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Abstract: Radiologists assess the results of mammography, the key screening tool for the detection of
breast cancer, to determine the presence of malignancy. They, routinely, compare recent and prior
mammographic views to identify changes between the screenings. In case a new lesion appears in
a mammogram, or a region is changing rapidly, it is more likely to be suspicious, compared to a
lesion that remains unchanged and it is usually benign. However, visual evaluation of mammograms
is challenging even for expert radiologists. For this reason, various Computer-Aided Diagnosis
(CAD) algorithms are being developed to assist in the diagnosis of abnormal breast findings using
mammograms. Most of the current CAD systems do so using only the most recent mammogram.
This paper provides a review of the development of methods to emulate the radiological approach
and perform automatic segmentation and/or classification of breast abnormalities using sequential
mammogram pairs. It begins with demonstrating the importance of utilizing prior views in mammog-
raphy, through the review of studies where the performance of expert and less-trained radiologists
was compared. Following, image registration techniques and their application to mammography are
presented. Subsequently, studies that implemented temporal analysis or subtraction of temporally
sequential mammograms are summarized. Finally, a description of the open access mammography
datasets is provided. This comprehensive review can serve as a thorough introduction to the use
of prior information in breast cancer CAD systems but also provides indicative directions to guide
future applications.

Keywords: computer-aided detection; breast cancer; mammography; sequential mammograms;
review; machine learning

1. Introduction

Cancer, even after decades of research, remains a significant cause of morbidity and
mortality worldwide. According to the World Health Organization (WHO) and the Interna-
tional Agency for Research on Cancer, there will be approximately 25 million new cancer
cases and 13 million new cancer deaths by 2030. Breast cancer accounts for 11% of those
cases (∼1 in 10 of all new cancer cases worldwide) and 24% of all female cancers. While the
incidence rate of breast cancer is constantly increasing by 0.5% every year, the mortality has
dropped by approximately 40% since the 1980s, due to the introduction of mammographic
screening [1].

Mammography, performed using low-energy X-rays, is currently the state-of-the-
art method for breast cancer screening [2]. Two standard views of the breast are taken
during mammography: the cranio-caudal (CC) view, taken from the top down; and the
medio-lateral oblique (MLO) view, taken from the side and at an angle [3]. After the
mammograms are acquired, the breast density is determined by measuring the ratio of
non-dense (radiolucent) to dense (radiopaque) tissue. According to the Breast Imaging
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Reporting and Data System (BI-RADS) there are four density levels: (a) almost entirely
fatty; (b) scattered areas of fibroglandular density; (c) heterogeneously dense, which may
obscure small masses; and (d) extremely dense (Figure 1). The sensitivity of mammography
decreases by increasing BI-RADS breast density. Thus, the denser the breast, the harder it is
to assess the images, resulting in an increased risk of breast cancer remaining undetected [4].

Figure 1. Examples of the four levels of density in mammograms, as defined by the BI-RADS:
(A) a—almost entirely fatty; (B) b—scattered areas of fibroglandular density; (C) c—heterogeneously
dense; (D) d—extremely dense.

Various abnormalities can be identified in a mammogram, including asymmetries
between the breasts, distortion of the normal architecture, and appearance of micro-
calcifications (MCs) and masses [4]. These abnormalities can be divided into two major
categories depending on their severity, i.e., benign or malignant. Benign lesions are usually
harmless and do not require follow-up with biopsy. However, under circumstances not
well understood, they can spread to the surrounding tissues or harm nearby vital struc-
tures. Conversely, malignant abnormalities are dangerous, unstable, and require immediate
follow-up, since they are associated with a very high probability of breast cancer [5]. MCs,
which are small calcium deposits, are a common mammographic finding, and they typically
appear as bright spots due to the high X-ray attenuation coefficient of calcium [6]. Most
MCs are benign and do not require further assessment. Benign MCs are usually larger
in size, with rounder and homogeneous shapes, and fewer in number. However, micro-
calcification clusters (MCCs) are associated with precancerous cells or early breast cancer.
Other characteristics of malignant MCCs include irregular shapes and sizes. A breast mass
can be a localized swelling, protuberance, or lump, appearing as a dense region in the
mammogram. Masses can be radiologically classified as benign or suspicious, depending
on various parameters such as size, shape, and texture [7,8]. Benign masses are rounder,
with well-defined boundaries compared to suspicious masses which have spiculated, rough
and blurry boundaries [6]. When a suspicious mass is identified, its severity is confirmed
by biopsy [9].

After the mammographic images are collected, two expert radiologists, along with
a third if consensus is not reached, assess the images to determine whether there are any
indications of malignancy. Radiologists assign one of seven assessment categories to each
mammographic study: 0, needs additional imaging evaluation and/or prior mammograms
for comparison; 1, negative; 2, benign; 3, probably benign; 4, suspicious for malignancy
(4A, low; 4B, moderate; and 4C, high suspicion for malignancy); 5, highly suggestive of
malignancy; and 6, known biopsy-proven malignancy [10]. However, since the clinicians
identify signs of malignancy by visually inspecting the mammograms, misclassifications
and false-positive diagnoses are inevitable. Normal breast perturbations or benign lesions,
can be falsely identified as breast cancer since they can, occasionally, mimic malignant
abnormalities [11]. In addition, breast masses exhibit wide variations in size, shape, and
contrast and they are usually surrounded and/or enclosed by other structures, such as
muscle, blood vessels, and normal breast tissue [8]. Moreover, malignant abnormalities can
be missed by the radiologists due to subtle features that are difficult to perceive or due to
the high density of the normal breast tissue, which reduces the visibility of the mass [12].
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Studies in the literature show that the error rate in the detection of malignant masses by
radiologists is approximately 10% to 30% [2].

To overcome some of the challenges in the assessment of mammography, computer-
aided diagnosis (CAD) systems are being developed for the automated detection of breast
abnormalities [7]. The goal of these systems is the automatic identification of subtle
anomalies that might otherwise be missed by radiologists [13]. However, this task is very
challenging since some abnormalities can be small (0.1–1 mm) and have various shapes and
distributions, as well as low contrast, compared to normal breast tissue. Another critical
challenge is the classification of breast abnormalities as benign or malignant, which often
leads to a significant number of false positives (FPs) and limits the clinical applicability of
CAD systems [14].

Automated diagnosis of breast cancer, based on only the most recent mammogram of a
patient, usually follows three basic steps: pre-processing (using various filtering techniques);
detection of the abnormality (including accurate segmentation); and classification of the
detected region as normal, benign, suspicious, or malignant, depending on the study. The
highest accuracy in the detection of masses with feature-based machine learning (ML)
was 99.5%, achieved by Mohanty et al. who used 1500 digitized images to prove the
effectiveness of their algorithm [15]. With deep learning (DL), Al-masni et al. reached
99.7% accuracy, using 600 digitized images and a convolutional neural network (CNN),
but cross-validating their results only per image and not per patient [16]. Al-antari et
al. achieved 97.5% accuracy in the classification of benign and malignant breast masses,
using 600 digitized images, and cross-validation per patient, which is more applicable to
real-world applications [17]. Despite their high accuracy, these systems are still far from
clinical application. There are many reasons that can explain this paradox. These studies
have been performed on different datasets, using different processing, machine learning,
and validation schemes. This makes it particularly challenging to compare the studies but
also to combine their results to obtain a universally applicable clinical system. Most of
the open-access datasets contain outdated images, limited ground-truth annotations (i.e.,
bounding boxes), or they are not completely open access, requiring approval to access.
Thus, various fragmented datasets with different properties and imbalanced classes are
used. Furthermore, the unexplainable results of most ML models deters most clinicians
from actively including such systems in their practice.

To improve their effectiveness, radiologists routinely compare the recent and prior
mammograms of a patient to more effectively identify changes between screenings. Newly
developed abnormalities, or regions rapidly changing between screenings, are more likely to
be suspicious, compared to regions that remain unchanged and they are usually benign [18].
Prior information, when available, can provide useful insights to the clinicians, which allows
them to identify possible signs of malignancy earlier and with more confidence [19]. Thus, it
is reasonable to assume that the next generation of CAD systems, which can consider both the
prior and recent mammograms of a patient, would lead to more accurate diagnoses.

This paper reviews the literature on the automated segmentation and/or classifica-
tion of breast abnormalities from sequential mammograms, using feature-based ML and
DL techniques. The first part is devoted to the importance of including prior views in
the interpretation of mammography, with studies that compare the performance of ra-
diologists with and without the use of prior mammographic images. Following, image
registration techniques, which are of critical importance in the comparison of sequential
mammograms, are summarized. The following section is devoted to temporal analysis of
sequential mammograms for the diagnosis of breast MCs and masses. Subsequently, the im-
plementation of detection and classification of breast abnormalities using the subtraction of
temporally sequential mammograms is described. Finally, a description of the open access
mammography datasets is provided. This review concludes with an overall discussion.
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2. Review Methodology

The bibliographic literature was thoroughly searched to identify all the relevant
studies. This search was limited to articles published between 2000 and 2022, written
in English. Articles that included sequential data from screening methods other than
mammography were excluded. Articles were also excluded if any important information
regarding the algorithm’s performance was missing, making the study nonreproducible.
Several review articles related to the diagnosis of breast cancer using mammograms appear
in the literature [2,6,7,20–23]. However, unlike this review, none of these articles is devoted
to the analysis of sequential mammograms for the detection and classification of breast
cancer.

After the selection process was completed, the articles were split into two major groups,
based on the approach that was used to exploit the sequential information: (a) temporal
analysis, which uses both the current and prior images to extract relevant features and,
then, combines them, and (b) temporal subtraction, where the prior image is subtracted
from the recent one before further analysis. Subsequently, the articles in each group were
further divided into two subcategories based on the breast abnormality under investigation:
(a) MCs or (b) masses. Finally, each subcategory was further divided according to the
classification approach: (a) not employing ML, (b) feature-based ML, or (c) DL.

Overall, there is no straightforward way to directly compare all the studies or to
definitely conclude which is the most successful algorithm. The main reason is that each
study is using different datasets, processing techniques, validation methods, evaluation
metrics, etc. Thus, all their methodological differences must be considered when comparing
results. In this review, the area under the receiver operating characteristic curve (AUC) is
often used as a metric of performance to compare the various algorithms. The AUC shows
the efficacy of the classification model in separating the classes; thus, the higher the AUC,
the more successful the model.

3. Importance of Prior Views

Comparison between recent and prior mammographic views is a practice that has
been employed by radiologists since the establishment of mammography as the standard
screening procedure for breast cancer. During the visual inspection of images, the evolution
of disease can be better assessed using sequential information, which makes any change
easier to visualize. Comparisons between the images increase the effectiveness of the
diagnosis and reduce the recall rates (20–50% of women recalled are found to have a
malignancy [24]).

Gelig et al. evaluated the effect of the availability of prior mammograms on the
performance of the radiologists during mammographic screening [25]. Three experienced
radiologists assessed 150 sets of sequential mammograms twice: once without seeing the
prior view (using only the most recent mammogram) and once using both the recent and
prior mammographic views. The radiologists detected an average of 40 cancers with 87%
specificity using only the most recent mammograms, as opposed to 37 cancers with 96%
specificity when using both sequential mammograms. The increase in specificity was
statistically significant, proving that the addition of the prior views reduced the recall rate.
Five years later, Varela et al. also verified the importance of including prior mammograms
for the classification of benign and malignant breast masses [26]. In that study, five senior
and one resident radiologist evaluated 198 sequential mammograms. The mammograms
were evaluated twice: once without and once with the prior images. The use of prior
views increased the classification performance from 0.76 to 0.8 AUC, which was statistically
significant.

Hadjiiski et al. compared the performance of eight accredited radiologists and two
breast imaging fellows, with and without the use of a, so-called, interval change CAD
system [27]. The software used information from prior and recent mammograms to estimate
a malignancy rating. A total of 90 pairs of sequential mammograms were gathered, with
47 malignant and 43 benign masses. The introduction of the interval change analysis
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CAD algorithm increased the AUC from 0.83 to 0.87, proving that the analysis of prior
mammograms could significantly improve the performance of the radiological assessment.
Timp et al. compared the effect of a single independent reading, with a CAD system with
independent double readings, for the diagnosis of breast abnormalities on 198 cases of
sequential mammograms (Figure 2) [24]. Six radiologists participated in the study and
three reading scenarios were considered: single reading, single reading with CAD, and
independent double readings. The CAD algorithms, which included temporal information,
statistically improved the diagnostic performance (0.83 vs. 0.81 AUC).

Figure 2. Example of three consecutive mammograms of the same woman. The last mammogram
was from the time of referral. The other mammograms were obtained at previous screening rounds
(reprint with permission from [24]).

4. Registration

For the development of algorithms that can effectively compare sequential mammo-
gram pairs, accurate matching between the prior and recent images, with image registration,
is of critical importance. Image registration can be defined as the process of aligning two
images, where one image is the reference and remains fixed and the other is the registered
or moving image. The main objective is to find the optimal transformation that aligns
the points of interest in the moving image to better match the fixed image. However,
registration cannot be easily applied to mammograms due to the significant variations
of the breast tissue between screenings, variations in breast compression, and operating
factors at the time of imaging [28]. Several algorithms have been developed to address the
challenges of image registration, with some approaches specifically formulated for medical
images [29–31] and mammograms [32].

Overall, registration algorithms can be divided into “global” or “local” based on the
extent of the image information used. An algorithm is classified as global if all the pixels
presented in an image are used. Rigid and Affine transformations (translation, rotation,
shearing) are considered global registration techniques, whereas all pixels undergo the same
transformation [29]. On the other hand, an algorithm is classified as local if only some of the
pixels included in a region of interest (ROI) are used at a time. Local methods, also known
as deformable methods, operate on local similarities and positions and include B-spline
free-form deformations [33], polyrigid transformation [34] and the Demons algorithm [35].
Registration techniques also vary with regard to the features used. Techniques based
on pixel intensity are called “intensity-based”, whereas the geometrical structures of the
images are known as “feature-based”. Usually, intensity-based methods are global, and
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feature-based methods are local. Although these methods are often applied independently,
combining two or more approaches can improve the performance in terms of accuracy and
robustness [31]. The combination of global and local registration algorithms, for example,
can recover the main (global) scale differences but will also account for the localized
nonlinear deformations (local) [32].

Various image registration techniques have been specifically applied to mammograms
(Table 1). van Engeland et al. compared four different methodologies for the registration
of temporally sequential mammograms. Overall, the use of mutual information provided
the best performance for global mammogram registration [36]. Vujovic and Brzakovic and
Marti et al. developed local registration algorithms that identified and used control points
or common structures between prior and recent images, in order to establish a correspon-
dence between those points [37,38]. Sanjay-Gopal et al., Hadjiiski et al., and Filev et al.
designed computerized methods for interval change analysis, using a regional registration
technique to identify corresponding lesions on temporal pairs of mammograms [19,39,40].
In a relatively recent study, Ma et al. introduced a method that incorporates fuzzy sets,
based on spatial relationships, along with graph matching [41]. Hybrid registration tech-
niques for mammogram matching have also been proposed by Wirth et al., Timp and
Karssemeijer, and Li et al. [42–44]. A temporal mammogram registration methodology,
based on the curvilinear coordinates, was proposed by Abdel-Nasser et al. (Figure 3). This
method combined global and local deformations in the breast area in order to improve the
registration performance [45]. Recently, Sharma et al. proposed a technique for the seg-
mentation of breast regions using a combination of data-driven clustering and deformable
image registration. This approach combines traditional segmentation approaches with ML
techniques and clustering, for improved registration results [46]. Furthermore, Mendel et
al. exploited B-splines and multi-resolution registration to evaluate architecture changes
for cancer risk assessment [47].

Table 1. The state-of-the-art techniques for the registration of mammograms.

Registration
Category

Reference Details

Global van Engeland et al. (2003) [36] joint probability intensity distribution

Local

Vujovic and Brzakovic (1997) [37]
Sanjay-Gopal et al. (1999) [39]
Marti et al. (2001) [38]
Hadjiiski et al. (2001) [19]
Filev et al. (2008) [40]
Ma et al. (2015) [41]

modified monotony operator and accumulator matrix
associated information between regions
correspondence between linear structures
affine transformation and nonlinear optimization
corresponding local search
spatial relationships and graph matching

Hybrid

Wirth et al. (2002) [42]
Timp and Karssemeijer (2006) [43]
Abdel-Nasser et al. (2016) [45]
Li et al. (2018) [44]
Sharma et al. (2019) [48]
Mendel et al. (2019) [47]

similarity and point-based spatial transformation
center of mass alignment and feature space mapping
curvilinear coordinates; global/local deformations
global coarse and local fine registration
data-driven clustering and deformable registration
B-splines and multi-resolution registration

Figure 3. Proposed mammogram registration framework using optimized curvilinear coordinates
(reprint with permission from [45]).



Tomography 2022, 8 2880

5. Temporal Analysis

The first attempt to exploit sequential mammographic images was the application of
temporal analysis. In temporal analysis, the breast abnormality is localized in the most
recent mammographic view and, using image registration, the location corresponding to
the abnormality is also identified in the prior mammogram. Features are extracted from
both, and a new feature vector is created by subtracting the features of the prior image from
those of the recent image. Several studies in the literature have assessed the effectiveness
of temporal analysis for the detection and classification of breast masses and MCs.

5.1. Detection of Breast Masses

The algorithms for the detection of breast masses using temporal analysis can be
divided into three broad categories based on the detection approach: (a) without ML,
(b) with feature-based ML, and (c) with DL. The detection of breast masses using temporal
analysis is indeed possible without using ML, as demonstrated by Ma et al., and
Shanmugavadivu et al. [18,49]. With the addition of temporal analysis, the accuracy
of the detection of masses increased, illustrating the importance of adding temporal in-
formation. The true detection rate was 80%, with 1.02 false detections per image when
using just the most recent mammogram, as opposed to 0.96 false detections per image with
temporal analysis [18].

Using traditional feature-based ML techniques, Zheng et al. evaluated different CAD
systems, optimized for the diagnosis of breast masses, with the addition of information
from prior mammograms. They observed that the performance of those systems improved
(0.89 vs. 0.65 AUC) [50]. Similarly, Ma et al. incorporated a temporal registration al-
gorithm, which verified the effectiveness of temporal analysis (0.9 vs. 0.88 AUC) [51].
Timp and Karssemeijer designed an algorithm that detected interval changes between
sequential mammograms but achieved only a marginal improvement with the addition
of temporal features (0.72 vs 0.71 AUC) [43]. The state-of-the-art algorithms for the de-
tection of breast masses using temporal analysis with feature-based ML are provided
in Table 2.

Deep learning has attracted significant attention since 2018. Kooi and Karssemei-
jer and Zheng et al. proposed DL algorithms for the detection of breast masses using
temporal analysis (Figure 4) [52,53]. Both studies exploited deep CNNs. Their results
proved that temporal analysis can improve the detection of breast masses (0.88 vs. 0.87
AUC [53]). The state-of-the-art techniques for the detection of masses in mammograms
using temporal analysis with DL are provided in Table 3.

Figure 4. Digital mammogram pairs. (a,b) Right CC (1051 × 1521 pixels) and MLO (1069 × 1746 pixels)
views of the recent mammogram with a mass present and marked by a yellow rectangle. (c,d) Right
CC and MLO from a prior exam 1 year earlier (not aligned yet), which was normal (reprint with
permission from [52]).

5.2. Classification of Breast Masses

After the detection of a breast abnormality, classification usually ensues to mark the
detected lesion as benign or malignant. Unfortunately, few studies have been dedicated to
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the classification of breast masses using sequential mammograms. One of the first groups,
to use feature-based ML and temporal analysis for the classification of breast masses
as benign or malignant, was Hadjiiski et al. [19]. The performance of the classification
significantly improved with the addition of temporal analysis (0.88 vs. 0.82 AUC). Timp et
al. and Bozek et al. also assessed the use of temporal comparison of breast abnormalities
using feature-based classification [54,55]. Overall, the AUC increased significantly in both
studies (0.77 vs. 0.74 [54] and 0.90 vs. 0.77 [55]) with the addition of temporal features
(Figure 5). The state-of-the-art techniques for the classification of masses in mammograms
using temporal analysis with feature-based ML are provided in Table 4.

Figure 5. Pairs of temporally sequential mammograms. Right and left images correspond to current
and prior views respectively. In each prior view, the arrow indicates the location selected by the
regional registration program. (a) A case of a malignant mass that was not visible in the prior view.
The registration program selected the most probable location in the prior view. (b) A case of a benign
mass that was similar in the prior and current views. The registration program selected a region in
the prior view that was similar to the current region (reprint with permission from [54]).

5.3. Detection of Micro-Calcifications (MCs)

Several algorithms have been proposed for the detection of MCs using the most recent
mammogram of a patient [21,46]. However, only Filev et al. exploited temporal analysis for
this task (Figure 6) [40]. For that study, a new dataset was collected consisting of 261 pairs of
digitized mammograms. First, a regional registration technique was applied to identify the
area in the prior mammogram that may have corresponded to the abnormality identified
in the recent mammogram. Subsequently, classification using linear discriminant analysis
(LDA) and leave-one-out validation per patient, resulted in 91.2% accuracy and 0.4 FP
detections per image.
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Figure 6. Temporally sequential mammograms containing MC clusters. (a) Current and prior
mammograms with automatically detected breast boundaries, (b) A close-up of the current and prior
views of the MC cluster (reprint with permission from [40]).

5.4. Classification of Micro-Calcifications (MCs)

Classification of breast MCs, using the most recent mammographic view, still remains
an active research topic. However, only a few studies took advantage of temporal analysis
for this task. Hadjiiski et al. developed an interval change analysis algorithm for the
classification of mammographic MCCs as benign or malignant [56]. Sixty-five digitized
mammogram pairs were collected, and various features were extracted from each MCC.
For the classification, LDA was applied with leave-one-out validation per patient. The per-
formance significantly increased with the addition of temporal analysis (0.87 vs. 0.81 AUC).
Filev et al. also showed that the performance of MC classification improved (0.81 vs.
0.72 AUC) with temporal analysis [40]. They collected 261 pairs of digitized mammograms
and used regional registration, LDA, and leave-one-out validation per patient (Figure 7).
The state-of-the-art techniques for the detection and classification of MCs in mammograms
using temporal analysis with feature-based ML are provided in Table 5.

Despite the initial promising results, temporal analysis offers no benefit when the
abnormality is new, with no traces in the prior screening examination. In addition, when
small, barely discernible changes occur between screenings, they may not be apparent in
the temporal feature vector and could be rejected as FPs.

Figure 7. Initial estimation of the cluster centroid position in the prior mammogram based on the
nipple-cluster distance and the angle between the nipple-cluster axis and breast periphery in the
current mammogram (reprint with permission from [40]).
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Table 2. Comparison of algorithms for the detection of masses in sequential mammograms using temporal analysis and feature-based machine learning.

Reference Database Type of
Images Dataset Classifier Validation Method Result: ACC (%) Result:

SEN/SPEC (%) Result: AUC Result: Other

Zheng et al. (2003) [50] Restricted Digitized 134 pairs ANN 75–25%
(per image) - - 0.89 temporal

0.68 single -

Timp and Karssemeijer
(2006) [43] Restricted Digitized 2873 pairs ANN 10-fold CV

(per patient) - - 0.72 temporal
0.71 single -

Ma et al. (2015) [51] Restricted Digitized 95 pairs SMV
LDA

5-fold CV
(per ???) - - 0.9 temporal

0.88 single -

Table 3. Comparison of algorithms for the detection of masses in sequential mammograms using temporal analysis and deep learning.

Reference Database Type of
Images Dataset Data

Augmentation Classifier Validation Method Result: ACC (%) Result:
SEN/SPEC (%) Result: AUC Result: Other

Kooi and Karssemeijer
(2017) [53] Restricted Digital 18366 pairs YES

CNN
(shallow gradient
boosted tree)

16-fold CV
(per patient) - - 0.88 temporal

0.87 single -

Zheng et al. (2018) [52] Restricted Digital 96 pairs NO CNN
(VGG-19)

10 × 75–25%
(per image) - 92.8/99.1 - 0.004 FPi

Table 4. Comparison of algorithms for the classification of masses in sequential mammograms using temporal analysis and feature-based machine learning.

Reference Database Type of
Images Dataset Classifier Validation Method Result: ACC (%) Result:

SEN/SPEC (%) Result: AUC Result: Other

Hadjiiski et al. (2001) [19] Restricted Digitized 140 pairs LDA leave-one-out
(per patient) - - 0.88 temporal

0.82 single -

Timp et al. (2007) [54] Restricted Digitized 465 pairs SVM 20-fold CV
(per ???) - - 0.77 temporal

0.74 single -

Bozek et al. (2014) [55] Restricted Digital 60 pairs LDA leave-one-out
CV (per ???) - - 0.90 temporal

0.77 single -



Tomography 2022, 8 2884

Table 5. Comparison of algorithms for the diagnosis of MCs in sequential mammograms using temporal analysis and feature-based machine learning.

Reference Database Type of
Images Dataset Classifier Validation Method Result: ACC (%) Result:

SEN/SPEC (%) Result: AUC Result: Other

Detection

Filev et al. (2008) [40] Restricted Digitized 261 pairs LDA leave-one-out
(per patient) 91.2 - - 0.72 FPs per image

Classification

Hadjiiski et al. (2002) [56] Restricted Digitized 65 pairs LDA leave-one-out
(per patient) - - 0.87 temporal

0.81 single -

Filev et al. (2008) [40] Restricted Digitized 261 pairs LDA leave-one-out
(per patient) - - 0.81 temporal

0.72 single -
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6. Temporal Subtraction

To address some of the limitations of temporal analysis, temporal subtraction was devel-
oped by Loizidou et al. for the detection and classification of breast abnormalities [57]. The
key difference between temporal analysis and temporal subtraction, is that the later exploits
the entire prior image by subtracting its registered version from the entire recent image. Direct
subtraction of the mammograms effectively removes the regions that have remained unchanged
between screenings and enhances the contrast of new changes.

Temporal subtraction was first applied for the detection and classification of breast
MCs [58]. For that purpose, 100 pairs of digital mammograms were collected with precise
annotation of each individual MC (benign and suspicious), as assessed by two expert
radiologists (Figure 8). That dataset is now available online with open access [59]. Pre-
processing, registration, subtraction, and segmentation effectively detected all ROIs that
could be MCs. Machine learning was then used to reject falsely detected regions using
several shape, texture, and intensity features extracted from all the ROIs. Subsequently, the
correctly detected MCs were classified as BI-RADS benign or suspicious, using leave-one-
patient-out cross-validation. The classification performance increased by approximately 7%
in terms of accuracy (90.3% vs. 82.7%) when using temporal subtraction, as compared to
using temporal analysis on the same dataset (Table 6).

Figure 8. Dataset example. (A) Mammographic view of a woman with benign and suspicious MCs.
(B) Zoomed region marked by the red square in (A), showing the MCs. (C) The region in (B) with
precise marking of the MC locations (indicated by the white arrow), as annotated by two expert
radiologists (reprint with permission from [58]).

Temporal subtraction was also applied to the detection and classification of breast
masses. A new dataset was collected by Loizidou et al., consisting of 80 pairs of digital
temporally sequential mammograms [60]. This dataset is also available online with open
access [61]. The algorithm consists of three steps: (a) detection of the masses, which
includes pre-processing, image registration, subtraction, and segmentation (Figure 9); (b) FP
elimination, where falsely detected ROIs are rejected using feature extraction and ML; and
(c) classification, where the detected breast masses are classified as benign or suspicious.
The classifiers were trained using leave-one-patient-out cross-validation, per patient. The
classification performance reached 98% accuracy when using temporal subtraction, as
opposed to 92.7% when using temporal analysis on the same dataset (Table 7).
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Table 6. Comparison of algorithms for the diagnosis of MCs in sequential mammograms using temporal subtraction and feature-based machine learning.

Reference Database Type of
Images Dataset Classifier Validation Method Result: ACC (%) Result:

SEN/SPEC (%) Result: AUC Result: Other

Detection

Loizidou et al. (2021) [58] Open access Digital 100 pairs Voting leave-one-out
(per patient) 94.1 81.4/95.5 0.88 -

Classification

Loizidou et al. (2021) [58] Open access Digital 100 pairs ANN leave-one-out
(per patient) 90.3 81.6/92.2 0.87 -

Table 7. Comparison of algorithms for the diagnosis of masses in sequential mammograms using temporal subtraction and feature-based machine learning.

Reference Database Type of
Images Dataset Classifier Validation Method Result: ACC (%) Result:

SEN/SPEC (%) Result: AUC Result: Other

Detection

Loizidou et al. (2022) [60] Open access Digital 80 pairs ANN leave-one-out
(per patient) 99.9 96.6/99.9 0.98 -

Classification

Loizidou et al. (2022) [60] Open access Digital 80 pairs ANN leave-one-out
(per patient) 98 99/96.1 0.98 -
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Figure 9. Example of temporal subtraction (BI-RADS breast density category c) with a malignant mass.
(A) Most recent mammogram. (B) Prior mammogram. (C) The result of subtracting the registered
version of (B) from (A). (D–F) Zoomed regions marked by the red squares in (A–C), respectively.
The green squares enclose a new malignant mass that was not subtracted (reprint with permission
from [62]).

7. Open-Access Mammography Datasets

Various open-access mammography datasets are available online, enabling the devel-
opment of reproducible algorithms and promoting the repeatability of results. However,
the most commonly used datasets are relatively outdated, with scanned film mammo-
grams, and limited ground-truth annotations or biopsy confirmations. In addition, some
are not completely open access, requiring approval to use. Each dataset has its own advan-
tages and limitations, and the choice depends solely on the needs of each particular study.
Table 8 summarizes the most commonly used open-access mammography datasets, as well
as their basic characteristics, such as the number of cases, the resolution (bits/pixel), the
annotations available, and more. However, only two of those datasets provide sequential
mammograms [59,61].
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Table 8. Comparison of the most commonly used open-access mammography datasets.

Name Origin Year File
Access

Number
of Cases

Number
of Images

Resolution
(bits/pixel)

Image
Mode

Type of
Abnormality

Image
Categories Annotation

DDSM [63] USA 1999 Open 2620 10480 8 or 16 Digitized ALL
Normal
Benign
Malignant

Contour points
of the ROI

MIAS [64] UK 2003 Open 161 322 8 Digitized ALL
Normal
Benign
Malignant

Center and radius
of a circle around ROI

INbreast [65] Portugal 2011 Approval
from authors 115 410 14 Digital

Masses
Calcifications
Distortions
Asymmetries

Normal
Benign
Malignant

Contour points
of the ROI

BCDR-FM [66] Portugal 2012 Open (requires
registration) 1125 3703 8 Digitized ALL Normal

Cancer

Precise lesion
locations and mass
coordinates, detailed
segmentation outlines

BCDR-DM [66] Portugal 2012 Open (requires
registration) 1042 3612 14 Digital ALL Normal

Cancer

Precise lesion
locations and mass
coordinates, detailed
segmentation outlines

CBIS-DDSM [67] USA 2017 Open 1566 10239 8 or 16 Digitized Mass
Calcifications

Benign
Malignant

ROI segmentation
and bounding boxes

DDSM-BCRP [68] USA 2000 Open 179 716 12 Digitized Masses
Calcifications

Benign
Malignant

Contour points
of the ROI

OPTIMAM [69] UK 2020 Approval
from authors - 2889312 12 or 16 Digital ALL

Normal
Benign
Malignant

Rectangular around
the boundaries of
the ROI

SDM-MCs [59] Cyprus 2021 Open 100 400 12 Digital Calcifications
Normal
Benign
Suspicious

Precise annotation of
each micro-calcification

SDM-Masses [61] Cyprus 2022 Open 80 320 12 Digital Masses
Normal
Benign
Malignant

Precise annotation
of each mass
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8. Discussion

This review summarizes the recent advances in the automated detection and/or classi-
fication of breast abnormalities using temporally sequential mammograms. Unfortunately,
comparing all the existing techniques is very challenging. Although the main steps of these
algorithms are similar, there are several possible approaches to implement each step and,
further, to analyze the images. Another important parameter that makes the comparison
between the studies difficult, is the datasets used. Open-access mammographic databases
do not include sequential mammograms; thus, each research group has independently
resorted to collecting sequential data. Unfortunately, only two datasets are available with
open access [59,61]. Furthermore, even if the same dataset and classifier are exploited, other
parameters can significantly vary. One such example is the validation method, which can
significantly affect the outcome. The majority of the studies used k-fold cross-validation,
with the number of k varying depending on the number of subjects. However, the construc-
tion of the training and test sets is crucial. Introducing information from the same patient
in both sets, by performing cross-validation per image, or per ROI, instead of per patient,
artificially increases the performance of the algorithm. All the ROIs or images of the same
patient should be included either in the training or in the validation set, to avoid such bias.
Unfortunately, that practise is not always adhered to, resulting in approaches that fail in
real-world applications.

Despite its limitations, temporal analysis, clearly, offers an advantage in the detection
and/or classification of breast masses and MCs, with a significant increase in the perfor-
mance (0.77 vs. 0.90 AUC for the classification of masses [55] or 0.87 vs. 0.81 AUC for the
classification of MCs [56]). However, temporal analysis offers no benefit when a newly
developed abnormality appears, with few traces in the prior mammogram. To address
some of the limitations, subtraction of temporally sequential mammograms exploits the
whole prior screening, by subtracting the registered version of the prior images from recent
ones. With direct subtraction of the mammogram pairs, ROIs that remained unchanged
between screenings are effectively removed, which improves the detection and classifica-
tion performance (90.3% accuracy and 0.87 AUC for the classification of MCs [58] or 98%
accuracy and 0.98 AUC for the classification of masses [60]).

9. Conclusions

This review summarized the current trends in the analysis of sequential mammograms,
exploring various concepts and methodologies. The incorporation of information from prior
mammograms shows great promise for the detection of breast abnormalities. However, the
lack of large-population studies limits the degree to which these results can be generalized.
Furthermore, as with other CAD systems, slow clinical acceptance will probably, initially,
limit temporal subtraction to a second reader role. Although, there is still a long way ahead
for the translation of sequential mammogram analysis to clinical practice, the initial results,
presented in this review, should encourage future research.
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