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Abstract: Automatic identification of short axis slice levels in cardiac magnetic resonance imaging
(MRI) is important in efficient and precise diagnosis of cardiac disease based on the geometry of the
left ventricle. We developed a combined model of convolutional neural network (CNN) and recurrent
neural network (RNN) that takes a series of short axis slices as input and predicts a series of slice
levels as output. Each slice image was labeled as one of the following five classes: out-of-apical, apical,
mid, basal, and out-of-basal levels. A variety of multi-class classification models were evaluated.
When compared with the CNN-alone models, the cascaded CNN-RNN models resulted in higher
mean F1-score and accuracy. In our implementation and testing of four different baseline networks
with different combinations of RNN modules, MobileNet as the feature extractor cascaded with
a two-layer long short-term memory (LSTM) network produced the highest scores in four of the seven
evaluation metrics, i.e., five F1-scores, area under the curve (AUC), and accuracy. Our study indicates
that the cascaded CNN-RNN models are superior to the CNN-alone models for the classification of
short axis slice levels in cardiac cine MR images.

Keywords: deep learning; cardiac imaging; convolutional neural network; recurrent neural network

1. Introduction

Cardiac imaging has been developed in a sophisticated way to investigate morpho-
logical and functional characteristics of the heart in vivo [1]. Echocardiography is safe and
portable, but it has limitations in its dependence on operators’ skills and low image quality,
especially in deep structures. Computed tomography (CT) is primarily used in imaging the
coronary arteries but induces radiation exposure in patients. Magnetic resonance imaging
(MRI) may pose a risk in patients with cardiac implantable devices [2], but it allows for
imaging of an arbitrary scan plane orientation and provides excellent contrast between
the myocardium and blood. Cardiac short axis slice imaging is performed to evaluate
the heart wall motion in cardiac cine MRI, which acquires the entire left ventricle (LV) in
a slice-by-slice manner with high temporal resolution [3]. Knowledge of the short axis slice
level is necessary for either reporting findings of a cardiac MR exam or visualizing the
regional analysis results on the 17 myocardial segment model [4].

Automatic classification of cardiac slice orientation has been investigated in the lit-
erature. A fine-tuned convolutional neural network (CNN) was used to identify a slice
orientation out of the five orientations, which are two chamber, three chamber, four cham-
ber, LV outflow tract, and short axis [5]. A deep CNN was used to identify a slice out of
the apical slice or a slice out of the basal slice [6]. A fine-tuned deep CNN model was used
to identify a short axis slice level out of the three classes, which are out-of-apical, in, and
out-of-basal levels [7]. These approaches did not investigate the feasibility of differentiating
apical, mid, and basal slice levels, and they were developed to predict an output class given
a single image as input. In cardiac cine MRI, the entire LV is acquired by imaging a stack of
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short axis slices from the apex to the base, and the slices from acquired data are ordered in
a sequence of the apical, mid, and basal levels. Hence, it would be desirable to consider
a model that takes the adjacent slice information into account. A hybrid of a CNN and
a recurrent neural network (RNN) may be well suited to the classification of cardiac short
axis slice levels from cardiac cine MRI.

In this study, we investigate a many-to-many RNN model for the cardiac slice classifi-
cation problem, where baseline CNNs are used for feature extractors and an RNN model
is used for modeling the sequence of slice levels, as described by Figure 1. It is noted
that the hybrid models of CNN and RNN have been developed for image classification in
medical image analysis [8–12]. We evaluate the performance of different types of cascaded
CNN-RNN models in terms of accuracy and F1-scores for the prediction of short axis
slice level. We also compare the performance of a cascaded CNN-RNN model against
a CNN-alone model that takes a single image as input and predicts an output class.

Tomography 2022, 8,  2 
 

 

given a single image as input. In cardiac cine MRI, the entire LV is acquired by imaging a 

stack of short axis slices from the apex to the base, and the slices from acquired data are 

ordered in a sequence of the apical, mid, and basal levels. Hence, it would be desirable to 

consider a model that takes the adjacent slice information into account. A hybrid of a CNN 

and a recurrent neural network (RNN) may be well suited to the classification of cardiac 

short axis slice levels from cardiac cine MRI. 

In this study, we investigate a many-to-many RNN model for the cardiac slice classi-

fication problem, where baseline CNNs are used for feature extractors and an RNN model 

is used for modeling the sequence of slice levels, as described by Figure 1. It is noted that 

the hybrid models of CNN and RNN have been developed for image classification in 

medical image analysis [8–12]. We evaluate the performance of different types of cascaded 

CNN-RNN models in terms of accuracy and F1-scores for the prediction of short axis slice 

level. We also compare the performance of a cascaded CNN-RNN model against a CNN-

alone model that takes a single image as input and predicts an output class. 

 

Figure 1. An overview of the proposed method. The input consists of a series of cardiac short axis 

slice images, which range from the out-of-apical slice level to the out-of-basal slice level. The slice 

levels were labeled as ‘oap’ for the out-of-apical slice, ‘ap’ for the apical slice, ‘mid’ for the mid-level 

slice, ‘bs’ for the basal slice, and ‘obs’ for the out-of-basal slice. For each slice image, a pre-trained 

deep CNN model is used as a feature extractor. The features are denoted by xi for i = 1, 2, …, N, 

where N is the number of slices. The RNN model takes a series of features (i.e., x1, x2, …, xN) as input 

and produces probability scores for each slice level via softmax. The red numbers indicate the max-

imum values in the output prediction scores. 

  

Figure 1. An overview of the proposed method. The input consists of a series of cardiac short axis
slice images, which range from the out-of-apical slice level to the out-of-basal slice level. The slice
levels were labeled as ‘oap’ for the out-of-apical slice, ‘ap’ for the apical slice, ‘mid’ for the mid-level
slice, ‘bs’ for the basal slice, and ‘obs’ for the out-of-basal slice. For each slice image, a pre-trained
deep CNN model is used as a feature extractor. The features are denoted by xi for i = 1, 2, . . . , N,
where N is the number of slices. The RNN model takes a series of features (i.e., x1, x2, . . . , xN) as
input and produces probability scores for each slice level via softmax. The red numbers indicate the
maximum values in the output prediction scores.

2. Materials and Methods

This section describes procedures of data curation, data labeling, deep learning model
training and validation, and evaluation on unseen test data. Code related to this study is
available at https://github.com/itsnamgyu/mri-classification (accessed on 6 November 2022).

2.1. Dataset

In the present study, we used publicly available data from the Kaggle’s 2015 Data Science
Bowl challenge (https://www.kaggle.com/competitions/second-annual-data-science-bowl/
overview) (accessed on 6 November 2022). The Kaggle’s 2015 Data Science Bowl challenge

https://github.com/itsnamgyu/mri-classification
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data have short axis cardiac cine MRI Digital Imaging and Communications in Medicine
(DICOM) data of a total of 1140 subjects’, which consist of 500 subjects’ data for training,
200 subjects’ data for validation, and 440 subjects’ data for testing. To ensure a reliable study,
we filtered out unreliable data. Out of the 1140 subjects’ data, we excluded 166 subjects’ data,
which had one of the following issues: (1) multiple images existed with the same identifiers,
(2) the number of slices from different phases was inconsistent, or (3) the slice indices were
non-contiguous within a given phase. For instance, the slice index 3 was missing in a series
of 10 slices. We converted the DICOM data to png files after changing the image intensity to
the [0 255] range. After the exclusion of 166 subjects, we randomly assigned the remaining
974 subjects’ data into either training, validation, or testing data, as shown in Table 1. This
assignment was performed subject-wise. The cardiac cine MRI dataset has 20 to 30 dynamic
frames per slice and 8 to 25 slices per subject. Out of 20 to 30 dynamic frames, we considered
two cardiac phases: one diastolic phase and one systolic phase [13]. The total sample sizes for
CNN and CNN-RNN models are shown in Table 2.

Table 1. The numbers of subjects in training, validation, and testing groups.

Training Validation Testing Total

Number of subjects 576 214 184 974
Percentage (%) 59.1 22.0 18.9 100

Table 2. The numbers of samples in training, validation, and testing groups.

Model Type Training Validation Testing Total

CNN *
Number of samples 12,070 4594 3868 20,532
Percentage (%) 58.8 22.4 18.8 100

CNN-RNN **
Number of samples 1152 428 368 1948
Percentage (%) 59.1 22.0 18.9 100

* In the CNN model, the number of samples is defined as the total number of individual images. ** In the
CNN-RNN model, the number of samples is defined as the total number of image series, where each set consists
of a stack of short axis slices.

2.2. Data Labeling

To label the images, we developed a custom user interface which was implemented using
the Matplotlib [14] library for image slice labeling in a diastolic and a systolic frame for all
subjects. The user interacted with the user interface to classify each short axis slice into one of
the following five categories: (1) out-of-apical, (2) apical, (3) mid, (4) basal, and (5) out-of-basal
slice levels. Out-of-apical was defined as a slice that shows no appearance of the LV blood
pool. Out-of-basal was defined as a slice above the most basal slice that is characterized by
a small crescent of basal lateral myocardium and no discernable LV blood pool [15]. Apical,
mid, and basal levels were defined as follows. The apical-level slice corresponds to an image
which is adjacent to the apex and has no papillary muscle. The mid-level slice corresponds
to an image with papillary muscle. The basal-level slice corresponds to an image which is
adjacent to the base and has no papillary muscle. As a recommended consensus, the LV
volume is divided into basal, mid, and apical levels with identical thickness [16], but our
study adopted the slice-level identification based on the presence or absence of the papillary
muscle. The labeling results were saved upon closing the interface. They were saved in
an internal metadata file, which was reloaded when the user resumed the manual labeling
task. The number of images for each class is listed in Table 3.
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Table 3. The number of images for each class label in training and validation datasets.

Class Label
Total

oap ap mid bs obs

Training
Number of images 1878 2784 2800 2132 2476 12,070
Percentage (%) 15.5 23.1 23.2 17.7 20.5 100

Validation
Number of images 710 1086 1114 751 933 4594
Percentage (%) 15.5 23.6 24.2 16.4 20.3 100

2.3. Deep Learning Model Training and Validation

Table 4 lists the networks considered in our study, including their model capacities,
the ImageNet top-1 accuracy scores, the number of penultimate features, and batch sizes
for the CNN and CNN-RNN models. We applied transfer learning in the fixed-feature
extractor setting. We used the penultimate features from the convolutional base of a CNN
model as input to a custom deep neural network (DNN) classifier. The custom DNN
classifier consisted of a fully connected layer with 256 units as output, a ReLu activation,
a dropout layer with a dropout rate of 0.5 [17], a fully connected layer with five units
as output, and softmax activation. We simply appended the custom DNN classifier to
the existing base network and froze the base convolutional layer weights during training.
The final softmax layer had five output nodes that corresponded to the five classes in our
classification task: out-of-apical, apical, mid, basal, and out-of-basal. The Keras application
library (https://www.tensorflow.org/api_docs/python/tf/keras/applications) (accessed
on 6 November 2022) [18]. on the Tensorflow version 2.8.0 was used to compare the
performance of a variety of pre-trained deep CNN models, in which the weights were
trained on the ImageNet dataset [19].

Table 4. The comparison of base deep CNN models.

CNN Base Network Number of
Model Parameters

ImageNet
Top-1 Accuracy

Number of Features
after GAP *

Batch Size
for CNN

Batch Size
for CNN-RNN

EfficientNetB0 5.3 M 77.1% 1280 32 2
MobileNet 4.2 M 70.6% 1024 32 2

NASNetMobile 5.3 M 74.4% 1056 32 2
ResNet50V2 25.6 M 76.0% 2048 16 2

* Global average pooling.

Training and validation were performed on a single GPU (NVIDIA GeForce GTX
1080 with 8 GB memory). To train the network, we used the mini-batch gradient descent
optimization with a batch size of 32 and the Adam optimizer [20]. Four deep CNN base
networks were considered: EfficientNetB0 [21], MobileNet [22], NASNetMobile [23], and
ResNet50V2 [24]. We tested four different types of RNNs: two-layer long short-term
memory (LSTM) [25], bidirectional LSTM [26], two-layer gated recurrent unit (GRU) [27],
and bidirectional GRU. Each hidden layer had 128 units in each hidden cell and consisted
of 25 hidden cells, where 25 is the number of time steps. We set the number of time steps to
25 because the maximum number of short axis slices was 25 in our dataset. Categorical
cross-entropy was adopted as a loss function. We trained each model for 50 epochs, as
shown in Figure 2, and selected an appropriate epoch number based on manual inspection
of the validation loss curve. To avoid overfitting, we chose the appropriate epoch value
from the validation loss curve where the validation loss function was near the minimum.

https://www.tensorflow.org/api_docs/python/tf/keras/applications
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Figure 2. Learning curves for loss (top) and accuracy (bottom) when EfficientNetB0 was used as
a baseline CNN architecture. Solid lines represent validation results, while dashed lines represent
training results. Loss curves for EfficientNetB0 were not plotted because their loss value ranges were
well above those for EfficientNetB0_2-LSTM and EfficientNetB0_2-GRU.

2.4. Evaluation

A total of 20 models were evaluated: 4 models obtained by training a custom DNN
classifier on top of base CNNs used for feature extraction and 16 models obtained by the cas-
cade of CNN and RNN. Performance was evaluated against the test dataset of 184 patients
that was held out during model development. We used the scikit-learn library [28] to
calculate the following: F1-score, area under the curve (AUC), accuracy, and confusion
matrix. For the calculation of F1-score, we considered the one-vs.-rest classification task
for each class. For example, by regrouping the classes into ‘mid’ and ‘non-mid’, where the
‘non-mid’ group consists of ‘oap’, ‘ap’, ‘bs’, and ‘obs’, we obtained binary classification for
the ‘mid’ group. We applied this approach to all five classes and evaluated precision, recall,
F1-score, and AUC. The precision was the number of true positive cases divided by the
number of all positive predicted cases. The recall was the number of true positive cases
divided by the number of all positive cases. The F1-score was calculated as the harmonic
mean of the precision and recall. The accuracy was the number of correctly predicted cases
divided by the number of all cases. In addition, we counted the sum of the elements out of
the tridiagonal entries in the confusion matrix and termed it SOTD. We used SOTD for the
evaluation since it reflects obvious misclassification errors made by a deep learning model.

3. Results

As shown in Table 3, in the training dataset, the ‘ops’, ‘ap’, ‘mid’, ‘bs’, and ‘obs’ classes
were 15.5, 23.1, 23.2, 17.7, and 20.5%, respectively, A similar class distribution was observed
in the validation dataset. The class imbalance was not severe in this study.
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Figure 2 shows an example of learning curves for the case of EfficientNetB0 as a baseline
network for deep CNN feature extractor. The training loss functions showed a monotonic
decreasing pattern with respect to epoch. The validation loss functions showed a decreasing
pattern at earlier epochs up to 10, while it showed an increasing pattern at epochs later
than the 10th epoch. The increasing pattern reflects overfitting as expected, and we chose
an appropriate epoch number based on the dip of the validation loss functions. This pattern
was observed in both the LSTM and GRU networks. The bottom sub-figure illustrates the
accuracy curves with respect to epoch. The training accuracy curves kept increasing in all
three models, while the validation accuracy curves stayed at an accuracy value with little
fluctuation. The cascaded CNN-RNN models (green and red) had relatively higher accuracy
than the CNN-alone model (purple). These trends were observed in other base networks of
MobileNet, ResNet50V2, and NASNetMobile.

Table 5 compares prediction results on testing data in a variety of CNN and CNN-
RNN models. For a given baseline network, all four CNN-RNN models outperformed the
CNN model in all the categories. Among the four baseline models considered, MobileNet
produced the highest F1-scores in four out of the five classes. NASNetMobile was relatively
poor in predictions. The MobileNet 2-LSTM model resulted in the highest scores in four
out of the seven evaluation metrics. The MobileNet Bi-LSTM model resulted in the highest
scores in two out of the seven evaluation metrics. Our Python implementation was effec-
tive in labeling each slice image as well as in checking the prediction results along with
ground truth, as shown in Figure 3. In particular, the model comparisons were possible
at an individual subject level. Bidirectional recursive temporal encoders generally outper-
formed their two-layer unidirectional counterparts, despite parity in model capacity. This
indicates that the task of cardiac slice classification can benefit from bidirectional temporal
modeling. The performance gap is highlighted in the oap category, e.g., the difference in
F1-score between 2-GRU and bi-GRU for NASNetMobile is highest in oap, with a delta of
0.068 F1-score. This can be attributed to the absence of sequential signal from the unidi-
rectional encoder, as there are no image slices that precede the oap category. This further
supports the need for sequential modeling in the cardiac cine short axis classification task.

Tomography 2022, 8,  7 
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Figure 3. A screenshot of slice level predictions on a series of short axis slices on an individual
test subject. The prediction was made by the ‘MobileNet_2layerLSTM’ model. The slice index, the
ground truth, and the predicted category are shown above each image. The green text indicates
correct classification, while the red text indicates incorrect classification. For example, ‘(BS) (P = OBS)’
indicates that the ground truth is ‘basal’, and the model’s prediction is ‘out-of-basal’.
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Table 5. Prediction performance of a variety of deep learning models. The bold indicates the highest
value among the models.

CNN
Base Network

RNN Type
F1-Score

AUC * Accuracy
oap ap mid bs obs

CNN

MobileNet - 0.759 0.717 0.771 0.740 0.902 0.957 0.779
ResNet50V2 - 0.748 0.668 0.726 0.688 0.868 0.944 0.740

NASNetMobile - 0.680 0.585 0.625 0.570 0.790 0.904 0.650
EfficientNetB0 - 0.761 0.696 0.729 0.716 0.889 0.946 0.757

CNN-RNN

MobileNet

2-LSTM 0.811 0.783 0.827 0.800 0.918 0.972 0.829
Bi-LSTM 0.825 0.779 0.812 0.793 0.922 0.972 0.827
2-GRU 0.808 0.769 0.814 0.785 0.909 0.970 0.817
Bi-GRU 0.819 0.784 0.801 0.784 0.907 0.970 0.819

ResNet50V2

2-LSTM 0.759 0.763 0.804 0.759 0.904 0.966 0.801
Bi-LSTM 0.821 0.781 0.782 0.769 0.908 0.968 0.812
2-GRU 0.781 0.772 0.788 0.721 0.882 0.963 0.791
Bi-GRU 0.816 0.746 0.755 0.758 0.909 0.962 0.796

NASNetMobile

2-LSTM 0.771 0.713 0.733 0.683 0.861 0.952 0.753
Bi-LSTM 0.809 0.713 0.772 0.711 0.874 0.960 0.777
2-GRU 0.738 0.721 0.740 0.667 0.853 0.947 0.746
Bi-GRU 0.806 0.747 0.770 0.712 0.869 0.958 0.780

EfficientNetB0

2-LSTM 0.805 0.772 0.800 0.777 0.901 0.967 0.811
Bi-LSTM 0.827 0.772 0.800 0.764 0.904 0.969 0.814
2-GRU 0.811 0.763 0.793 0.764 0.909 0.965 0.808
Bi-GRU 0.822 0.785 0.801 0.767 0.910 0.969 0.817

* Weighted AUC score. AUC: area under the curve.

The confusion matrices in Figure 4 clearly show that the cascaded CNN-RNN models
are superior to the CNN-alone model in predicting slice levels. SOTD quantification results
showed the superiority of the cascaded CNN-RNN models in all the baseline networks.
Regardless of the choice of baseline network, CNN-alone architecture resulted in larger
SOTD than any of CNN-RNN models (see Figure 5). The lowest SOTD of 10 was observed
in the ResNet50V2 CNN + two-layer LSTM model, and the highest SOTD of 173 was
observed in the NASNetMobile CNN-alone model. This reduction in SOTD, i.e., errors
with a class disparity of two or more, indicates that the cascaded models are better able
to learn the similarity between adjacent slice categories. This may be attributed to the
sequential modeling of RNN layers, which is able to leverage the adjacency information in
the cardiac cine training data. The difference in SOTD between LSTM and GRU or between
two-layer and bidirectional models was negligible in all the baseline architectures.
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Figure 4. Test prediction results from the CNN-alone models (a,b) and from the CNN-RNN models
(c,d). In either MobileNet or NASNetMobile, the CNN-RNN model has smaller sums of the elements
out of the tridiagonal entries (SOTD) than the CNN-alone model. The elements out of the tridiagonal
entries are indicated by the red contours in the confusion matrices. For example, SOTD is 11 for the
case of MobileNet_2-LSTM in (c).
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4. Discussion

The identification of cardiac short axis slice levels is essential in quantifying biomark-
ers such as ejection fraction, end-diastolic volume, and end-systolic volume and in precisely
diagnosing myocardial disease based on the heart geometry in cardiac imaging. Automatiz-
ing this identification process improves efficiency in image analysis, and this study aimed
to develop an automatic classification method based on a cascaded model of CNN and
RNN. Validation on the test dataset resulted in the superior performance of the cascaded
CNN-RNN model over the CNN-alone architecture regardless of the choice of a base deep
CNN network model as a feature extractor.

A rigorous comparison of the proposed method against the previous method [7]
was not straightforward because of the following two facts. First, the datasets used were
different (Kaggle data vs. Cardiac Atlas data [29]). Second, the number of classes in the
current study was five (i.e., oap, ap, mid, bs, and obs), whereas the number of classes
in the previous study was three (i.e., oap, in, and obs). When merging the ‘ap’, ‘mid’,
and ‘bs’ classes to the ‘in’ class and comparing the classification errors, we could compare
the classification error rates between the previous method [7] and the proposed method.
From the confusion matrix of the MobileNetV1 (alpha = 0.25) model in Figure 4b of the
reference [7], the error rate was calculated as 14.7%. From the result of the MobileNet_2-
LSTM model in Figure 4c, the error rate was calculated as 9.0% after merging the ‘ap’, ‘mid’,
and ’bs’ classes to the ‘in’ class. Overall, the proposed cascaded CNN-RNN model was
clearly advantageous over the CNN-alone model because it modeled spatial relationship in
a stack of short axis slices.

We used the baseline deep CNN models as feature extractors. It would be worth
investigating layer-wise fine-tuning to check for any improvements compared to the fixed
feature extraction model [7]. In this study, we considered only four baseline models. When
using the Keras library, we noted that other popular models such as VGG-Net [30] and
DenseNet [31] had different image output configurations, and these models required more
sophisticated handling of image preprocessing. Hence, we did not consider other deep
CNN models with different image pre-processing configurations. Since our purpose was to
confirm the benefit of the CNN-RNN architecture over the CNN-alone architecture in the
short axis classification task, the use of the four popular networks would be sufficient for
evaluating our comparison study. In addition, data augmentation could be an option for
improving the prediction performance. It is noted that a custom design would be needed for
implementing a data generator for the cascaded CNN-RNN models. The stack of short axis
slice images should undergo the same transformation process when performing random
rotation, translation, horizontal/vertical flip, or zoom-in/out during training. In addition,
we considered only the Kaggle dataset in this study. Other publicly available datasets,
such as the cardiac MRI Segmentation Challenge dataset, can be considered along with the
Kaggle dataset, especially when one needs to perform more rigorous external validation
with a different institution’s data [29].

Three-dimensional (3D)-CNN [32] is also a viable and popular approach to dealing
with sequential image data. There are three main differences between 3D-CNN and CNN-
RNN. Firstly, CNN-RNNs can leverage standard deep CNN architectures pre-trained on
large-scale image datasets. This has been shown to be beneficial for medical applications,
where training data are limited [7,33]. Secondly, RNNs are specifically designed for se-
quential modeling and are beneficial for long-term sequence modeling. The GRU and
LSTM models used in our study employ gating mechanisms specifically aimed to preserve
information in long-term sequences and aid training using long sequences by mitigating
the vanishing gradient problem [34]. In contrast, 3D-CNNs are based on convolutions
which have limited receptive fields, i.e., can only model the relationship between a few
adjacent pixels or image slices covered by a kernel or sequence of kernels. To increase the
receptive fields in CNNs, it is required to increase the number of layers, and even this
has been shown to have a limited effect [35]. Finally, 3D-CNNs model the spatial and
sequential characteristics of 3D samples in a joint manner, while the proposed CNN-RNN
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models these features in two separate steps. While 3D-CNNs can identify more fine-grained
relationships that involve both spatial and sequential components in tandem, they require
more computation and are harder to optimize compared to the 2D CNNs used in the
CNN-RNN model. We believe that the task of cardiac slice classification does not require
such fine-grained modeling. However, an in-depth study of this tradeoff is a promising
direction for future work.

We investigated deep-learning-based identification of cardiac short axis levels on
cardiac cine MRI data. This CNN-RNN prediction approach has other potential applications.
Cardiac late gadolinium enhancement (LGE) has a similar stack of short axis slices, and this
also requires precise identification of apical, mid, and basal slices for the visualization of
a 17-segment model on a bull’s eye plot [36]. In addition, 3D images of cardiac perfusion [37]
and T1 mapping [38] are acquired in a stack of short axis slices, and our cascaded CNN-
RNN models would be a good fit for 3D perfusion and T1 mapping studies. It may be
interesting to use pre-trained CNN-RNN models trained on cardiac cine data and evaluate
them on unseen LGE, 3D perfusion, and 3D T1 mapping data to check for the effectiveness
of transfer learning.

5. Conclusions

We developed and evaluated cascaded CNN-RNN models that take a series of short
axis slices as input and predict a series of slice levels as output. When compared with
the CNN-alone models, the cascaded CNN-RNN models resulted in higher F1-scores,
AUC, and accuracy. A cascade of pre-trained MobileNet as the feature extractor and
a two-layer LSTM network produced the highest scores in four out of seven evaluation
metrics. This study was targeted on cardiac cine MRI, but the proposed method can be
extended to other applications with similar imaging orientations, such as cardiac LGE, 3D
myocardial perfusion, and 3D T1 mapping.
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