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Abstract: Deep learning (DL) has become a remarkably powerful tool for image processing recently.
However, the usefulness of DL in positron emission tomography (PET)/computed tomography (CT)
for breast cancer (BC) has been insufficiently studied. This study investigated whether a DL model
using images with multiple degrees of PET maximum-intensity projection (MIP) images contributes
to increase diagnostic accuracy for PET/CT image classification in BC. We retrospectively gathered
400 images of 200 BC and 200 non-BC patients for training data. For each image, we obtained PET
MIP images with four different degrees (0◦, 30◦, 60◦, 90◦) and made two DL models using Xception.
One DL model diagnosed BC with only 0-degree MIP and the other used four different degrees.
After training phases, our DL models analyzed test data including 50 BC and 50 non-BC patients.
Five radiologists interpreted these test data. Sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC) were calculated. Our 4-degree model, 0-degree model, and
radiologists had a sensitivity of 96%, 82%, and 80–98% and a specificity of 80%, 88%, and 76–92%,
respectively. Our 4-degree model had equal or better diagnostic performance compared with that of
the radiologists (AUC = 0.936 and 0.872–0.967, p = 0.036–0.405). A DL model similar to our 4-degree
model may lead to help radiologists in their diagnostic work in the future.

Keywords: breast cancer; PET; image classification; deep learning; convolutional neural network

1. Introduction

Breast cancer (BC) is the most common cancer and the second leading cause of cancer-
related deaths among women, and its incidence has increased recently [1]. Fluorine-18-
fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET)/computed tomogra-
phy (CT) is mainly used to search for distant metastases and secondary cancers, perform
staging, and monitor the response to therapy [2–4].

However, 18F-FDG-PET/CT is accurate for staging and assessing treatment response
in a variety of malignancies [2,5]. Indeed, 18F-FDG-PET/CT is routinely used to image
the entire body, at least from the mid-orbit to the proximal thigh, including the entire
thorax and breast tissue. This imaging has led to incidental detection of other primary
malignancies, including BC. For example, Benveniste et al. [6] reported that 440 incidental
breast lesions were identified in 1951 patients who underwent 18F-FDG-PET/CT.

Deep learning (DL) algorithms are rapidly increasing in their use for medical imaging
applications [7]. Convolutional neural network (CNN), one of the DL algorithms, has
shown excellent performance in recent years for medical image processing, such as for
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pattern recognition, segmentation, object detection, and image synthesis [8–12]. In the
domain of breast imaging, DL methods have been used to detect bone or lymph node
metastasis [13,14] or to pathologically distinguish features between BC and normal tis-
sue [15]. To the best of our knowledge, few studies have investigated the detection of a
primary lesion in BC on 18F-FDG-PET/CT by using DL methods.

This study sought to determine whether a DL model can classify maximum-intensity
projection (MIP) images of 18F-FDG-PET which consist of projecting the voxel with the
highest FDG uptake value on every view throughout the volume onto a 2-dimension image
into two categories, with BC or without BC, and to compare the diagnostic ability of these
models with that of radiologists.

2. Materials and Methods
2.1. Patients

Selection criteria for patient enrollment in the study were: (1) 250 female patients with
pathologically confirmed BC, and (2) the same number of female patients without breast
disease, including BC, who underwent 18F-FDG-PET/CT at our hospital between April
2017 and March 2021. Exclusion criteria were: (1) history of breast resection, (2) treatment
with hormonal therapy, chemotherapy, or radiotherapy for BC, and (3) age younger than
20 years. We obtained digital imaging and communications in medicine (DICOM) images
for these 500 patients: 250 had BC confirmed pathologically by biopsy or surgery, and
the other 250 had no BC and no history of breast disease or abnormal uptake of 18F-FDG-
PET/CT in the chest, including the breast.

2.2. PET/CT Protocols

All patients were intravenously administered 18F-FDG (3.7 MBq/kg; 0.1 mCi/kg)
after at least a 4-h fasting period. Next, whole-body images were obtained routinely using
3 different PET/CT systems: 45 cases by Aquiduo (Toshiba Medical Systems, Tokyo, Japan),
232 cases by Celesteion (Canon Medical Systems, Tochigi, Japan), and 223 cases by Cartesion
Prime (Canon Medical Systems, Tochigi, Japan). In addition, CT was performed using
the following parameters: pitch, 0.938; gantry rotation time, 0.5 s; table time, 30 mm/s;
automatic exposure control (SD 20), 120 kV; and slice thickness, 2.0 mm. Notably, contrast
materials were not used for CT examinations. After approximately 60 min of 18F-FDG
administration, whole-body emission PET was performed using the following parameters:
Aquiduo—emission time per bed, 2 min; bed positions, 7–8; slice thickness, 3.375 mm; and
matrix, 128 × 128, Celesteion—emission time per bed, 2 min; bed positions, 9–10; slice
thickness, 4.08 mm; and matrix, 144 × 144, and Cartesion Prime—emission time per bed,
90 sec; bed positions, 6–7; slice thickness, 2.00 mm; and matrix, 336 × 336. Both Celesteion
and Cartesion Prime use the time-of-flight method that improves the signal-to-noise ratio
of PET images and increases the standardized uptake value (SUV); however, Aquiduo does
not use that method [2].

2.3. Data Set

For each patient, we obtained MIP images with 4 different degrees (0◦, 30◦, 60◦, 90◦).
Table 1 summarizes the number of images and the clinical T categories according to the
TNM classification 8th edition. First, we randomly split the image data into training,
validation, and test image sets. For the training and validation phase, we used 400 sets
of MIP images (200 BC, 200 non-BC) and labeled them into 2 classes according to the
existence of BC. For the test phase, 100 sets of MIP images (50 BC, 50 non-BC) were used.
The data used in the test phase were independent and were not used in the training or
validation phases.
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Table 1. Number of images per clinical T categories in the training and test data.

Clinical T Category Diameter of Invasion (x cm) Training Data (n) Test Data (n)

T1

T1a 0.1 < x ≤ 0.5 2 0

T1b 0.5 < x ≤ 1.0 18 3

T1c 1.0 < x ≤ 2.0 130 27

T2 2.0 < x ≤ 5.0 44 19

T3 5.0 < x 6 4

Total 200 50

2.4. Image Processing

The image sets were further processed and augmented by using code written in the
programming language Python 3.7.0 (accessed on 21 July 2021 https://www.python.org)
and Python imaging library of Pillow 3.3.1 (accessed on 21 July 2021 https://pypi.python.
org/pypi/Pillow/3.3.1). Image processing was performed separately for the training,
validation, and test image sets.

For the training image sets, image processing that cut out the top and bottom of each
image, approximately corresponding to the brain and bladder, and data augmentation were
performed such that the CNN model became robust against the degree of enlargement,
rotation, changing brightness and contrast, horizontal flip, and partial lack of image.
Through those processes, 16 image sets were generated from one image set, resulting in a
total of 5120 image sets (320 image sets of each phase of 5-fold cross validation × 16) that
were available for training use. For each validation and test image set, like the training
phase set, the top and bottom of each image (approximately corresponding brain and
bladder) were cut out at first, and the central part (299 × 299 pixels) of captured images
was cropped.

2.5. DL Methods

We performed the whole process using a computer with a GeForce RTX 2080Ti
(NVIDIA, Santa Clara, California, CA, USA) graphics processing unit, a Core i7-10700
K 3.80-GHz (Intel, Santa Clara) central processing unit, and 32 GB of random-access mem-
ory. The Python programming language and Pytorch 1.6.0 (accessed on 24 July 2021
https://pytorch.org/) framework for neural networks were used for building DL models.

We made 2 DL models based on Xception, architecture of which has 36 convolutional
layers forming the feature extraction base of the network [16]. One model, named the
0-degree model, diagnosed BC with only 0◦ PET MIP image. The other was a model using
4 different degrees of images: 0◦, 30◦, 60◦ and 90◦ PET MIP images, named the 4-degree
model. First, pointwise (1 × 1) convolution was performed with 30◦ and 60◦ images, and a
30◦ + 60◦ image was created. Second, the 0◦ PET MIP image, 30◦ + 60◦ image, and 90◦ PET
MIP image were placed into an RGB image with 3 channels: the red channel for 0◦ PET MIP
image, green channel for 30◦ + 60◦ image, and blue channel for 90◦ PET MIP image. Then,
BC was diagnosed with the RGB image by Xception. Pointwise convolution is a type of
convolution method that uses a 1 × 1 kernel, which iterates through every single point [17].
This method makes the channels for the input images reduce and makes multiple images
train at the same time. In addition, it can reduce the computational complexity of DL
models [18]. By using this technique, we could input 4 images, including 0◦, 30◦, 60◦, and
90◦ MIP, into Xception that needs images composed of 3 channels (Figure 1).

https://www.python.org
https://pypi.python.org/pypi/Pillow/3.3.1
https://pypi.python.org/pypi/Pillow/3.3.1
https://pytorch.org/
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PET MIP images into an RGB image with 3 channels: red channel for a 0° PET MIP image, green 
channel for a 30° + 60° image, and blue channel for a 90° PET MIP image. Next, breast cancer was 
diagnosed with this RGB image using Xception. 

For training, image sets were prepared as described previously in the image pro‐
cessing section and were provided to each CNN. The output data were compared with 
the teacher data (2 categories: BC or non‐BC), and the error was back‐propagated to up‐
date parameters in each CNN so that the error between the output data and teacher data 
would be minimal. The CNNs comprised several layers, including convolutional layers, 
are popular for image recognition. 

The CNNs were initialized by the ImageNet (accessed on 24 July 2021 
http://www.image‐net.org/) pretraining model and fine‐tuned to yield better perfor‐
mance. The parameters of optimization were as follows: optimizer algorithm = stochastic 
gradient descent, learning rate = 0.0001 which is scheduled to decay by 0.4 every 15 
epochs, weight decay = 0.001, and momentum = 0.9. The image sets for the training and 
validation phase were randomly split into training data and validation data at the ratio of 
4:1 in each fold, and supervised learning by 30 epochs was performed. 

After developing models, we tested them with more image sets that included 50 BC 
patients and 50 non‐BC patients. 

2.6. Radiologists’ Readout 
For this study, 5 radiologists assessed the data with the following years of experience: 

Readers 1 and 2 had 1 year of experience, Reader 3 had 11 years, Reader 4 had 9 years, 
and Reader 5 had 8 years of experience in breast imaging. These 5 radiologists blindly 
evaluated the possibility of existence of BC (0–100 %) in 0°, 30°, 60°, and 90° MIP DICOM 
images of the test cases. The radiologists could not refer to the original PET/CT data. None 
of these images were processed by cutting out the top and bottom of the image as we 
performed for the DL training, validation, and test phases. 

Figure 1. With 30◦ and 60◦positron emission tomography (PET) maximum-intensity projection (MIP)
images, pointwise (1 × 1) convolution was performed first. We placed 0◦, 30◦ + 60◦, and 90◦ PET
MIP images into an RGB image with 3 channels: red channel for a 0◦ PET MIP image, green channel
for a 30◦ + 60◦ image, and blue channel for a 90◦ PET MIP image. Next, breast cancer was diagnosed
with this RGB image using Xception.

For training, image sets were prepared as described previously in the image processing
section and were provided to each CNN. The output data were compared with the teacher
data (2 categories: BC or non-BC), and the error was back-propagated to update param-
eters in each CNN so that the error between the output data and teacher data would be
minimal. The CNNs comprised several layers, including convolutional layers, are popular
for image recognition.

The CNNs were initialized by the ImageNet (accessed on 24 July 2021 http://www.
image-net.org/) pretraining model and fine-tuned to yield better performance. The pa-
rameters of optimization were as follows: optimizer algorithm = stochastic gradient de-
scent, learning rate = 0.0001 which is scheduled to decay by 0.4 every 15 epochs, weight
decay = 0.001, and momentum = 0.9. The image sets for the training and validation phase
were randomly split into training data and validation data at the ratio of 4:1 in each fold,
and supervised learning by 30 epochs was performed.

After developing models, we tested them with more image sets that included 50 BC
patients and 50 non-BC patients.

2.6. Radiologists’ Readout

For this study, 5 radiologists assessed the data with the following years of experience:
Readers 1 and 2 had 1 year of experience, Reader 3 had 11 years, Reader 4 had 9 years, and
Reader 5 had 8 years of experience in breast imaging. These 5 radiologists blindly evaluated
the possibility of existence of BC (0–100 %) in 0◦, 30◦, 60◦, and 90◦ MIP DICOM images of
the test cases. The radiologists could not refer to the original PET/CT data. None of these
images were processed by cutting out the top and bottom of the image as we performed for
the DL training, validation, and test phases.

http://www.image-net.org/
http://www.image-net.org/
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2.7. Statistical Analysis

All statistical analysis in this study was performed using the EZR software package,
version 1.54 (Saitama Medical Center, Jichi Medical University, Saitama, Japan) [19].

Interobserver agreement was assessed using the Pearson correlation coefficient and
was interpreted as follows: r = 0, no linear relationship; 0 < r < 1, a positive linear trend;
r = 1, a perfect positive linear trend; −1 < r < 0, a negative linear trend; and r = −1, a perfect
negative trend [20]. Receiver operating characteristic (ROC) analyses were performed to
calculate the area under the ROC (AUC) for performance of the CNN models and the
2 readers in probability of the existence of BC (%), respectively. An optimal cut-off value
that was closest to the upper left corner was derived (the cut-off value with the highest
sum of sensitivity and specificity). We performed a DeLong test to compare AUC [21]. A
p-value of <0.05 was considered to be statistically significant.

3. Results

Table 2 summarizes the interobserver agreement of our 4-degree model, 0-degree
model, and radiologists.

Table 2. Interobserver agreement.

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 0-deg 4-deg

Reader 1 1 0.823 0.708 0.803 0.733 0.713 0.754

Reader 2 0.823 1 0.786 0.896 0.823 0.693 0.6937

Reader 3 0.708 0.786 1 0.754 0.723 0.581 0.563

Reader 4 0.803 0.896 0.754 1 0.896 0.718 0.741

Reader 5 0.733 0.823 0.723 0.896 1 0.682 0.709

0-deg 0.713 0.693 0.581 0.718 0.682 1 0.910

4-deg 0.754 0.697 0.563 0.742 0.709 0.910 1

Comparison was performed with the Pearson product-moment correlation coefficient.
All interobserver agreements were significant (p < 0.001).

0-deg: 0-degree model, 4-deg: 4-degree model.

Significant interobserver agreement was found between all CNN models and the
radiologists (r = 0.563–0.896; p < 0.001), although the interobserver agreement between
these models and the radiologists (r = 0.563–0.754) was lower than that between the
radiologists alone (r = 0.708–0.896). Table 3 and Figure 2 show a comparison between the
diagnostic performance of the five readers and two models.

Table 3. Comparison between the diagnostic performance of deep learning models and radiologists.

Model or
Radiologist Cut-off Sp Sn AUC 95% CI p Value

4-degree model 0.52 0.80 0.96 0.936 0.890–0.982 —

0-degree model 0.51 0.88 0.82 0.918 0.859–0.968 0.078

Reader 1 0.50 0.84 0.80 0.872 0.804–0.941 0.036

Reader 2 0.40 0.92 0.80 0.891 0.824–0.957 0.189

Reader 3 0.10 0.76 0.90 0.900 0.841–0.960 0.332

Reader 4 0.20 0.90 0.94 0.957 0.916–0.999 0.405

Reader 5 0.10 0.86 0.98 0.967 0.934–1.000 0.237

Sp: Specificity, Sn: Sensitivity, AUC: Area under the curve, CI: Confidential interval.
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imum SUV (SUVmax) of 0.9 and 1.2. In the other case, the organs that are near the breast 
(heart, liver, spleen, and kidneys), showed up to SUVmax of 7.375. 

  

Figure 2. The area under the receiver operating characteristic (ROC) curve of the 4-degree model was
(a) significantly larger than that of Reader 1 (0.936 vs. 0.872; p = 0.0355). The model was (b) not more
significant but larger than that of Reader 2 (0.936 vs. 0.891; p = 0.189) and (c) Reader 3 (0.936 vs. 0.900;
p = 0.322) and was (d) smaller but not significantly different from that of Reader 4 (0.936 vs. 0.957;
p = 0.405) and (e) Reader 5 (0.936 vs. 0.967; p = 0.237). The model was also (f) not more significant but
larger than the 0-degree model (0.936 vs. 0.918; p = 0.0781).

Readers 1, 2, 3, 4, and 5 had sensitivities of 80%, 80%, 90%, 94%, and 98%; specificities of
84%, 92%, 76%, 90%, and 86%; and AUCs of 0.872, 0.891, 0.900, 0.957, and 0.967, respectively.
Our 4-degree model showed a sensitivity of 96%, a specificity of 80%, and an AUC of 0.936.
Our 0-degree model showed a sensitivity of 82%, a specificity of 88%, and an AUC of 0.918.
The AUC of our 4-degree model was significantly larger than that of Reader 1 (0.936 vs.
0.872; p = 0.036). Although there was no significant difference, the AUC of the 4-degree
model was larger than that of Reader 2 (0.936 vs. 0.891; p = 0.189), Reader 3 (0.936 vs. 0.900;
p = 0.322), and the 0-degree model (0.936 vs. 0.918; p = 0.078).

In our 4-degree model, there were 10 false-positive (Figure 3) and three false-negative
cases (Figure 4). Among these 10 false-positive cases, four cases had physiological FDG
uptake at both (2 cases) or left (2 cases) mammary glands resembling masses; four cases
had both nipples with physiological FDG uptake, but 1 of them disappeared in 30◦, 60◦, or
90◦ MIP.

Table 4 summarizes three false-negative cases. In two cases, lesions showed the
maximum SUV (SUVmax) of 0.9 and 1.2. In the other case, the organs that are near the
breast (heart, liver, spleen, and kidneys), showed up to SUVmax of 7.375.
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imum‐intensity projection (MIP) image, but the uptake of the right nipple disappears in 30°, 60°, and 90° PET MIP images. 
(b) Physiological FDG uptake of a mammary gland or a nipple (black arrows) could be recognized as a breast lesion. 

 
Figure 4. Examples of false‐negative cases of the 4‐degree model are shown. (a) The fluorodeoxyglucose (FDG) uptake at 
left breast cancer (black arrows) is very low and difficult to recognize. (b) The right breast cancer is recognizable in the 0° 
and 90° positron emission tomography (PET) maximum‐intensity projection (MIP) images (black arrows) but is difficult 
to recognize in the 30° and 60° PET MIP images due to physiological FDG uptake of other organs. 

Figure 3. Examples of false-positive cases of the 4-degree model are shown. (a) The fluorodeoxyglu-
cose (FDG) uptake of both nipples (left; black arrows, right; arrowhead) could be confirmed in the 0◦

positron emission tomography (PET) maximum-intensity projection (MIP) image, but the uptake of
the right nipple disappears in 30◦, 60◦, and 90◦ PET MIP images. (b) Physiological FDG uptake of a
mammary gland or a nipple (black arrows) could be recognized as a breast lesion.
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Figure 4. Examples of false-negative cases of the 4-degree model are shown. (a) The fluorodeoxyglu-
cose (FDG) uptake at left breast cancer (black arrows) is very low and difficult to recognize. (b) The
right breast cancer is recognizable in the 0◦ and 90◦ positron emission tomography (PET) maximum-
intensity projection (MIP) images (black arrows) but is difficult to recognize in the 30◦ and 60◦ PET
MIP images due to physiological FDG uptake of other organs.
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Table 4. Summary of false-negative cases.

Case Age SUVmax Breast Density Size of
Invasive Components (mm) Total Tumor Size (mm) Pathology and Subtype ER PgR HER2 Ki67

1 44 2.0 Heterogeneously 11 11 IDC + + - 9.1%

2 70 0.9 Scattered None 0.6 DCIS + - + 15.4%

3 70 1.2 Heterogeneously None 8 DCIS + + + 12.0%

ER: Estrogen receptor, DCIS: Ductal carcinoma in situ, HER2: Human epidermal growth factor type 2,
IDC: Invasive ductal carcinoma, PgR: Progesterone receptor.

In six cases, the 0-degree model made mistakes, for which the 4-degree model made
the correct diagnosis. The FDG uptake of BCs was shown near the nipple in three of these
cases, and the shape of FDG uptake in BC was a non-mass-like lesion in another case
(Figure 5).
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shown. (a) The fluorodeoxyglucose (FDG) uptake at left breast cancer (black arrows) is very low
and difficult to recognize. (b) The right breast cancer is recognizable in the 0◦ and 90◦ maxi-mum-
intensity projections (MIPs) (black arrows) but is difficult to recognize in the 30◦ and 60◦ MIPs due to
physiological FDG uptake of other organs.

The DL technologies are used increasingly in the field of breast imaging such as
mammography [22,23] and ultrasonography [24]. Some of these technologies (e.g., Mam-
moScreen) support radiologists in diagnosing BC clinically. Raya-Povedano et al. [25]
reported that digital mammography screening strategies based on artificial intelligence
systems could reduce the workload for radiologists by up to 70%. To our knowledge,
however, few software programs with MIP of PET/CT are used clinically.

The sensitivity and specificity of 18F-FDG-PET/CT in diagnosing primary lesion or
lesions of BC by radiologists varies from 48–96% and 73–100%, respectively [4]. The increase
in 18F-FDG-PET/CT use may lead to an increased possibility of detecting incidental breast
abnormality. The use of MIP in 18F-FDG-PET/CT allows the clinician to easily view the
whole body; therefore, it is also useful in screening for breast abnormality.

Our research focused on detecting primary BCs on MIP of 18F-FDG-PET/CT using
several DL methods with CNNs to evaluate their diagnostic performance compared with
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human readers. To our knowledge, this study is the first to compare the diagnostic perfor-
mance of classifying primary lesions of BC among two CNN models and human readers
on MIP of 18F-FDG-PET/CT.

Our 4-degree model showed significantly better results in diagnosing primary BC than
one less-experienced radiologist, and, although not significantly different, this model also
showed better diagnostic performance than another less-experienced radiologist and one
expert radiologist. In addition, no significant differences were found between the model
and two expert radiologists. Based on these results, a DL model like our 4-degree model
may decrease the occurrence of overlooking an incidental but critical breast abnormality,
especially when the model is used to support a less-experienced radiologist and to minimize
the negative effect for patients.

In this study, we examined the interobserver agreement between the CNN models
and radiologists and found significant interobserver agreement between them. However,
the interobserver agreement between these models and the radiologists were shown to
be lower than the agreement between the radiologists alone. These findings may suggest
that, although the radiologists and the CNN models made similar diagnosis, they may
have different decision criteria. In the future, more accurate models will be developed by
visualizing and validating the CNN model and the human rationale for the decision.

Our 4-degree model also showed non-significant but better diagnostic performance
than the 0-degree model. In fact, six cases including a non-mass-like lesion were diagnosed
correctly only by the 4-degree model. Hosni et al. [26] reported that ensemble methods,
a technique that combines a set of single techniques, show better performance in breast
image classification. Nobashi et al. [27] also demonstrated that CNNs with the ensemble
of multiple images of different axes and window settings improved performance over
the models using single image in the domain of brain 18F-FDG-PET scans. Considering
the findings of these reports and our results, using multiple images may contribute to an
increase in diagnostic performance more than using only one image.

In 4 of 10 false-positive cases of the 4-degree model, it is possible that our 4-degree
model misrecognized normal FDG uptake of one nipple as BC. Because FDG uptake of
the heart is typically higher than that of nipples, it is considered that the model could not
recognize one nipple overlapping with the heart and presume the other nipple was the
breast abnormality (Figure 4a). In the other four cases, the model may have misrecognized
normal but mass-like FDG uptake of a mammary gland or a nipple as a breast lesion
(Figure 4b).

For the three false-negative cases, it is possible that the level of FDG uptake at the
lesions was insufficiently high (Figure 5a) or that the high level of physiologic FDG uptake
in other organs led the model to avoid recognizing the lesions (Figure 5b). For these
reasons, the model seemed not to be able to detect the abnormal FDG uptake. In two of
these false-negative cases, the cancer subtypes were ductal carcinoma in situ (DCIS). The
size of these lesions might be too small and low FDG uptake to recognize lesions. The
remaining case was a small 8 mm invasive carcinoma with low activity and was a luminal
A type.

This study has several limitations. First, sample size is small. Second, the design is a
single-center and retrospective study. Third, we did not consider benign lesions such as
fibroadenoma and intraductal papilloma. Forth, differences in the image quality among
PET/CT devices may have influenced the diagnostic performance of our DL models. Fifth,
only four types of PET MIP images were used in the construction of the DL and the
radiologists’ reading. In the future, a large-scale, multicenter, prospective, validation study
should be performed using a large amount of 18F-FDG-PET/CT data.

4. Conclusions

Our 4-degree model, using images that consisted of multiple degrees, was significantly
more accurate than the diagnosis of an inexperienced radiologist and was comparable to
that of three expert radiologists and the 0-degree model. Therefore, a DL model similar to



Tomography 2022, 8 140

our 4-degree model may lead to a decrease in missing incidental breast findings and may
help radiologists in their diagnostic work in the future.
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