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Quantitative imaging approaches compute features within images’ regions of interest. Segmentation is rarely
completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called
“digital biopsy,” that allows for the collection of intensity- and texture-based features from these regions at
least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed
automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of
patients with non–small cell lung cancer, and manually adjusted the nodule boundaries in each section, to
be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to
generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor
over multiple cross-sections, a procedure that required an average of �3 minutes per nodule. We simulated
additional digital biopsies using morphological procedures. Finally, we compared the features extracted
from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to char-
acterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that
84/94 features had an ICC �0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of
our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respec-
tively, with ICCs �0.7. We conclude that many intensity- and texture-based features remain consistent be-
tween the reference standard and our method while substantially reducing the amount of operator time
required.

INTRODUCTION
Quantitative features computed from medical images have been
investigated for use in computer-aided diagnosis (1, 2), computer-
aided detection (3, 4), and radiomics (5-7). Although these image
features have the potential to provide consistent descriptors of
the object being analyzed, segmentation of the volume of
interest (VOI) is the necessary first step for obtaining these
values. Manual segmentation of tumors in 2-dimensional
(2D) computed tomography (CT)-images is labor-intensive
and time-consuming (8, 9), and even more onerous when seg-
menting 3-dimensional (3D) volumes. The literature contains
several automatic and semiautomatic image segmentation algo-
rithms (10-18). Although these algorithms reduce the time taken

to segment a tumor (19, 20), they do not always achieve accurate
or consistent results (21); therefore, all segmentations must be
reviewed and possibly edited, which, in turn, requires additional
time and introduces variability.

The typical approach to using the radiomics features to
build predictive models involves computing a large number of
image features from within a VOI. Because many of these com-
puted features are correlated, one of the several machine learn-
ing methods (22, 23) can be used to select a subset of nonredun-
dant informative features that can be combined in the model
(24-26). We hypothesized that a set of features required for a
robust predictive model could be extracted without requiring
accurate or precise segmentation of the tumor boundary. The
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first step in testing this hypothesis involves determining which
features extracted from such a segmentation are consistent with
a segmentation that attempts to capture the tumor margin.
Therefore, we developed a new method, which we call “digital
biopsy,” in which a human annotator is asked to capture the
heterogeneity of the tumor without carefully segmenting the
tumor boundary, by “painting” the inside of the tumor using a
suitable tool. Then, we analyzed the stability of the intensity and
texture features of segmentations of the entire tumor computed
from these digital biopsies compared with those computed semi-
automatically by calculating their intraclass correlation coeffi-
cient (ICC) (27, 28). Because we did not expect the tumor shape
or margin to be captured by these digital biopsies, we did not
compute ICCs for such features.

In doing so, we introduced a new segmentation paradigm,
in which the expert focuses on capturing the heterogeneity of
the lesion instead of the tumor boundary. In a preliminary study
of 100 patients with preoperative CT scans of proven non–small
cell lung cancer, we show that multiple image features that
characterize the intensity and texture of lung nodules are con-
sistent with the same features that could be obtained using
detailed segmentations, while obtaining an order of magnitude
reduction in human operator time.

MATERIALS AND METHODS
Data
Following institutional review board approval by Stanford Uni-
versity’s Research Compliance Office, that waived the require-
ment for written informed consent, we selected the first 100
subjects (male, 75; mean age, 70 years) who were part of a
radiogenomics cohort obtained from a larger database of pa-
tients referred to Stanford University Medical Center with diag-
nosed non–small cell lung cancer and had CT scans before
surgical resection. Scanners (GE Medical Systems, Waukesha,
WI; Siemens, Erlangen, Germany; Toshiba, Otawara, Japan; and
Phillips, Andover, MA, with 120 kVp), with current and section
thickness ranging from 25 to 697 mA and 0.625 to 3 mm,
respectively, were used to acquire scans. The tumors ranged in
size from 0.37 to 306 cm3 and in attenuation from ground glass
to solid. All scans were performed between April 2008 and
October 2014.

Semiautomated—Manual Segmentations
For this study, we used an in-house segmentation algorithm (21)
under supervision of a fellowship-trained thoracic radiologist
with 23 years of experience. For each subject, the radiologist

first identified the tumor in the CT scan volume and chose a
small “seed circle” to initialize the segmentation algorithm,
which then derived a 3D VOI containing the voxels within the
tumor, which was then superimposed on the CT slices using
ePAD, an open-source annotation tool (29, 30). Finally, the
radiologist spent between 5 and 45 minutes manually editing
each VOI using ePAD’s paintbrush tool on 2D cross-sections
to correct what he perceived as local over- and/or under-
segmentation.

Digital Biopsies
A nonradiologist human reader with 30 years of experience with
medical image processing and analysis (10 years specifically
with CT scans of patients with lung cancer) independently
viewed each series and created a digital biopsy using the same
paintbrush tool used by the radiologist on 2D cross-sections of
the tumor. Using the reference standard for each of the 100
subjects as a guide, this reader marked a contiguous section of
the tumor volume for inclusion as he scrolled through the 2D
cross-sections in the image series. The reader was instructed to
capture the gray-scale heterogeneity of the tumor and to not be
concerned with capturing the detail of the boundary. We gave
no additional instructions about how to segment the sections or
which section to select. We tracked the time required to create
each digital biopsy and stored each of them to compare with the
radiologist’s reference standard. Figure 1 shows a central section
through one of the nodules and the reference standard 3D
segmentations and 3D digital biopsy.

Simulating Multiple Readers
As the creation of digital biopsies is subjective and therefore
prone to intra- and inter-reader variation, we simulated addi-
tional digital biopsies using the morphological procedures of
erosion and dilation (31). These were achieved using multiple
spherical structuring elements with radii ranging from 0.5 to 1.5
mm inclusive, with an interval of 0.5 mm between the radii, for
a total of 3 erosions and 3 dilations. The erosions simulated more
conservative additional readers, while the dilations simulated
more aggressive additional readers. Dilations were not con-
strained to stay within any region and therefore may have led to
the digital biopsy going beyond the tumor borders. To avoid
splitting the tumor into multiple portions during erosion, we
followed each with a morphological closing procedure. Figure 2
shows an example of the erosions and dilations from the same
nodule and digital biopsy shown in Figure 1.

Figure 1. Cross-section through
part-solid nodule in the right up-
per lobe (A), and its intersection
with the reference standard 3-di-
mensional (3D) segmentation (B),
and the 3D digital biopsy (C).
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3D Image Features
There are many algorithms in the literature that extract quanti-
tative features from VOIs (32-34) within a CT scan. These algo-
rithms can be categorized as measuring intensity, shape, and
margin or textures’ characteristics. Intensity features express
statistics of the pixel values within a VOI. Shape features de-
scribe the boundary of the VOI. Margin features characterize
the transition between the intensity values inside the VOI and
the values surrounding it. Finally, texture features measure the
spatial distribution of pixel intensities inside the VOI. For this
study, we only computed intensity and texture features (a total
of 94 features) because our digital biopsies, by definition, do not
attempt to capture the shape or margins of the tumors. Appendix 1
provides a list of the specific intensity and texture features that we
computed, with references to the literature as needed.

Metrics
Overlap. To analyze the agreement between i VOIs in a given

series, k, we define overlap as the ratio between their intersec-
tions and their unions as follows:

Ok �
�iVOIi

�iVOIi

Feature Consistency
We used the ICC to measure the consistency of the features
extracted for each segmentation looking across patients, read-
ers, cores, and sections. The ICC describes how members from
the same group resemble each other and has often been used to
quantify the consistency of measurements made by different
experts (35, 36). A high ICC shows that a feature is consistent
across multiple measurements. There are multiple algorithms in
the literature to calculate ICC (37); for this study, we used the
A-1 method, also known as criterion-referenced reliability,
which is expressed as follows:

ICC �
MSR�MSE

MSR � (k�1)MSE �
k

n
(MSC�MSE)

where MSR is the mean square for rows (observations), MSE is
the mean square error, and MSC is the mean square for columns
(segmentations). n and k represent the total number of rows and
columns, respectively. In our study, rows represent each study
where features were extracted. Columns represent the different
segmentations, which can be provided by the reference standard
segmentations, digital biopsies, or the morphological opera-
tions. We used this method, as it measures the degree of absolute
agreement taking into consideration the systematic variations
between methods.

RESULTS
Digital Biopsies: Time to Obtain and Volume Overlap
with Reference Standard
Using ePAD’s paintbrush tool, the reader averaged 171 seconds,
with a median of 132 seconds, a standard deviation of 152
seconds, and a range 25 to 900 seconds, to create a digital
biopsy. Table 1 shows the mean and standard deviation, median,
minimum, and maximum of the volume overlap of the reference
standard with the digital biopsies with the 3 erosions and the 3
dilations. One can see that the volume overlap decreases with
erosion of the digital biopsies, as expected, and that it can also
decrease with the dilation of the digital biopsies as the dilated
volumes grow bigger than the digital biopsies. Figure 3 and
Figure 4 show the distribution of these overlaps as a function of
erosion and dilation, respectively, of the digital biopsies. Ero-
sions caused the distribution to shift to the left (lower overlap),
while dilations caused an initial shift to the right (higher over-
lap) at 0.5 mm of dilation, with a shift to the left as larger
dilations expanded the volumes to exceed the nodule borders in
many cases.

Figure 2. Cross-sections of digi-
tal biopsies obtained by applying
morphological operations to the
manual digital biopsy shown in
Figure 1. The first and second
rows show erosions and dila-
tions, respectively.
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Digital Biopsies: Agreement of Features With Those
Obtained Using the Reference Standard Segmentations
We obtained the ICC score for each of the features extracted
from the digital biopsies and their erosions and dilations com-

pared with the features extracted from the reference standard.
Figure 5 and Figure 6 plot the ICC scores, with features ordered
from the highest ICC on the left to the lowest ICC on the right for

Table 1. Overlap Between Digital Biopsies and the Reference Standard Segmentation

Method Size Mean (%) SD (%) Median (%) Minimum (%) Maximum (%)

Original digital biopsies None 74.04 10.77 76.65 25.26 85.23

Erosions 0.5 mm 64.46 11.27 67.11 20.94 82.81

1.0 mm 53.04 12.03 54.87 13.63 75.52

1.5 mm 42.33 13.11 42.61 8.47 69.61

Dilations 0.5 mm 77.73 10.38 79.49 27.11 88.58

1.0 mm 78.21 9.66 80.36 28.22 90.94

1.5 mm 71.43 10.22 73.34 28.55 89.17

Abbreviation: SD, Standard deviation.

Figure 3. Distribution of the overlap of the refer-
ence standard segmentation and in order from
top to bottom: the original biopsy, 0.5-mm ero-
sion, 1.0-mm erosion, and 1.5-mm erosion. Statis-
tics regarding the distributions are shown in
Table 1.

Figure 4. Distribution of the overlap of the refer-
ence standard segmentation and in order from top
to bottom: the original biopsy, 0.5-mm dilation,
1.0-mm dilation, and 1.5-mm dilation. Statistics re-
garding the distributions are shown in Table 1.
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each curve separately, for the erosions and dilations of the
digital biopsies, respectively. These figures show that 84/94
features computed using the original digital biopsies have ex-
cellent agreement (ICC � 0.7) (37-39), with the same features
computed using the reference standard segmentations. More-
over, eroding the digital biopsies continued to produce many
features showing excellent agreement with those computed us-
ing the reference standard segmentations (68/94, 60/94, and
41/94 for 0.5 mm, 1.0 mm, and 1.5 mm erosions, respectively).
Similarly, dilation resulted in many features showing excellent
agreement with those computed using the reference standard
segmentations (88/94, 89/94, and 53/94 for 0.5 mm, 1.0 mm,
and 1.5 mm dilations, respectively). Table 2 shows the number of
features above several other thresholds of agreement (ICCs of
0.6 through 0.9), revealing that many features are insensitive
to the exact borders of the segmentation. Appendix 2 con-
tains a ranked list showing the most robust features across all
7 experiments.

Figure 7 and Figure 8 show the distribution of ICC scores
for intensity and texture features, respectively, and how these
distributions change as a function of erosion and dilation.
Figure 7 shows that intensity features maintain high ICCs
under dilation, but fall off under erosion. Figure 8 shows that
the ICCs of texture features decrease under both procedures,
although, as was the case for intensity features, more strongly
under erosion.

DISCUSSION
The radiomics methods, in widespread development, compute
many (sometimes hundreds of) image features from VOIs or
regions of interest (ROIs) in radiological images and link these
features to clinical data, such as response to treatment, survival,
and gene expression (5, 15, 25, 26, 40, 41). Once these features
are computed, they can be used to build predictive models.
Several studies have shown that the collection of images’ fea-
tures computed are highly correlated (25, 41, 42), and the re-
sulting models usually are based on a small subset of the robust
and independent computed features. Most often, ROIs are se-
lected using segmentation algorithms and/or manual delinea-
tion. Although several software packages have been developed
by academic institutions (10-15, 21, 43-48) and commercial
vendors that offer automated segmentation of lung nodules in
chest CT scans, in our experience, none is foolproof; on the
contrary, each segmentation must be reviewed for quality con-
trol and perhaps edited. Thus, we wondered if a set of features
could be computed from an easier-to-obtain ROI that shows
consistency with features from full quality-controlled segmen-
tation. The median time and maximum time required to obtain a
digital biopsy were 132 and 900 seconds, respectively. This is an
order of magnitude that is faster than our reference standard
procedure, wherein a trained radiologist had to inspect and
modify the semiautomated segmentation to trace the tumor
boundary, which required anywhere from 600 to 2700 seconds

Figure 5. The intraclass correlation coefficient (ICC) curves for the features extracted from the digital biopsies and
each of the morphological erosions compared with their reference standard segmentation. The features are orga-
nized in the descending order by their ICC value. Each line has been marked to indicate the number of features,
with ICC � 0.7.
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(5–45 minutes) per case. Further, despite the lack of precise
overlap of our digital biopsies to the reference standard, we have
shown many features that remain highly consistent. Table A2
(Appendix 2) lists the many robust features we have found that
are important descriptors of tumoral heterogeneity, and that
have been used in many radiomics studies in several cancer
imaging scenarios (5-7, 15, 22, 41, 49).

Although our digital biopsies were much faster to obtain,
we acknowledge that for this technique to be used in practice,
it would have to be even faster. We have identified multiple
addressable factors that limited our speed in obtaining them.

First, this was the first time this expert used this tool for this
purpose. It is likely that familiarity would result in an in-
crease in speed. Second, although ePAD is a powerful Digital
Imaging and Communications in Medicine (DICOM) viewer
and annotation tool, it was not created with this use in mind;
painting was accomplished 1 transaxial section at a time, and
the reader had to navigate through multiple menus to change
the ePAD’s brush size to gain efficiency as the cross-sectional
area on each section changed. We are confident that a tool
that works on multiple planes and has streamlined operations
could reduce the required time by another order of magni-

Table 2. Features Above Thresholds of Agreement

ICC Original

Erosion Dilation

0.5 mm 1.0 mm 1.5 mm 0.5 mm 1.0 mm 1.5 mm

�0.9 47 6 2 1 27 15 8

�0.8 74 56 18 4 64 51 24

�0.7 84 68 60 41 88 89 53

�0.6 93 74 67 62 92 91 84

The number of features presented in the table are out of 94 that presented ICC � 0.9, � 0.8, � 0.7, and � 0.6 in each of the digital biopsies and its
morphological modifications when compared with the features extracted from the reference standard segmentation. Appendix 2 names and ranks the
individual features with the highest ICCs across all 7 digital biopsy variations.

Figure 6. The ICC curves for the features extracted from the digital biopsies and each of the morphological dilations
compared with their reference standard segmentation. The features are organized in the descending order by their ICC.
The features are organized in the descending order by their ICC. Each line has been marked to indicate the number of
features, with ICC � 0.7.
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tude, thus reducing the median time to under 1 minute per
tumor.

Obtaining fast digital biopsies is only useful if the features
that are being extracted are consistent among operators and
methods. As shown in Table 2, 89% (84/94) of the features
remain highly consistent (ICC � 0.7) between the reference
standard segmentation and the original digital biopsies, even
while the digital biopsy only segments 74% of the original
tumor (Table 1). This is promising, in that it shows that we are
able to capture the same information using a less precise but
faster segmentation. This stability remains mainly present as we
dilate and erode our digital biopsies with a spherical structuring
element to up to 1.5 mm in radius, representing readers that are
more or less conservative with their segmentations, as shown in
Figures 5 and 6. These erosions and dilations, simulating addi-
tional readers, also produced a large number of features with
ICC � 0.7. The discrepancies between erosions and the original
digital biopsies are mainly caused by the change of point sta-
tistics (eg, extrema), and the loss of higher wavelength textures.
In contrast, discrepancies between dilations and the original
biopsies can be additionally caused by inclusion of voxels
beyond the periphery of the tumor, which can result in some
strong texture responses (eg, at the boundary between the
tumor and the air in the lung or an adjacent chest wall). We
can observe these discrepancies in both Figures 7 and 8,
where we see that the intensity features remain mostly stable
under dilation, while stability is reduced by erosion, and that
texture features’ consistency is reduced under both proce-
dures. However, in all circumstances, the majority of features
remain consistent with those obtained by our reference stan-
dard segmentation.

Limitations
One limitation is that we only used one manual digital biopsy
per subject; different readers would not necessarily result in the
same VOI. We attempted to overcome this limitation by gener-
ating multiple simulated biopsies by morphologically altering
our reader’s segmentations. As we have shown, multiple texture
and intensity features remain highly stable across the simulated
segmentations; therefore, we expect similar results if we were to
include multiple readers, as long as their mean volume overlap
with the tumor itself is at least 75%. However, future studies
with multiple users are required to validate that intra- and
inter-reader variation of ICCs of features derived from these
digital biopsies is acceptable. Other painting strategies may also
be useful, such as creating multiple small digital biopsies per
tumor, and remain to be investigated.

Second, to obtain a preliminary comparison of the seg-
mentation time improvement, we compared the time required
by a radiologist to carefully adjust segmentation boundaries
to that required by a nonradiologist to acquire the digital
biopsies, resulting in an order of magnitude speed advantage
for the digital biopsies. Although comparing a radiologist
with a nonradiologist could confound the comparison, it is
not clear that either participant would have a speed advan-
tage over the other given the different tasks. Future studies
should compare multiple radiologists and trained nonradi-
ologists (who ideally would be preferred for this task on the
basis of cost).

Third, as part of our experimental design, we have elimi-
nated all boundary and shape features from our study. The
literature has reports that boundary and shape are important
markers in characterization of certain cancers (50-52). Our pro-
posed method for segmenting does not capture these features,

Figure 8. Boxplot of ICC of texture features for
original digital biopsies and their erosions/dila-
tions compared with the reference standard seg-
mentations. The Y-axis shows the ICC score and
the X-axis is the morphological operation, with
“�” and “�” representing that the segmentation
underwent erosion and dilation, respectively.

Figure 7. Boxplot of ICC of intensity features for
original digital biopsies and their erosions/dila-
tions compared with the reference standard seg-
mentations. The Y-axis shows the ICC score and
the X-axis is the morphological operation, with
“�” and “�” representing that the segmentation
underwent erosion and dilation, respectively.
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and it remains to be shown that the intensity and texture
features that we do capture are sufficient to build strong
predictive models. It is also possible that complementing the
features obtained via digital biopsy with a small set of easy-
to-obtain semantic features (eg, “spiculated,” “lobulated,”
“pleural attachment,” and “poorly defined margins”) could
strengthen the model at little cost; this too, remains, for
future evaluation.

Fourth, we acknowledge that the reader who provided the
original digital biopsies used the reference standard as a guide to
locate each tumor, information that would not be available in
general. It is therefore possible that performance with unguided
digital biopsies would be different than that reported here.
Although our experiments simulating additional readers with
morphological operations provide some reassurance, perfor-
mance with unguided digital biopsies by trained readers should
be evaluated in the future.

Fifth, in this study, we have only focused on the stability of
the features and have not proven, nor intended to prove, that
these features correlate with any clinical or outcomes data. As
Aerts (24) and others have shown, a first step in building these
models is to find features that are robust, that is, insensitive to
segmentation. We have shown that our digital biopsy technique
is robust in the context of CT for lung cancer, and it remains to
show this in other cancer types and imaging scenarios. Discov-
ering relationships and building models linking these features to
disease is the next step. Rapidly obtained digital biopsies may
prove quite useful in this endeavor.

Finally, our study only addresses the stability of the features
to changes in tumor segmentation. However, it is well known
that CT acquisition and reconstruction parameters and condi-
tions can also affect quantitative feature values (53-57). Future
studies that compare quantitative image features acquired at
different points in time must be aware of this possibility and
control for this effect.

In conclusion, we have proposed a new paradigm for
selecting a VOI for the radiomics analysis that captures the
heterogeneity of a given lesion in 3D. This method is 1 or 2
orders of magnitude faster than semiautomated segmenta-
tions, which has remained the dominant strategy because
completely automatic segmentation has not been shown. We
have shown that the texture- and intensity-based features
extracted in this way are robust to morphological transfor-
mations and remain highly correlated with those from cu-
rated segmentations and, therefore, we think that the use of
digital biopsies will accelerate the potential of researchers to
develop, and for clinicians to use, quantitative imaging meth-
ods to characterize cancer in medical images.

APPENDIX 1
Intensity Features
To quantify the intensity characteristics of the volume, we
extracted all the classical statistical descriptors such as mean,
variance, kurtosis, skewness, entropy, maximum, and minimum
from inside the VOI. These features summarize the global infor-
mation of the intensity distribution inside the VOI without
considering local differences.

Texture Features
To characterize local changes in intensity, we computed the
Haralick features. The Haralick features are measurements
taken from a gray-level co-occurrence matrix (GLCM)
(58-60). A GLCM is defined as the distribution of co-occur-
ring values in an image at a fixed offset. This matrix is
defined by the following equation:

C(i, j, �x, �y, �z)

� �
p�1

N
�

q�1

M
�

r�1

O � 1,

0,

if I(p, q, r) � i and
I(p � �x, q � ��y, r � ��x) � j

otherwise

where i and j are the row and columns indices of the GLCM,
respectively. �x, �y, and �z are the fixed offsets in the three
axes of the volume. I(p,q,r) is the gray level at point (p,q,r)
and N,M,O, are the sizes of the volume in each dimension. A
set of statistics, shown with their references in Table A1, is
then computed from the GLCM. To obtain rotation-invariant
features, we calculate the Haralick features in 13 directions,
aggregate them, and report their mean and standard devia-
tion.

APPENDIX 2
In Table A2, we count how many times each feature was over
a certain ICC value over each of the 7 experiments. (Reference
Standard vs Digital Biopsy and 0.5 mm, 1.0 mm, 1.5 mm
erosions and dilations). Features that did not have an ICC �
0.7 in any of the experiments are obviated. Features that
consistently have high ICC across all experiments indicate to
be more robust to changes in their contour than features with
rapidly changing ICC.

Table A1. List of Haralick Features Extracted
from the GLCM

Features References

Energy (59, 61)

Contrast (59, 61)

Sum of Means (61)

Cluster Tendency (59)

Entropy (59)

Homogeneity (59)

Inertia (58, 59)

Max Probability (59)

Correlation (59, 61)

Variance (61)

Cluster Shade (59)

Inverse Variance (58, 59)

Abbreviation: GLCM, gray-level co-occurrence matrix.
Details of the implementation of each of these features can be found in
the references mentioned alongside the features.
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Table A2. Features of Important Descriptors of Tumoral Heterogeneity

Feature Name ICC > 0.7 ICC > 0.8 ICC > 0.9

“Haralick D�3mm std sum of means” 7 7 3

“Intensity Entropy” 7 6 5

“Intensity Mean” 7 6 3

“Intensity Median” 7 6 3

“Intensity Trimmed Mean (25%)” 7 6 3

“Haralick D�1mm std energy” 7 6 1

“Haralick D�2mm std entropy” 7 6 1

“Haralick D�1mm std max probability” 7 5 4

“Haralick D�1mm std entropy” 7 5 2

“Haralick D�1mm mean cluster tendency” 7 5 1

“Haralick D�1mm std sum of means” 7 5 1

“Haralick D�2mm std sum of means” 7 5 1

“Haralick D�3mm std cluster shade” 7 5 1

“Haralick D�2mm std max probability” 7 5 0

“Haralick D�2mm mean cluster tendency” 7 4 1

“Haralick D�3mm mean cluster tendency” 7 4 1

“Haralick D�2mm std cluster shade” 7 4 1

“Haralick D�3mm std contrast” 7 4 1

“Haralick D�3mm std inertia” 7 4 1

“Haralick D�2mm std energy” 7 4 0

“Haralick D�1mm std variance” 7 3 0

“Haralick D�2mm std variance” 7 1 0

“Intensity Under �291 HU Percentage” 6 5 3

“Intensity Over �291 HU Percentage” 6 5 3

“Haralick D�1mm mean variance” 6 5 2

“Haralick D�2mm mean variance” 6 5 2

“Haralick D�3mm mean variance” 6 5 2

“Haralick D�3mm std max probability” 6 5 0

“Haralick D�2mm std contrast” 6 4 2

“Haralick D�2mm std inertia” 6 4 2

“Haralick D�1mm mean cluster shade” 6 4 1

“Haralick D�2mm mean cluster shade” 6 4 1

“Haralick D�1mm std cluster shade” 6 4 1

“Haralick D�2mm std cluster tendency” 6 4 1

“Haralick D�3mm std cluster tendency” 6 4 1

“Haralick D�3mm mean cluster shade” 6 4 0

“Haralick D�1mm std contrast” 6 3 2

“Haralick D�1mm std inertia” 6 3 2

“Haralick D�1mm mean entropy” 6 3 0

“Haralick D�2mm mean entropy” 6 3 0

“Haralick D�3mm std variance” 6 3 0

“Haralick D�3mm mean energy” 6 2 0

“Haralick D�3mm mean max probability” 6 2 0

“Haralick D�1mm mean energy” 6 1 0

“Haralick D�2mm mean energy” 6 1 0

(Continued)
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Table A2. Continued

Feature Name ICC > 0.7 ICC > 0.8 ICC > 0.9

“Haralick D�2mm mean max probability” 6 1 0

“Haralick D�3mm std entropy” 5 5 1

“Intensity Skewness” 5 4 2

“Intensity Min” 5 4 2

“Haralick D�1mm mean contrast” 5 4 2

“Haralick D�1mm mean inertia” 5 4 2

“Haralick D�1mm std cluster tendency” 5 4 1

“Haralick D�2mm mean contrast” 5 3 2

“Haralick D�2mm mean inertia” 5 3 2

“Haralick D�3mm mean contrast” 5 3 1

“Haralick D�3mm mean inertia” 5 3 1

“Haralick D�1mm std homogeneity” 5 3 1

“Haralick D�2mm std homogeneity” 5 3 1

“Haralick D�3mm mean entropy” 5 3 0

“Haralick D�3mm std homogeneity” 5 3 0

“Haralick D�1mm mean max probability” 5 1 0

“Intensity Mean Absolute Difference” 4 4 1

“Intensity Standard Deviation” 4 4 0

“Intensity Interquartile Difference “ 4 2 1

“Intensity Range” 4 2 0

“Intensity Max” 4 2 0

“Haralick D�3mm std energy” 4 1 0

“Haralick D�1mm mean sum of means” 4 0 0

“Haralick D�2mm mean sum of means” 4 0 0

“Haralick D�3mm mean sum of means” 4 0 0

“Haralick D�1mm mean correlation” 3 1 0

“Intensity Kurtosis” 3 0 0

“Haralick D�1mm mean homogeneity” 3 0 0

“Haralick D�1mm mean inverse variance” 3 0 0

“Haralick D�2mm mean homogeneity” 3 0 0

“Haralick D�2mm mean inverse variance” 3 0 0

“Haralick D�3mm mean homogeneity” 3 0 0

“Haralick D�3mm mean inverse variance” 3 0 0

“Haralick D�2mm std correlation” 3 0 0

“Haralick D�1mm std correlation” 2 1 0

“Haralick D�3mm std inverse variance” 2 1 0

“Haralick D�2mm mean correlation” 2 0 0

“Haralick D�3mm mean correlation” 2 0 0

“Haralick D�2mm std inverse variance” 2 0 0

“Intensity Harmonic Mean” 1 1 1

“Intensity Mode” 1 1 0

“Haralick D�3mm std correlation” 1 0 0

Abbreviation: ICC, Intra-class correlation.
The features mentioned were computed for each of the 7 digital biopsies (original, 3 erosions, and 3 dilations) and the number of times their ICC compared
with the reference standard was higher than 0.9, 0.8, and 0.7, ranked by ICC. Features that never scored �0.7 are not shown.
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