While the reviewed works were either based on dynamic images
or latent representations, we aimed to look for slices where the lesion was visible because,
in one way, it had the planar characteristics of mammograms (allowing the use of 2D
convolutions) and, on the other hand, the slice was so thin that it did not present the
problem of overlapping tissue present in mammograms. This fact allowed us to diminish
the possibilities of either lesion masking or the appearance of false positives, allowing the
model to have a better grip on the proposed task. With that in mind, the following steps
should be taken in future work: developing more real-life data augmentation techniques,
inspired by what is seen in clinical practice in terms of breast configuration variability,
and classifying whole mammograms/DBT instead of just one region of interest since it
may help to find lesions that were overlooked. Furthermore, there is a great potential in
transfer learning approaches, not only because it diminishes the computational burden
of training a model (compared to a “from scratch approach“), but because it may also
allow one to increase the performance of the developed models. The work developed in
this paper served the purpose of showing how promising the use of single slices is for the
differentiation between benign and malignant lesions. With that being established, further
work should be focused on improving the performance of the models that are based on this
approach. Transfer learning can play a major role in this task.
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