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Here, a method based on viscosity-type regularization is proposed for magnetic resonance electrical prop-
erty tomography (MREPT) to mitigate persistent artifacts when it is used to reconstruct a map of electrical
properties based on data from a magnetic resonance imaging scanner. The challenges for solving the corre-
sponding partial differential equation (PDE) are discussed in detail. The existing artifacts in the numerical
results are pointed out and classified. The methods in the literature for MREPT are mainly based on an as-
sumption of local homogeneity, which makes the approach simple but leads to artifacts in the transition re-
gion where electrical properties vary rapidly. Recent work has focused on eliminating the assumption of lo-
cal homogeneity, and one of the solutions is convection–reaction MREPT that is based on a first-order PDE.
Numerical solutions of the PDE have persistent artifacts in certain regions and global spurious oscillations.
Here, a method based on viscosity-type regularization is proposed to effectively mitigate the aforementioned
problems. Finite difference method is used for discretizing the governing PDE. Numerical experiments are
presented to analyze the problem in detail. Electrical properties of different phantoms are successfully re-
trieved. The efficiency, accuracy, and noise tolerance of the proposed method are illustrated with numerical
results.

INTRODUCTION
Magnetic resonance imaging (MRI)-based magnetic resonance
electrical property tomography (MREPT) (1, 2) is a strategy for
noninvasively reconstructing electrical properties (EPs) (permit-
tivity and electrical conductivity) of the human body without
using additional hardware to a magnetic resonance (MR) scan-
ner. It has been intensively developed in recent years for recon-
structing the EPs of human tissues based on the measurable data
(radiofrequency [RF] field distribution called B1-map) (3) from
an MRI scanner because the B1-field carries the information of
EP distribution in the human body.

MREPT is an important technology in various areas in
medicine and biology. The constructed EP map can show the
anatomical structure of the human body by the high contrast of
EPs between different tissues (4). Cancerous tissues, including
those at the early stages, are highly distinguishable from healthy
ones (5, 6). Therefore, the EP map provides a good tool for early
cancer detection. It can also provide guidance to design body-
centric communications (7) and electromagnetics-based thera-
pies (8). EP maps can also help in understanding the activities of

cells, in particular with exposure to either static or dynamic
electromagnetic waves (9). Moreover, an EP map is crucial for
accurate calculation of specific absorption rate, which is a main
parameter for assessing the risk of RF and microwave radiation
and that of ultrahigh-field MRI scanning (10, 11).

MREPT was originally proposed by Haacke et al. (12) and
first implemented by Wen (13). The Helmholtz equation for
homogeneous material was proposed for calculating both con-
ductivity and permittivity with positively circularly polarized
component of the magnetic field (B1

�), which corresponds to the
RF transmit field. Another MREPT method was developed and
systematically studied by Katscher et al. (14) and Voigt et al.
(15). The integral forms of Faraday’s law and Ampère’s law were
applied to formulate the governing equation based on B1

�. How-
ever, these methods are based on an assumption of local homo-
geneity for simplification. This assumption leads to artifacts in
the region where EPs vary either quickly or abruptly (3, 16, 17).
The reconstruction errors are rigorously analyzed by Seo et al.
(18). A recent work was focused on removing the local homo-
geneity assumption (19).
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One full generalization of these methods was performed by
Sodickson et al., and the technique was named Local Maxwell
Tomography (LMT) (20, 21). The governing equation of this
method was derived from Faraday’s law and Ampère’s law. The
unmeasurable magnetic field components are eliminated by
using Gauss’s law. The method is physically feasible and free of
assumptions. Magnetic fields measured using an MRI scanner
with multiple channels are used to solve the unknown. Although
the assumption of local homogeneity is removed in LMT, higher-
order partial differentiation over the magnetic field is needed in
the calculation, which significantly increases this method’s sen-
sitivity to noise.

Another MREPT method (22) was proposed on the basis of
the fact that the magnetic field B1

� near the center of a birdcage
or a transverse electromagnetic coil is homogeneous along its
central axis (23, 24), and it is assumed that the contribution of
the along-axis component of the magnetic field is negligible
when the region of interest is close to the center of the coil. A
first-order PDE including a gradient term of the unknown EP
was formulated via properly manipulating Maxwell equations,
and the gradient term describes the inhomogeneity of the object
under investigation. This method is more general than the
MREPT proposed by Katscher et al. (14) and has a simpler form
than LMT.

Hafalir et al. (25) then named this method as convection–
reaction MREPT (cr-MREPT), as its governing equation is similar
to the convection–reaction equation (26). The first-order PDE
was then solved by Hafalir et al. (25) for 2-dimensional recon-
struction using a strong form with finite element method (FEM)
(27). An obvious artifact was observed in the region where the
gradient of |B1

�| is close to zero. Although 2 methods, the
double-excitation and the constraint MREPT, were further pro-
posed by Hafalir et al. (25) to improve the results, artifacts
reappear when noise exists. Meanwhile, cr-MREPT does not
work with every phantom. Even with the phantoms used by the
authors, the reconstructed EPs deviate seriously from the true
values in a large region close to the central artifact. High sen-
sitivity of noise was also observed.

In parallel with the work of Hafalir et al., Ammari et al. (19)
also attempted to solve this PDE via an adjoint-based iterative
reconstruction algorithm. The real and imaginary parts of the
equation are separated to produce a coupled equation pair
solved by the iterative scheme. This method can construct a blur
image of the EPs without the aforementioned artifacts, but it is
not applicable in the region where the gradient of |B1

�| field is
close to zero, and the produced linear system is ill-condi-
tioned. The method also converges slower than the FEM-
based method (19).

The solution of the first-order PDE shows persistent artifacts
where �|B1

�| approaches zero. Other than that, global spurious
oscillations exist in the solution of this first-order PDE. There-
fore, directly solving it with numerical methods is difficult. Here,
the existing challenges for solving the PDE are discussed in
detail. The existing artifacts in the numerical results are pointed
out and classified. An effective viscosity-type regularization
(28) solution is applied to mitigate the aforementioned prob-
lems. A Laplacian term is introduced into the first-order PDE for
stabilizing the entire system, which can be solved by either the

finite difference (FD) method or FEM. The governing PDE is in
the first order, so its solution will be a linear function that
depends on the space coordinates, and it can present sharp
variations in space. Because the PDE is not a singularly dis-
turbed equation (29, 26, 30), the introduced second-order Lapla-
cian term will modify the PDE to obtain a second-order solution,
which is an approximation of its exact solution and presents a
smoother property in space.

The derivation of the formulation is briefly presented for the
convenience of discussion; behaviors of the equation are ana-
lyzed in detail before introducing the viscosity-type regulariza-
tion. Numerical experiments are used to facilitate the analysis of
the existing problems and to show the effectiveness of the
proposed approach. Finite difference method is applied for dis-
cretization. The proposed method is applied for reconstructing
the EPs of different phantoms. Accuracy, stability, and noise
tolerance of the method are illustrated with numerical results.

Theory and Methodology
The governing PDE for cr-MREPT are given as follows:

(L � M) · �� � ��2H1
� � i��H1

� � 0. (1)

This equation can be solved for reconstructing EPs of a
3-dimensional object (see online supplemental Appendix for the
relating derivation of this equation). If � does not vary severely

along the z direction,
	�

	z
becomes negligible. Equation (1) is

then simplified as follows for a single section located at the
center of birdcage coil:

�Lxy � Mxy� · �xy� � ��2H1
� � i��H1

� � 0 (2)

Lxy and Mxy are vectors L and M without the z-compo-
nent, respectively.

�xy �
	

	x
x̂ �

	

	y
ŷ. Notice that �2H1

� still needs to be eval-
uated in a 3-dimensional form. Magnetic field Hz is not mea-
surable using MRI, but its contribution is negligible compared
with H1

�, as Hz is generally close to zero in the center of the
birdcage coil. Therefore equation (2) could be further simplified
as follows:

Lxy · �xy� � ��2H1
� � i��H1

� � 0. (3)

For homogeneous regions, �xy� � 0; therefore, equation (3)
can be simplified as � � i��H1

�⁄�2H1
�, which is the governing

equation proposed by Haacke et al. and Wen (12, 13), named, in
this content, standard MREPT (stdMREPT).

Therefore, the original inverse problem equivalently be-
comes a problem of solving the first-order PDE (3). It has the
form of a stationary convection–reaction equation, which is a
mathematical model for fluid dynamics (31). Thus, the MREPT
based on equation (3) is called cr-MREPT by Hafalir et al. (25).

The coefficients of PDE (3) are complex, making the PDE
exhibit different mathematical and numerical behaviors from
the stationary convection–reaction equations that have real
coefficients. In particular, both equations show global spurious
oscillations in their solutions (26). For convection–reaction
equations (real coefficients), these global spurious oscillations
are caused by the mesh density for discretization, and the results
converge better when the mesh size decreases. However, this fact
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does not hold for equation (3), where the coefficients are com-
plex. Instead, the spurious oscillation in equation (3) is caused
by a fundamental mathematical drawback of itself; this is fur-
ther discussed as follows.

Equation (3) can be reformed as follows:
F(r) · �xy�(r) � f (r, �(r)) (4)

with F�r� � Lxy and f �r,��r�� � ��2H1
� � i��H1

�. According to
the Cauchy–Kowalevski theorem (32), a necessary condition for
equation (4) to have a smooth solution is that f �r,��r�� is analytic
in region � (19). However, �2H1

� is not smooth in the region
where electrical parameters vary rapidly (as in Figure 3H for a
2-layer cylindrical phantom with difference 
r and � in different
layers). Discontinuity of �2H1

� exists at the boundary where
electrical parameters vary rapidly. Therefore, a smooth solution
of � and 
r cannot be obtained with equation (3), and a better
strategy is needed for good numerical stability, accuracy, and
efficiency.

Here, a viscosity-type regularization method (28) is applied
to equation (3) to eliminate the global spurious oscillation in
its solution. The governing equation becomes the following
equation:

��x,y
2 � � Lxy · �xy� � ��2H1

� � i��H1
� � 0 (5)

where ��x,y
2 � is the additional Laplacian term, and � is a constant

that is always �1 but �0. This approach does not lead to a
singularly disturbed problem (29, 26, 30). The additional Lapla-
cian term plays a regularization role. This stabilized MREPT
method is named as stabMREPT. There is no good way for
deciding the optimum value of � yet, but it can be chosen as
several times or a fraction of the maximum of |Lx|, which is the
x-component of Lxy. There are 2 ways to add the Laplacian term.
One is adding it to the whole calculation domain, as shown in
equation (5), and the other is adding it to the region where it is
necessary (33) to produce more accurate results, but the optimal
coefficients of the added Laplacian term need to be determined
in a complex way, rendering it complicated. Here, only equation
(5) is implemented for showing the idea. Central difference
formula of the FD method is used for discretization.

Discretization Strategy
A square domain denoted as � and bounded by 	 is discretized
by small squares with Nx � 2 and Ny � 2 grid points along the
x and y directions, respectively, giving �Nx � 2���Ny � 2� data
points in space. �x and �y are the step lengths along x and y
directions, respectively. Use i and j to index the mesh points
along x and y with i :� �i�i��, 0 � i � Nx � 1� and j :�
� j � j��, 0 � j � Ny � 1�, respectively. The values of H1

� and � at
the point (i, j) are represented as H�i, j� and ��i, j�, respectively.

Allowing Lxy � �Lx, Ly� with Lx � �	H1
�⁄	x � i	H1

�⁄	y
and Ly � �i	H1

�⁄	x � 	H1
�⁄	y. The values of Lx and Ly at point

(i, j) are represented with Lx
�i, j� and Ly

�i, j�, respectively. Using
first-order central difference formula, Lx

�i, j� and Ly
�i, j� are given

as follows:

Lx
{i, j} � �

H�i�1, j� � H�i�1, j�

2�x
� i

H�i, j�1� � H�i, j�1�

2�y
, (6)

Ly
�i, j� � �i

H�i�1, j� � H�i�1, j�

2�x
�

H�i, j�1� � H�i, j�1�

2�y
, (7)

Here, the imaginary unit i can be easily distinguished from
the index i on the basis of its location. Representing the data of
�2H1

� at the point (i, j) as d2H�i, j�, the second-order central
difference formula is used to discretize �2H1

�, which gives the
following equation:

d2H�i, j� �
H�i�1, j� � 2H�i, j� � H�i�1, j�

�x2

�
H�i, j�1� � 2H�i, j� � H�i, j�1�

�y2

�
H�i, j,k�1� � 2H�i, j,k� � H�i, j,k�1�

�z2
(8)

k is the index for sections along the z-direction. Two extra
sections at ��z and �z away from the central section are used to
calculate the partial differentiation of H1

� over z.
Another way for calculating Lx

�i, j�, Ly
�i, j�, and d2H�i, j� is by

using the Savitzky–Golay (SG) filter (34), which has been widely
used to smooth noisy data. Here, H1

� is approximated with the
following equation:

H1
� � a6x

2 � a5y
2 � a4xy � a3x � a2y � a1. (9)

Figure 1. Neighbors of H�i, j� in a mesh grid.

Figure 2. The phantom of 2 cylinders with the
3D view (A) and its cross section view (B). h �

24 cm, r1 � 5 cm, and r2 � 2.5 cm. Dashed-line
square defines region of interest. Unit of sigma is
S/m.
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where (x, y) is the corresponding coordinate of H1
�. ap, p � 1, . .,

6 are polynomial coefficients, which need to be decided with the
measured data of H1

�. As an example, at mesh grid point (i, j),
H�i, j� has 8 neighbors, as shown in Figure 1. These neighbors or
H�i, j� itself could be used for interpolation with Stanley et al. (9),
which will produce an overfitting linear system about the un-
known coefficients ap, p � 1, . . . , 6. A least-square method
could then be used for solving the unknown.

The derivatives over H1
� at the point (i, j) are then calculated

using the following equations:

	H1
�

	x
� 2a6xi � a4yj � a3, (10)

	H1
�

	y
� 2a5yj � a4xi � a2, (11)

	2H1
�

x2
�

	2H1
�

y2
� 2a6 � 2a5. (12)

Here, (xi, yj) is the coordinate of the grid point (i, j). Notice
that the Laplacian term over H1

� includes the second-order
partial differentiation of H1

� over z, which is calculated with a
central difference formula, with the data at sections located at
��z and �z. With equations (6)–(8), or (10)–(12), equation (5)
can be easily discretized with the first- and second-order central
difference formula, as follows:

�i��0H�i, j� � �
��i�1, j� � 2��i, j� � ��i�1, j�

�x2

� �
��i�1, j� � 2��i, j� � ��i�1, j�

�y2
� Lx

�i, j�
��i�1, j� � ��i�1, j�

2�x

� Ly
�i, j�

��i, j�1� � ��i, j�1�

2�y
� ��i, j�d

2H�i, j� . (13)

A linear system is produced via assembling (13) for all
points indexed by (i, j). The linear system is denoted as
Ag � b. The sparsity of the tridiagonal matrix A allows

Figure 3. � (A) and 
r (B) of phantom shown in Figure 2 are reconstructed by applying convection–reaction magnetic
resonance electrical property tomography (MREPT) (cr-MREPT) based on equation (3). � (C) and 
r (D) reconstructed
using equation (2). Real (E) and imaginary (F) parts of H1

�, absolute value of Lx (G) and �2H1
� (H), are also presented.

Figure 4. � (A) and 
r (B) recon-
structed via least-square minimi-
zation with � � 0.01max�A� for
the phantom shown in Figure 2.
Central difference is used for
�2H1

�.
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efficient calculation with Gaussian elimination. The Dirichlet
boundary condition is assumed here. Vector g represents the
unknowns ��i, j�. The relative permittivity and conductivity at
(i, j) can be calculated based on the real and imaginary parts
of ��i, j�.

Numerical Experiments
In the calculation, H1

� as input is simulated with FEM-based soft-
ware COMSOL (35). A 16-leg high-pass shielded birdcage coil with
a radius of 14.5 cm and a leg-length of 24 cm (36) is built to work
at 127.74 MHz (3 T MRI system) to produce a homogeneous H1

�

within the coil, and it is placed with its axis along the z-axis. The
coil is driven by 2 ports with 500 V for each. Both ports are
geometrically 90° apart with a 90° phase difference.

The phantom of 2 coaxial cylinders used for simulation is
shown in Figure 2A. The cylinders have the same height h �
24 cm. The radii of the exterior and interior ones are r1 �
5 cm and r2 � 2.5 cm, respectively. The exterior cylinder is filled
by a material with 
r1 � 75 and �1 � 0.5 S/m, whereas for the
interior one, 
r2 � 50 and �2 � 1 S/m.

The phantom is placed in the birdcage coil, with its axis and
center coinciding with those of the coil. A Dell Precision worksta-
tion (Round Rock, Texas) with Intel Xeon CPU with 2 processors (4
cores for each) and 48 GB RAM is used for simulation. The phantom
is meshed with tetrahedral elements. The maximum mesh size for
� 0.5 cm � z � 0.5 cm is 1 mm. The mesh size is then increased
gradually inside out. This strategy guarantees the accuracy of the
calculated H1

� at the sections of interest and minimizes the number
of elements to reduce the required memory. H1

� of the sections at

z � 0, z � �0.25 cm, and z � 0.25 cm is extracted as inputs for
the reconstruction.

The domain � is defined as the square inscribed to the cross
section of the exterior cylinder, indicated by the dashed lines in
Figure 2B. It is then meshed with Nx � Ny � 99. The data of H1

�

are directly extracted from COMOSL.
The mesh used here will lead to a space resolution of 0.75

mm. Because simulation data are used here, not much concerns
are needed. But, in practice, this resolution will need a long MR
scan and produce low signal-to-noise ratio (SNR). A coarse
mesh can be used first to perform the MR scan. With the ob-
tained H1

�, one can easily apply the cyclic regularized Savitzky–
Golay filter (37) to reconstruct H1

� of a finer mesh with the
required resolution. This will also help in reducing noise.

Relative permittivity 
r and conductivity � of phantom
shown in Figure 2 are first reconstructed by equation (3), the
cr-MREPT method. Differentiations of H1

� are calculated with
the central difference formula. As shown in Figure 3, A and B,
significant artifacts are observed around the center of the inte-
rior cylinder and in the regions where � and 
r are discontinu-
ous. Furthermore, global spurious oscillations are also clearly
seen. For checking the effect of neglecting the contribution of
Hz, equation (2) is also applied for the reconstruction. Results
are shown in Figure 3, C and D, and not much improvement
is seen. The global spurious oscillations and the artifacts still
exist.

Hafalir et al. (25) report that the central artifacts are caused
by the fact that Lx and Ly are close to 0. Figure 3, E and F shows

Figure 5. � (A) and 
r (B) of the
phantom in Figure 2 are recon-
structed by cr-MREPT with
Nx � Ny � 199.

Figure 6. Reconstructed results of
� (A) and 
r (B) for the 2-cylinder
phantom shown in Figure 2 with
stabilized MREPT (stabMREPT). � �

0.37, Nx � Ny � 199.
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the real and imaginary parts of the simulated H1
� at the central

section (z � 0), denoted as �H1
� and �H1

�, achieve to their
extrema in the vicinity of the center, as shown in the figures,
indicating that 	H1

�⁄	x and 	H1
�⁄	y are close to zero. This results

in Lx
�i, j� � 0 and Ly

�i, j� � 0 for the points in the center region. The
absolute values of Lx are shown in Figure 3G (|Lx| � |Ly|).

A minimization method is also applied to mitigate the global
spurious oscillation when solving equation (3). The original linear
system produced by equation (3) is written as Ag � b, which is
then transformed into a least-square minimization problem
min||b � Ag||2 � �||g||2 with a penalty term �||g||2. The
damping parameter � � 0. In this way, the solution for g is
regularized. It is then solved with the iterative algorithm LSQR,
which is based on the Golub–Kahan bidiagonalization process
(38). The condition number of A here is about 103, so
�ATA � �I�g � ATb, A being not symmetric, is not suitable
for the calculation (it is equivalent to the applied minimization
problem), because the 2-norm condition number of ATA is
exactly the square of the one of A.

This minimization is conducted with � � 0.01max||A||2,
which is a large value for �. As shown in Figure 4, the results
converge better to the true values, but an obvious “4-blade”
artifact is observed. These global spurious oscillations remain.

Moreover, this global spurious oscillation is independent of
grid sizes �x and �y. Figure 5, A and B show the results
calculated with Nx � Ny � 199, which is a much finer mesh in
the region �. Global spurious oscillation still exists. Many arti-

facts appear with very large values. The reconstructed values of
|
r| and |�| achieve to 500 and 10.

Therefore, neither directly the solution of equations (2) and
(3) nor that of the least-square minimization method produces
accurate results. This is expected by the fundamental drawback
existing in the governing PDE, which is explained in section
Theory and Methodology. However, reconstruction with the
proposed stabMREPT based on the new second-order PDE (5)
shows much better performance, which is shown as follows.

The same phantom (shown in Figure 2) is used for the
proposed stabMREPT. The region � is discretized with the same
mesh density (Nx � Ny � 199). The parameter � � 0.37, which is
7 times of the maximum value of |Lx|. Figure 6 shows the
reconstructed conductivities and permittivities. The normalized
root-mean-square error (NRMSE) is defined as %error � 100||
�etrue � erecon�||2⁄||etrue||2. The reconstructed results of � and 
r
are very close to the true values. Comparison of the recon-
structed � and 
r with their true values at the line y � 0 yields the
plots shown in Figure 7. A very good match is observed. Relative
errors are all �1% except the boundary where the electrical
parameters are discontinuous. Moreover, including Hz into
equation (5) produces the same results.

To further check the performance of stabMREPT compared
with stdMREPT at both the boundary and at the homogeneous
regions (no abrupt change in EPs), the NRMSE is calculated here
for the reconstructed � of the 2-cylinder phantom. The param-
eters for the reconstruction are the same as those used for Figure

Figure 7. Comparison between
the true values and the recon-
structed ones of � (A) and 
r (B)
along y � 0. stabMREPT is ap-
plied for the 2-cylinder phantom.
The regularization parameter � �

0.37, Nx � Ny � 199.

Figure 8. The map of normal-
ized root-mean-square error
(NRMSE) for � reconstructed with
stdMREPT (A) and stabMREPT (B).
The 2-cylinder phantom is used.
� � 0.37, Nx � Ny � 199.

MRI-Based Method for Electrical Property Tomography

TOMOGRAPHY.ORG | VOLUME 3 NUMBER 1 | MARCH 2017 55



6. The map of NRMSE is shown in Figure 8. A reconstruction
error of stdMREPT at the boundary of interior cylinder is
�100%, whereas a large error is also observed in the region far
from the boundary. A reconstruction error at the boundary of
the cylinder is also observed in the results obtained with stab-
MREPT, which is about 45%, and this error decreases gradually
along the radius. But the reconstruction error at the region far
away from the boundary is much smaller than the one at
stdMREPT, where the largest error is �3%. Therefore,
stabMREPT performs better than stdMREPT in both the bound-
ary and homogeneous regions.

To further test the proposed approach, a simplified human
head phantom as shown in Figure 9 is simulated. The model has
5 different regions indicated by different colors. Each region
relates to a tissue type of the human brain (4). These tissues are,
from external to internal, scalp (
r � 62, � � 0.54 S/m), skull
(
r � 21, � � 0.12 S/m), gray matter (
r � 73, � � 0.59 S/m),
white matter (
r � 52, � � 0.34 S/m), and cerebrospinal fluid
(
r � 84, � � 2.14 S/m) at 127.74 MHz (39). For the convenience
of calculation, the region indicated with gray color is set to a
12- � 14-cm (length � width) square). The 2-dimensional
section shown in Figure 9 is drawn and then extruded in
COMSOL to produce a 1-cm-thick model. The thickness is
primarily limited by the workstation’s RAM. The curved edges and
the central red region are meshed with an element size smaller than
1 mm, and other regions are meshed with an element size smaller
than 1.5 mm.

The region � defined by �6 cm � x � 6 cm and �7 cm �
y � 7 cm is meshed with Nx � 150 and Ny � 175, respectively. The
parameter � � 4.1e � 3, which is 0.7 times the maximum value of
|Lx|. The calculation is finished within 1 minute. Results are given

Figure 9. Simplified head model with 5 different
regions characterized with electrical parameters of
scalp (
r � 62, � � 0.54 S/m, gray), skull (
r � 21,
� � 0.12 S/m, deep blue), gray matter (
r � 73,
� � 0.59 S/m, yellow), white matter (
r � 52, � �

0.34 S/m, light blue), and cerebrospinal fluid (
r �

84, � � 2.14 S/m, red).

Figure 10. True � and 
r of the head model are given in (A) and (B). Results are shown in stabMREPT (C) and (D).
Results of cr-MREPT are given in (E) and (F). Results of stdMREPT are given in (G) and (H). The first and second rows are
results of � and 
r, respectively.
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in Figure 10. True values are shown in Figure 10, A and B. The
reconstructed � with stabMREPT (Figure 10C) matches quite well to
true values with NRMSE � 5%, although boundary artifacts are
observed in the results of 
r (Figure 10D). These results are better
than those computed with cr-MREPT (Figure 10, E and F) and
stdMREPT (Figure 10, G and H). Figure 11 shows a comparison of
the variation of � and 
r along the line of x � 0 for stabMREPT and
stdMREPT. A strong oscillation exists in the stdMREPT results.

In practical measurement, the data of H1
� are always

polluted by noise at different levels. The noise tolerance of
stabMREPT is tested using the simplified human brain model.
The SNR is defined as SNR � 20log10|H1

�|⁄|N|, where H1
� is the

simulated data. N is the added complex white Gaussian noise
generated with a given noise level in decibel. SNR is set to be 60

dB and � � 4.1�10�3 in equation (5). The SG filter is used for
calculating the derivatives of H1

� to smooth noisy data. Figure
12, A and B shows the results reconstructed by cr-MREPT. The
accuracy of the results obtained is low. Results of stdMREPT are
given in Figure 12, C and D. The results are severely degraded by
the noise. Very large values and global oscillations are observed
in the results. On the contrary, the noise has no strong effect on
the results of � reconstructed with stabMREPT, although the
results for 
r are slightly affected, as shown in Figure 12, E and
F. Moreover, the reconstructed results are severely affected
when the noise level is increased to be �50 dB. However, the
effect of noise on stabMREPT becomes rapidly insignificant with
an increase in SNR. Examples are given in Figure 12, G and H for
stabMREPT with SNR � 65 dB, a considerable improvement is

Figure 11. The variation of con-
ductivity � (A) and relative per-
mittivity 
r (B) along x � 0 for
different methods.

Figure 12. The noise tolerance of cr-MREPT (A and B), standard MREPT (stdMREPT) (C and D), and stabMREPT (E and
F). The first and the second rows are reconstructed results of � and 
r, respectively. From left to right, the first 3 columns
are reconstructed results of cr-MREPT, stdMREPT, and stabMREPT with 60 dB noise. The last row shows the results of
stabMREPT with 65 dB noise (G and H). The Savitzky–Golay (SG) filter is used to calculate partial differentiations over
H1

� for smoothing noisy data.
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observed. In contrast, performance of cr-MREPT and stdMREPT
did not improve when SNR is increased from 60 to 65 dB. The
effect of noise on stabMREPT is negligible when SNR is smaller
than 70 dB.

DISCUSSION AND CONCLUSION
Here, a viscosity-type regularization method is used to effec-
tively improve the performance of the formerly proposed cr-
MREPT, which is based on a first-order complex coefficient PDE.
The proposed method is then named as stabMREPT. The regu-
larization is implemented on the basis of the fact that adding the
Laplacian term does not lead to a singularly disturbed problem.
The PDE is discretized using FD method.

The reconstruction method based on the same PDE was
named as cr-MREPT by Hafalir et al. (25). However, several
drawbacks exist in this method, although it is rarely reported in
the literature. Here, these drawbacks are analyzed in detail.
Different numerical simulations are given for the purpose of
illustration; 2 PDE properties are coupled. The governing equa-
tion of cr-MREPT is equation (1), which is in the form of pure
convection–reaction PDE. It is well known in the literature that
it is tricky to numerically solve this kind of PDE (40). With the
complex coefficients, this kind of PDE has a smooth solution
with some conditions, as discussed in Theory and Methodology.
Therefore, directly using the convection–reaction PDE for re-
construction can be difficult.

The viscosity-type regularization method is then suggested.
As illustrated in the paper, this method can efficiently mitigate
the persistent artifacts existing in the convection–reaction PDE.
The regularization parameter � needs to be positive and smaller
than 1. It can be chosen as several times or a fraction of the
maximum of |Lx|, which is the x-component of Lxy. Blurring
can be observed at the boundaries of different tissues, but the
reconstruction accuracy can be considerably better. The accu-
racy of the proposed method is shown by numerical results
obtained by using simple and complex phantoms. Good perfor-
mances in several numerical experiments are observed by com-
paring them with other existing methods.

Although the noise tolerance is not yet good for practical
use, it is already considerably better than stdMREPT and cr-
MREPT. The noise tolerance of this method was compared with
that of other methods. Another algorithm based on FEM will be
implemented in the next step to add the regularization term only
when it is needed. A regularization-based SG method (37) can be
used for reconstructing H1

� from the measured noisy data, which
will further reduce the influence of noise and increase the noise
tolerance of the method.

Supplemental Materials
Supplemental Appendix: http://dx.doi.org/10.18383/j.tom.

2016.00283.sup.01

REFERENCES
1. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical appli-

cations of 7T MRI in the brain. Eur J Radiol. 2013;82(5):708–718.
2. Budinger TF, Bird MD, Frydman L, Long JR, Mareci TH, Rooney WD, Rosen B,

Schenck JF, Schepkin VD, Sherry AD, Sodickson DK, Springer CS, Thulborn KR,
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