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This study investigates the effectiveness of hundreds of texture features extracted from voxel-based dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) parametric maps for early prediction of breast
cancer response to neoadjuvant chemotherapy (NAC). In total, 38 patients with breast cancer underwent
DCE-MRI before (baseline) and after the first of the 6–8 NAC cycles. Quantitative pharmacokinetic (PK) pa-
rameters and semiquantitative metrics were estimated from DCE-MRI time-course data. The residual cancer
burden (RCB) index value was computed based on pathological analysis of surgical specimens after NAC
completion. In total, 1043 texture features were extracted from each of the 13 parametric maps of quantita-
tive PK or semiquantitative metric, and their capabilities for early prediction of RCB were examined by corre-
lating feature changes between the 2 MRI studies with RCB. There were 1069 pairs of feature–map combi-
nations that showed effectiveness for response prediction with 4 correlation coefficients �0.7. The 3-dimen-
sional gray-level cooccurrence matrix was the most effective feature extraction method for therapy response
prediction, and, in general, the statistical features describing texture heterogeneity were the most effective
features. Quantitative PK parameters, particularly those estimated with the shutter-speed model, were more
likely to generate effective features for prediction response compared with the semiquantitative metrics. The
best feature–map pair could predict pathologic complete response with 100% sensitivity and 100% specific-
ity using our cohort. In conclusion, breast tumor heterogeneity in microvasculature as measured by texture
features of voxel-based DCE-MRI parametric maps could be a useful biomarker for early prediction of NAC
response.

INTRODUCTION
Neoadjuvant (preoperative) chemotherapy (NAC) was introduced
in the 1970s, and over the past 2 decades, it has been established as
a standard of care for patients with locally advanced breast
cancer (LABC) for both initially operable and inoperable tumors
(1-3). Compared with adjuvant (postoperative) chemotherapy,
NAC has been shown to increase the breast-conserving surgery
rate. Furthermore, the pathologic complete response (pCR) to
NAC or minimal post-NAC residual disease has been found to be
clearly correlated with disease-free and overall survival rates (1,
4-9). However, patients undergoing NAC do not always achieve
pCR, and the pCR rate is reported to vary in the range of

6%–45% depending on breast cancer subtypes and treatment
regimens (10-13). In the emerging era of precision medicine,
early prediction of NAC response may allow rapid, personalized
treatment regimen alterations for nonresponding patients with
breast cancer, and spare them from potential short- and long-
term toxicities associated with ineffective therapies. In addition,
accurate evaluation of residual disease after NAC is vital for
surgical decision-making and could result in surgical treatment
plans that are more tailored to individual patients.

As a noninvasive imaging method for in vivo measurement
of tissue microvascular perfusion and permeability, dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) is
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increasingly used in clinical trial and research settings to assess
breast cancer response to NAC (14). Changes in tumor size
observed on the basis of DCE-MRI images are routinely used in
clinical trials to assess tumor response to treatment. However,
size change in response to therapy is often found to manifest
later compared with changes in underlying tumor functions
(15-18), such as vascularization and vascular permeability, cel-
lularity, and metabolism. There is substantial literature showing
that semiquantitative analysis (19-24) or quantitative pharma-
cokinetic (PK) analysis (25-35) of DCE-MRI time-course data
can provide better early prediction of breast cancer pathologic
response to NAC than image tumor size changes after 1–2 NAC
cycles. We have recently shown (25, 36) that changes in tumor
mean PK parameters after only 1 NAC cycle are good early
predictors of pCR versus non-pCR.

However, the approaches to compute tumor mean DCE-MRI
metrics, whether semiquantitative or quantitative, cannot cap-
ture the spatial heterogeneity of the tumor functions as mea-
sured by DCE-MRI, and therefore, valuable information could be
missed during therapeutic response evaluation.

Texture analysis of semiquantitative or quantitative PK
metrics from breast DCE-MRI has been shown to be effective in
applications such as automatic lesion segmentation (37-39) and
cancer diagnosis (40-46). Recently, Teruel et al. (47) presented a
detailed analysis of 16 textural statistical features from T1-
weighted DCE-MRI images that are capable of predicting early
tumor response to NAC. However, this study used a 2-dimen-
sional (2D) statistical texture description without taking advan-
tage of the 3-dimensional (3D) information provided by the
T1-weighted DCE-MRI. Moreover, these features were computed
in a specific gray-level condition that reduced the number of
potentially useful features. Golden et al. (48) used similar DCE-
MRI texture features to predict therapeutic responses in terms of
pCR, residual lymph node metastases, and residual tumor with
lymph node metastases in patients with triple-negative breast
cancer.

Here, we conducted a thorough analysis of hundreds of 3D
statistical features extracted from parametric maps of semi-
quantitative and quantitative PK metrics that were obtained
from a DCE-MRI study (25) of breast cancer response to NAC.
We report our preliminary findings on the effectiveness of these
features for early prediction of NAC response.

MATERIALS AND METHODS
Patient Cohort and Study Schema
In this institutional review board-approved and HIPAA (Health
Insurance Portability and Accountability Act of 1996)-compli-
ant study, 38 women (age range, 27–79 years) diagnosed with
grades 2–3 invasive breast tumors and scheduled to undergo
NAC consented to participate in a longitudinal research MRI
study that includes DCE-MRI. In total, 31 of the 38 women were
treated with standard-of-care therapy regimens that included 4
cycles of doxorubicin–cyclophosphamide administration every
2 weeks followed by 4 cycles of a taxane every 2 weeks, or 6
cycles of the combination of all 3 drugs every 3 weeks. The other

7 patients were enrolled in the NAC ISPY-2 trial,1 where patients
were randomized to receive standard-of-care regimen or stan-
dard-of-care regimen plus experimental drugs. The ISPY-2 stan-
dard-of-care regimen started with a taxane administration fol-
lowed by doxorubicin–cyclophosphamide administration. If
used, the experimental drug was usually added to the taxane. In
total, 4 of the 7 patients were placed in the treatment arm with
experimental drugs—3 received neratinib, a tyrosine kinase in-
hibitor, and 1 received ganitumab, a human monoclonal anti-
body against type 1 insulin-like growth factor receptor. The
targeted agent, trastuzumab, was added to the NAC regimen for
tumors with positive HER2 (human epidermal growth factor
receptor 2) receptor status (n � 23).

MRI examinations for this research study were performed
before NAC (visit 1, V1), after 1 cycle of NAC (V2), at midpoint of
NAC (V3, usually after 3 or 4 NAC cycles, or before change of
NAC agents), and after NAC completion but before surgery (V4).
For the V2 � V4 studies, the MRI scan was undertaken at least 7
days after the administration of the previous NAC cycle to allow
time for drug effects. This paper reports results for early predic-
tion of NAC response, and thus, only the data from the V1 and V2

studies were used for texture analysis.

DCE-MRI Data Acquisition and Analysis
All breast MRI studies were performed using a 3T Siemens Tim
Trio system with a body coil and a 4-channel bilateral phased-
array breast coil as the radiofrequency transmitter and receiver,
respectively. During each MRI session, following pilot scans and
precontrast agent (CA) axial T2-weighted MRI with fat satura-
tion and axial T1-weighted MRI without fat saturation, axial
bilateral DCE-MRI images with fat saturation and full breast
coverage were acquired with a 3D gradient echo-based TWIST
(Time-resolved angiography WIth Stochastic Trajectories) se-
quence, which uses the strategy of k-space undersampling dur-
ing acquisition and data sharing during reconstruction (49).
DCE-MRI spatial resolution � 1.0 � 1.0 � 1.4 mm3 and tem-
poral resolution � 14–20 seconds. Details of the acquisition
parameters are described in Tudorica et al.’s study (25).

Breast tumor regions of interest (ROIs) were drawn by 2
experienced breast radiologists on postcontrast (�90–120 sec-
onds after the gadolinium CA injection) multisection DCE im-
ages covering the entire contrast-enhanced tumor. For voxels
within the tumor ROI, the DCE-MRI time-course data were
separately fitted with the following 2 PK models: 1 with a
1-compartment-2-parameter standard Tofts model (SM) (50, 51)
and another with a 2-compartment-3-parameter shutter-speed
model (SSM) (52). Both model fittings returned parameters Ktrans

(rate constant for CA plasma-to-interstitium transfer) and ve

(volume fraction of extravascular and extracellular space),
whereas the SSM also returned an additional parameter �i (mean
intracellular water molecule lifetime), which is used to account
for the effect of cross cell membrane water exchange kinetics (in
the extravascular space) in the SSM (52). Details of PK data
analysis and mathematical formulations for the SM and SSM are
described in Tudorica et al.’s study (25). CA intravasation rate
constant, kep, was calculated as kep � Ktrans � ve. The dKtrans

1 For more information, see: http://ispy2.org
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parameter, defined as dKtrans � Ktrans�SSM� � Ktrans�SM�, pro-
vided a measure of the exchange effect on Ktrans estimation (53)
and was also calculated. Voxel-based multisection parametric
maps of the PK parameters (within the tumor ROI) were gener-
ated following the SM and SSM fittings.

In addition, the following 5 semiquantitative metrics were
quantified from the DCE-MRI signal time-course data, and
voxel-based parametric maps were generated (41, 54, 55):

(1) Initial enhancement (WashIn) describes the initial signal
increase from the precontrast value to the postcontrast
value, as defined by the following equation:

WashIn �
smax � s0

s0

where s0 is the average of the precontrast baseline signal
intensity and smax is the postcontrast signal intensity �90
seconds after completion of CA injection.

(2) Signal enhancement ratio (SER) characterizes the post-
contrast signal curve shape, as defined by the following
equation:

SER �
smax � s0

slast � s0

where slast is the last signal value.

(3) After initial enhancement (WashOut), the signal curve
behavior is described after the initial phase of contrast
enhancement, as follows:

WashOut �
slast � smax

smax

(4) Wash-in slope (SlopeIn) is a measure of the CA uptake
rate, and is calculated using the following equation:

SlopeIn �
smax � s0

tmax

where tmax is the time when smax was measured.

(5) Area under the curve (AUC), the signal integral value, is
defined using the following equation:

AUC � �t0

tlast s(t)dt

where t0 and tlast are the first and last time points, respec-
tively.

Texture Feature Extraction
This section presents the mathematical definition of the various
texture features under study. We extracted several sets of fea-
tures. The first 3 sets are based on the gray-level cooccurrence
matrix (GLCM) (54, 56-60), the gray-level run length matrix
(RLM) (59-63), and the size zone matrix (SZM) (60, 64, 65), and
all belong to the family of statistical matrices. Once these ma-
trices are constructed, texture features [such as Haralick features

(56) and moments] can be derived. The fourth set of features is
based on a local binary pattern (LBP) representation (66, 67), and
the fifth set is based on the morphological operation called
pattern spectrum (PS) (68, 69). In addition to these advanced
features, we also include classic texture features that are based
on moments of the image intensity pattern (70).

Statistical matrices have been extensively used in texture
characterization, the best known of which is the GLCM, which
leads to the definition of Haralick’s features (56). As a second-
order statistic, and for an image f, the GLCMf,��i, j� represents
the joint probability that a pixel with gray-level i occurs jointly
with another pixel having a gray-level j, for a given spatial
offset � between the pair of pixels. For an offset � � ��x, �y�,
the GLCM is defined as follows:
GLCMf,�(i, j)

� �
x�1

w

�
y�1

h

�1 if f (x, y) � i and f (x � �x, y � �y) � j
0 otherwise

By design, the GLCM is dependent on the offset and is
therefore not rotation-invariant (Figure 1A). When using 8-con-
nexity, this is addressed by computing the GLCM in 4 directions,
corresponding to offsets �0° � �0, 1�, �45° � �1, 1�, �90° � �1, 0�,
and �135° � � � 1, 1�, and the average matrix over all offsets can
be used (57-59). In this study, we used the GLCM 3D formulation
with 26-connexity, computed with 26 different offsets, and then
we averaged the resulting matrices into a single matrix. On the
basis of this matrix, we derived the following 16 second-order
statistical features [known as the Haralick features (56)] for each
image: average, contrast, correlation, energy (or second angular
momentum), entropy, homogeneity, dissimilarity, inertia, vari-
ance, inverse difference momentum, sums average, sums

A B

C D

Figure 1. Example of statistical matrices con-
struction. A 4-Gy levels image texture of size 4 �

4 (A). The gray-level cooccurrence matrix (GLCM)
with � � (1, 0) (B). The run length matrix (RLM)
with � � 0° (C). The size zone matrix (SZM) using
8-connexity (D).
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variance, sources entropy, differences variances, differences en-
tropy, and maximum probability. The detailed mathematical
definition of these Haralick features is listed in the Supplemental
Appendix.

In addition to GLCM, another classical technique is a sta-
tistical matrix called the gray-level RLM (61), which has been
extensively used for texture classification (60, 62, 63). Although
the GLCM represents second-order statistical features, the RLM
extracts higher-order statistical features. The matrix element
RLMf,��g, l� counts the total number of runs in the image f with
the gray-level g and run length l (ie, collinear pixels with the
same intensity in the direction �), as shown in Figure 1C. This
method is particularly effective for periodic textures, and it
complements the information provided by the GLCM. From the
RLM, we can extract features as the moments of order varying
from �2 to 2. Similar to the GLCM, this matrix requires com-
putations using various directions to be rotation-invariant. In
our study, we used the 3D RLM formulation computed in 26
directions.

Recently, Thibault et al. (60, 64, 65) introduced the gray-
level SZM as an alternative to the joint RLM formulation. In this
statistical matrix-based method, the value of the matrix element
SZMf �s, g� is equal to the number of zones in the image f with
size s and gray level g (Figure 1D). The resulting matrix has a
fixed number of rows equal to tN (the total number of gray
levels), and a dynamic number of columns, determined by the
largest zone size and size quantization. The structure of SZM
reflects the image texture—the more homogeneous the texture
(large, flat zones with similar gray levels), the wider and flatter
the matrix. From this statistical matrix representation, we can
calculate all the second-order moments as compact texture
features (62), plus 2 more features, which are specific weighted
variances (64).

Unlike GLCM and RLM, which depend on the offset � and
the orientation �, respectively, the SZM matrix is invariant with
respect to rotation and translation. In general, the RLM and
GLCM are appropriate for periodic textures, whereas the SZM is
more suitable for heterogeneous nonperiodic textures.

There are several SZM variants (65, 71). For example, the
multiple gray-level SZMs incorporate the gray-level quantiza-
tion. For an 8-bit image, it is computed from 8 SZMs for 8
different gray-levels (Nk � 2k, k � 1,2, . . . ,8). The resulting
matrices are combined by a weighted average using the follow-
ing equation:

MSZMf (s, g) � �
k�1

8

wkSZMf
Nk(s, g)

where, SZMf
Nk is SZMf calculated from T quantized in Nk gray

levels.
Remark. By design, all these statistical matrices are sensitive

to image acquisition noise. To improve their robustness, the
number of gray levels can be reduced before a matrix is con-
structed. Different methods exist to reduce the number of gray
levels to N possible values, for example, using a monotonically
decreasing function or a cumulated histogram.

In addition to these statistical matrices-based features, we
also extract a set of features known as the LBP (66). LBP is a
simple yet very efficient texture operator, which labels the pixels

of an image by thresholding the neighborhood of each pixel and
produces a binary number. The LBP is widely used in pattern
recognition because of its simplicity and computational speed
and its efficacy in describing the local spatial structure of an
image. The LBP provides a unique score for each pixel, and the
scores’ distribution represents the texture features. Practically,
for an image f and a given pixel p with 8 ordered neighbors pi,
LBP�p� � �i�0

7 vi2
i, with vi � 1 if pi 	 p, or 0 otherwise.

One of the most important properties of the LBP operator is its
robustness to monotonic gray-scale changes caused, for exam-
ple, by illumination variations. In Ojala et al.’s study (67), a
rotation-invariant formulation is presented, making this feature
even more versatile. However, no proper definition of LBP in 3D
exists. The most effective solution remains to compute the 2D
LBP score on the 3 plans (XY, XZ, and YZ) for each pixel, and
then to use all these values to fill the same histogram.

The next texture-characterization technique we included in
our study is the PS (68, 69). The PS features describe the shape
and size of structures in an n-dimensional signal. Measurement
of the PS is based on morphological operations, which use a
variety of structuring elements to filter a signal at multiple
spatial scales. The PS is the combination of a granulometry, and
its dual operation is the antigranulometry. A granulometry is the
distribution study of all the object sizes present in an image.
Formally, a granulometry is a family of morphological openings

 � ��n�n	0 that depend on a positive parameter n, which
expresses a size factor for a fixed structuring element. The
granulometric analysis of an image f with respect to � involves
evaluating each opening of size n with a measurement ��n� f �.
The PS curve PSn of f with respect to � and 	 [the antigranu-
lometry, � � �
n�n	0, a family of closings] is defined by the
following normalized mapping:

PSn( f ) �
1

� f
�� �n( f ) � � �n�1( f ) for n 	 0

� 
�n�( f ) � � 
�n��1( f ) for n � 0

The PS value for each size n is a probability density function
(ie, a histogram), and it corresponds to a structure measurement:
a peak in PS at a given scale n indicates the presence of many
image structures of this scale or size. PS size distribution is a
powerful gray-level and rotational-invariant texture descriptor
(72).

In addition to these advanced texture features, we also added
a set of classical moment-based texture features that include
volume, average, and standard deviation. The statistical matri-
ces were computed using different gray-level reduction values
and algorithms. Counting all the texture features (GLCM, RLM,
SZM, LBP, PS, and moments features), the total number of
extracted features for each parametric map was 1043, distrib-
uted as shown in Table 1.

Remark.

• All the features presented in this paper are deterministic
mathematical functions. They do not use any random pa-
rameter and, consequently, are reproducible.

• The PS and LBP are powerful texture-characterization tech-
niques. They describe a texture by providing distributions
of patterns or sizes; therefore, their effectiveness comes
from the combination of all the provided feature values.
However, our small cohort size prevents simultaneous use
of multiple features. In our study, we analyzed each feature
individually (see section on Features’ Evaluation below), by
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using one feature at a time for the subsequent RCB
prediction.

Pathological Analysis
The status of pathologic response (to NAC) for each breast tumor
was determined by pathological analysis of the post-NAC resec-
tion specimen. The following pathology parameters were mea-
sured from the resection specimen under light microscopy:
cross-sectional tumor size in 2D, estimated invasive tumor cellular
density, number of involved lymph nodes, and the greatest tumor
dimension in the largest involved node. These measures were used
to compute the RCB index value using an equation published by
Symmans et al. (6). pCR is defined as the absence of residual
invasive tumor with RCB � 0. A pathologic nonresponse (pNR) is
defined as tumor cell density in a resection specimen that is either
equal to or greater than the tumor cell density in a core biopsy
specimen. Pathologic partial response is defined as findings inter-
mediate between pCR and pNR. Non-pCR includes both pathologic
partial response and pNR with RCB � 0.

Features’ Evaluation
This paper aims to determine the capability of each map–feature
pair to early predict the RCB index value for patients with LABC
undergoing NAC. To do so, we have extracted a total of 1043
texture features in 3D from each of the 13 parametric maps, as
presented in the previous section. They include Haralick features
(from GLCM), RLM, SZM, LBP, PS, and basic moments, computed
with various parameters and with gray-level reduction values and
techniques. The capability of each feature is then evaluated indi-
vidually using the following pipeline (see Algorithm 1):

• For a given feature f and a given parametric map pk, we
extracted the feature for each patient at visit V1 and V2.

• We computed the feature gradient, defined as the difference
of feature values between V1 and V2.

• Gradient outliers were then removed to improve the algo-
rithm robustness.

• The remaining gradients2 were then centered (with an av-
erage of 0), whitened (with a normalized standard deviation
of 1), and used as inputs in a ridge regression model (73)
coupled with a leave-one-out cross validation to predict the
corresponding normalized (to increase the computational
precision) pathologically measured RCB index values.

The ridge regression was preferred over the classical linear
regression because it adds a penalty term to the coefficients as a
way of regularization, leading to reduced risk of overfitting and
improved generalization capability. These penalty advantages
are particularly beneficial because of the small number of pa-
tients available in our cohort. Moreover, by coupling the ridge
regression with the leave-one-out cross validation protocol, the
risk of overfitting is further reduced.

The predicted RCB index values using the feature were
finally compared with the pathologically measured RCB values,
and 4 correlations (using different paradigms) were computed
for feature evaluation, namely, the Pearson product moment
(linear), the Spearman rank-order (rank), the Kendall tau (rank),
and the Goodman–Kruskal gamma (rank).

RESULTS
According to the pathology analysis of the resection specimens,
9 patients were pCRs with RCB � 0, whereas the other 29
patients were non-pCRs, with RCB index values ranging from
0.43 to 4.1. These RCB index values were the inputs to the
pipeline described by Algorithm 1 to evaluate the predictive

2 Practically, a maximum of 2 outliers were removed. Consequently, the
smallest data set used contained 36 values.

Table 1. Texture Features’ Distribution
Among Different Feature-Extraction
Techniques

Technique
Number of
Features %

Moments 6 0.58

GLCM 187 17.93

RLM 301 28.86

SZM 352 33.75

LBP 184 17.64

PS 13 1.24

Total 1043 100

Abbreviations: GLCM, gray-level cooccurrence matrix; RLM, run
length matrix; SZM size zone matrix; LBP, local binary pattern; PS,
pattern spectrum.

Algorithm 1. Pipeline of Feature Evaluation
for RCB Index Value Prediction
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ability for each of the 1043 3D texture features extracted from a
total of 13 DCE-MRI parametric maps (both quantitative PK
parameters and semiquantitative metrics). Consequently, a total
of 13 559 map–feature pairs were investigated. To be considered
as an effective predictor, a map–feature pair must have all 4
correlation coefficients �0.7. This “effectiveness” threshold
value was empirically determined by the visual analysis of “true
RCB versus predicted RCB curves”.

Among the 13 559 map–feature pairs investigated, 1069
(7.9%) were found to meet the effectiveness conditions.

Texture Features for Prediction of Therapy Response
The feature distribution among the 1069 feature–map pairs with
all 4 correlation coefficients �0.7 is presented in Table 2. It is
worth noting that the texture-extraction techniques (GLCM,
RLM, SZM, etc.) provide an imbalanced number of features
(Table 1). To fairly compare the effectiveness of these tech-
niques, the distribution of the 1069 feature–map pairs was
weighted according to the original distribution shown in
Table 1—the higher the number of features provided by a tech-
nique, the lower the weight. For example, in Table 2, among the
1069 feature–map pairs, only 6 use moments, or 0.57%. The
moments were also the technique generating the lowest number
of features (6 features, representing 0.58% of all the generated
features in Table 1). After correction through weighting, the 6
feature–map pairs using moments now represent 7.69% of the
best pairs (Table 2). Because of this correction, the GLCM is the
most frequently used feature-extraction technique, whereas
the other techniques have comparable percent distribution.

MRI Metrics for Prediction of Therapy Response
Figure 2 shows how often quantitative PK parameters and semi-
quantitative metrics provided good texture features for early
prediction of therapy response under the effectiveness condition
of all 4 correlation coefficients �0.7. It appears that the SSM
parametric maps (Ktrans, dKtrans, �i, kep, and ve) are more likely to

provide a good predictive feature than the SM PK parameters or
the semiquantitative metrics.

After increasing the effectiveness condition threshold from
0.7 to 0.875, we find 9 feature–map pairs with all 4 correlation
coefficients �0.875, as shown in Table 3. The GLCM (coupled
with Haralick features) and the SSM PK parameters are the most
frequently used features that are effective for prediction of NAC
response, accounting for 6 out of the 9 best pairs. This is
consistent with the results presented in Table 2 and Figure 2.
Figure 3 shows examples of the correlations between the nor-
malized pathologically measured RCB index values and the
predicted RCB index values using Ktrans�SM� 
 RLM 
 Gray-level
nonuniformity feature (Figure 3A) and ve�SSM� 
 Haralick 

Contrast feature (Figure 3B) as predictive features, respectively.
These correlations are nonlinear, even though the predictive
models were built using the linear model of ridge regression. It is

Figure 2. Percentage distribution of quantitative
pharmacokinetic (PK) parameters and semiquanti-
tative metrics among the 1069 best map–feature
pairs (with all 4 correlations �0.7) for early pre-
diction of therapy response.

Table 3. The 9 Best Map–Feature Pairs With
all 4 Correlations �0.875

Map Technique
Gray
Level Feature

Ktrans(SM) Haralick 64 Entropy differences

Ktrans(SM) RLM N/A Gray-level nonuniformity

Ktrans(SM) RLM N/A Long-run emphasis

dKtrans Haralick 128 Contrast

dKtrans Haralick 128 Variance differences

dKtrans Haralick 128 Inertia

�i Haralick 8 Mean

�e(SSM) Haralick 256 Contrast

�e(SSM) Haralick 256 Inertia

Table 2. Distribution of the Best Feature–Map
Pairs With all 4 Correlations �0.7

Technique
Number of
Features %

Weighted
%

Moments 6 0.57 7.69

GLCM 304 28.44 12.5

RLM 287 26.84 7.33

SZM 306 28.62 6.69

LBP 156 14.59 6.52

PS 10 0.94 5.92

Total 1069 100 N/A

Note: Features distribution among the 1069 best feature/map pairs, the
matching percentage, and the weighted percentage. The weight com-
putation is detailed in the section on “Texture Features for Prediction
of Therapy Response”.

Abbreviations: GLCM, gray-level cooccurrence matrix; RLM, run length
matrix; SZM size zone matrix; LBP, local binary pattern; PS, pattern
spectrum.
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not mathematically possible to model a nonlinear problem using
a linear approach, which sets a mathematical limit to the per-
formance prediction. It also explains why the predicted RCB
index values are accurately ranked, but the range of predicted
values is smaller than that of the pathologically measured RCB
index values. Nonetheless, even with a ridge regression, we can
observe in Figure 3 that the predictive models can separate the

patients with pCR (green dots; n � 9) from those with non-pCR
(red dots; n � 29) with high accuracy. At 100% sensitivity (ie,
correctly classifying all pCRs), the specificities are 100% and
96.7% for Ktrans�SM� 
 RLM 
 Gray-level nonuniformity fea-
ture and ve�SSM� 
 Haralick 
 Contrast feature, respectively.
Figure 4 shows the ve�SSM� map at visits V1 and V2 for a tumor
with pCR (Figure 4A) and a tumor with non-pCR (Figure 4B). The
Haralick contrast feature value increases by �450% for the
tumor with pCR and by �30% for the tumor with non-pCR.

DISCUSSION
This preliminary study with a 38-patient cohort shows that
changes in breast tumor heterogeneity as measured by changes
in texture features of DCE-MRI voxel-based parametric maps
can be useful markers for early prediction of breast cancer
response to NAC, discriminating pCR versus non-pCR, as well as
predicting low versus high post-NAC RCB index value. Al-
though it clearly needs to be validated with larger patient pop-
ulations, this noninvasive 3D imaging feature-extraction ap-
proach has the potential to become an important clinical tool in
the emerging era of precision medicine to identify, in the early
stages of treatment, nonresponding patients for alternative per-
sonalized therapy regimens, and stratify patients for better sur-
gical decision-making, and after surgery care planning based on
accurate prediction of RCB. For example, using the RLM 

Gray-level nonuniformity feature of the Ktrans�SM� map (Figure
3A), the 29 non-pCRs can be discriminated from the 9 pCRs with
100% sensitivity and specificity, and consequently, an AUC of
receiver operating characteristic equal to 1, after only 1 out of
6–8 NAC cycles. In comparison, the mean parametric value
previously suggested as an imaging marker for therapy response
prediction (25) never reaches the effectiveness condition (all 4
correlations �0.7). When this feature is used to classify pCR
versus non-pCR, the best AUC of the receiver operating charac-

BA

Figure 3. Fitted curves between the normalized pathologically measured residual cancer burden (RCB) index value and
the predicted RCB: Ktrans�SM� � RLM � Gray Level Non Uniformity feature (A) and ve�SSM� � Haralick � Contrast fea-
ture (B). Patients with pathologic complete response (pCR) and non-pCR are represented with green and red dots,
respectively.

Figure 4. Example that shows the changes in ve

�SSM� maps change examples for the following 2
tumors: one tumor with pCR at V1 (A) and V2 (B),
and the other tumor with non-pCR at V1 (C) and
V2 (D). The Haralick contrast feature value (Figure
3B) increased by �450% for the tumor with pCR
and increased by �30% for the tumor with
non-pCR.
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teristic is 0.91, when the feature is extracted from Ktrans�SSM�.
These results suggest that, if texture feature analysis of DCE-
MRI PK parameters had been used in clinical care, these 29
patients could potentially have been spared from the morbidity
caused by continuous treatment with ineffective and toxic che-
motherapy agents and could have been treated with different
personalized therapy regimens or stratified for novel therapy
trials. Furthermore, accurate prediction of RCB index value at
the early stage of NAC course using DCE-MRI textures could
potentially allow drug dose escalation to prevent heavy burden
of residual disease and possibly enable longer survival.

One important observation in this study is the complete
absence of the tumor size among the best features for early
response prediction. This confirms the results presented in Mar-
tincich et al.’s study (24), suggesting that the tumor does not
really shrink after a single NAC cycle, even for pCRs. However,
the gray-level variance feature is present among the best fea-
tures, indicating that changes in DCE-MRI texture heterogeneity
are potentially important markers for early RCB prediction. Our
findings suggest that one of the initial effects of NAC (before
shrinkage) is changing the spatial heterogeneity of the tumor
microenvironment, which, in this study, includes perfusion and
permeability as measured by DCE-MRI. The importance of as-
sessing changes in tumor heterogeneity for evaluation of ther-
apy response is confirmed by the prevalence of predictive fea-
tures from SZM and RLM, which are powerful techniques for
characterizing the texture homogeneity/heterogeneity. More-
over, this finding is further strengthened by the high frequency
of Haralick features such as entropy, variance, homogeneity,
and contrast, which use different paradigms to describe texture
homogeneity, as illustrated in Figure 4.

This study shows that texture features of DCE-MRI quanti-
tative PK parameters are likely to be more useful than those of
the semiquantitative metrics for early prediction of breast can-
cer NAC response, showing the benefit of performing PK mod-
eling of the DCE time-course data. In addition, we found that the
good predictive texture features are more likely to come from
SSM than from SM parameters, although we observed compa-
rable predictive capabilities between percent changes of tumor
mean SM and SSM parameters after 1 NAC cycle in a separate
study (25). This is possibly because of the fact that compared
with SSM, the SM has a tendency to underestimate PK param-
eters (Ktrans and ve) in malignant breast tissue, but not in benign
or normal breast tissue (53). The SSM PK parametric map of the
same breast tumor is expected to provide a larger dynamic range
of the voxel parameter values than its SM counterpart, and thus,

provide a more robust characterization of heterogeneity and its
changes induced by therapy.

The results presented in this study were obtained using a
single 3D texture feature extracted from a single parametric
map, when previous work used a set of 2D features (47, 48) for
early prediction response. Features in 3D offer more robust and
efficient characterizations of early breast tumor changes than
classical 2D features. This study, conducted on 1043 features
and 13 maps, provides better characterization and evaluation of
feature and map capabilities compared with the study that used
2D features. If a larger cohort of patients becomes available in
the future, such information will allow us to build more complex
models combining multiple features and maps for a better early
prediction of breast cancer response to NAC.

This study has several limitations. First, the sample size of
the study is small, and thus, it is important to validate the initial
findings from this study with a larger patient cohort in the
future. Second, mean tumor DCE-MRI parameter values were
used in this study to assess breast tumor response to preopera-
tive therapy. The tumor heterogeneity that is reflected in the
imaging metrics, for example, in the Ktrans maps, was not cap-
tured in the mean DCE-MRI parameter values. The potential
integration of mean values and texture features of DCE-MRI
metrics may further improve the effectiveness of quantitative
DCE-MRI for assessment of therapy response. The third limita-
tion is the use of the ridge regression model (a linear technique)
to predict a nonlinear phenomenon. A nonlinear regression
technique trained with �1 feature from different maps, and on
a larger cohort of patients, should increase the early response
prediction. The last limitation is that the statistical matrices and
the PS are not robust to resolution variations, and consequently,
their efficacy may be reduced if the resolution is degraded.
However, resolution degradation does not automatically lead to
performance degradation. Further study is needed to elucidate
the relationship between the 2.

In conclusion, we have investigated the capabilities of thou-
sands of 3D texture features derived from different quantitative
DCE-MRI maps for early prediction of NAC, on a cohort of 38
patients with LABC. Tumor texture heterogeneity changes cap-
tured by 3D statistical features measured using quantitative
DCE-MRI parameters such as Ktrans�SSM� are promising markers
for early prediction of pathologic response outcome.
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