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The standard of care for newly diagnosed glioblastoma (GBM) is surgery first, radiotherapy (RT) with concur-
rent temozolomide (TMZ) second, and adjuvant TMZ last. We hypothesized patients with low diffusivity mea-
sured using apparent diffusion coefficient (ADC) histogram analysis evaluated after RT � TMZ and before
adjuvant TMZ would have a significantly shorter progression-free survival (PFS) and overall survival (OS). To
test this hypothesis, we evaluated 120 patients with newly diagnosed GBM receiving RT � TMZ followed by
adjuvant TMZ. Magnetic resonance imaging was performed after completing RT � TMZ and before initiat-
ing adjuvant TMZ. A double Gaussian mixed model was used to describe the ADC histograms within the
enhancing tumor, where ADCL and ADCH were defined as the mean ADC value of the lower and higher
Gaussian distribution, respectively. An ADCL value of 1.0 �m2/ms and ADCH value of 1.6 �m2/ms were
used to stratify patients into high- and low-risk categories. Results suggested that patients with a low ADCL

had a significantly shorter PFS (Cox hazard ratio � 0.12, P � .0006). OS was significantly shorter with low
ADCL tumors, showing a median OS of 407 versus 644 days (Cox hazard ratio � 0.31, P � .047). ADCH

did not predict PFS or OS when accounting for age and ADCL. In summary, after completing RT � TMZ,
newly diagnosed glioblastoma patients with a low ADCL are likely to progress and die earlier than patients
with a higher ADCL. ADC histogram analysis may be useful for patient-risk stratification after completing
RT � TMZ.

INTRODUCTION
Glioblastoma (GBM) is the most common and deadly form of
primary brain tumors in adults. The current standard—aggres-
sive therapy consisting of maximal surgical resection followed
by concurrent radiotherapy (RT), temozolomide (TMZ) chemo-
therapy, and adjuvant TMZ—has shown a median survival of
only 14.6 months (1-3). Although GBMs generally have a very
poor prognosis, there are clearly cohorts of patients that benefit
from specific therapies. Thus, there is great interest in identify-
ing risk factors and biomarkers for predicting response to
therapy beforehand. Patient age at diagnosis, neurological per-
formance status, extent of surgical resection, radiographic com-
position of the tumor, tumor volume and location, isocitrate

dehydrogenase 1 mutation status, gene expression subtype, and
O6-methylguanine methyltransferase promoter methylation are
commonly assessed prognostic characteristics for GBM (4-12).

The use of imaging features to phenotype tumors and to
predict therapeutic response is an attractive option compared
with more invasive approaches based on tissue-derived bio-
markers. By noninvasively characterizing the composition of
the tumor microenvironment, features associated with particu-
lar response patterns can be identified that lead to the potential
for patient cohort enrichment for use in clinical trials. We
recently showed that the apparent diffusion coefficient (ADC)
characteristics measured using diffusion magnetic resonance
imaging (MRI) techniques can be used to predict both progres-
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sion-free survival (PFS) and overall survival (OS) in GBM pa-
tients treated with bevacizumab at recurrence (13-15). Specifi-
cally, results in both single and multicenter trials have shown
high ADC measurements within the contrast-enhancing tumor
regions predict a favorable response to bevacizumab treatment
at recurrence as indicated by a longer PFS and OS, whereas
patients with low ADC measurements have a significantly
shorter PFS and OS. It is important to note that results have also
suggested that the prognostic capabilities of ADC measurements
may be specific to bevacizumab therapy at recurrence, because
no difference in PFS or OS were noted in bevacizumab-naïve
patients treated with chemotherapy at recurrence (13). However,
it is conceivable that ADC measurements may also be prognostic
when used to evaluate the phase of adjuvant TMZ before the first
recurrence, because various studies have suggested a general
increase in ADC after successful RT � TMZ (16-21).

In this study, we examined a cohort of 120 patients with a
newly diagnosed GBM that underwent tumor resection followed
by RT � TMZ. We then evaluated the diffusion MRI character-
istics within the tumor 4 weeks after completing RT�TMZ—just
before starting the adjuvant phase of TMZ therapy. We hypoth-
esized that high ADC measurements within contrast-enhancing
voxels after completing RT � TMZ would indicate a longer PFS
and OS.

METHODOLOGY
Patient Characteristics
All patients participating in this study signed institutional
review board-approved informed consent. Data acquisition
was performed in compliance with all applicable Health In-
surance Portability and Accountability Act regulations. Pa-
tients were retrospectively selected from our institution’s
neuro-oncology database. Initially, a total of 169 patients
who met the following criteria were selected: (1) pathology-
confirmed glioblastoma, (2) treatment with standard external
beam radiotherapy and concurrent TMZ followed by adjuvant
TMZ, and (3) MRI scans obtained after surgical resection and
within 4 weeks after RT � TMZ—just before the adjuvant
phase of TMZ. The average age for this population was 58.4
years (�11-year SD), the average Karnofsky performance
status score was 86 (�10 SEM), and 57% of the patients were
male (97/169). In total, 70 patients had a gross total resection

at the time of initial surgery, 73 had a subtotal resection, and
26 had only a biopsy before radiochemotherapy.

Of all patients enrolled, 120 had good-quality diffusion-
weighted images and were included in the final analyses for this
study. Exclusions were based on gross geometric distortions or
low signal-to-noise ratios in the raw diffusion-weighted imag-
ing datasets or patients with a contrast-enhancing tumor less
than 0.1 cc as seen on the first MRI scan after RT � TMZ. These
follow-up scans were obtained approximately 10 weeks from
the time of treatment initiation (mean � 75 � 2.6-day SEM) or
approximately 4 weeks from the end of initial radiochemo-
therapy. At the time of last assessment, 104 of the 120 patients
had died.

Treatment Paradigm
Patients were treated with 60 Gy of external beam radiation
therapy (2-Gy fractions given once daily for 5 days over a
6-week period) with concomitant TMZ (75 mg/m2 orally or
intravenously for 42 consecutive days), followed by a 28-day
break, and then adjuvant TMZ (150 mg/m2 orally or intrave-
nously for 5 consecutive days in the first 28-day cycle followed
by 200 mg/m2 orally or intravenously for 5 consecutive days in
the first 28-day cycle for a maximum of 6 cycles). Diffusion and
standard anatomical MRI were performed within 10 weeks after
the start of RT � TMZ or within 4 weeks from the end of RT �
TMZ—just before adjuvant TMZ (Figure 1). The beginning of
adjuvant TMZ and the MRI evaluation were performed on the
same day. This is typically the first imaging evaluation after
completing RT � TMZ and is therefore an important clinical
decision-making time point.

MRI
Diffusion and structural MRIs were obtained on a GE Signa
Excite HDx or Lx 1.5T (GE Healthcare, Waukesha, WI); Siemens
Avanto or Sonata 1.5T (Siemens Healthcare, Erlangen, Ger-
many); or Siemens Trio, Allegra, or Verio 3T MRI system. Stan-
dard anatomical MRI consisted of pre- and postcontrast (gado-
linium-diethylenetriamine pentacetic acid at a dose of 0.1
mmoL/kg body weight; Magnevist, Bayer Schering Pharma,
Leverkusen, Germany) axial T1-weighted images along with
precontrast axial T2-weighted and fluid-attenuated inversion
recovery sequences with standard sequence parameters. Patients

Figure 1. Treatment and MRI evaluation timeline. Patients were treated with 60 Gy of external beam radiation therapy
(2-Gy fractions given once daily for 5 days over a 6-week period) with concomitant TMZ (75 mg/m2 orally or intrave-
nously for 42 consecutive days), followed by a 28-day break and then the start of adjuvant TMZ (150 mg/m2 orally or
intravenously for 5 consecutive days during the first 28-day cycle, followed by 200 mg/m2 orally or intravenously for 5
consecutive days during the first 28-day cycle for a maximum of 6 cycles). Diffusion and standard anatomical MRI were
performed within 10 weeks after the start of RT � TMZ or within 4 weeks from the end of RT � TMZ—just before adju-
vant TMZ.
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also received diffusion-weighted images with an echo/repetition
time � 80 to 120 ms/�5000 ms, matrix size � 128 � 128, slice
thickness � 3 mm with no interslice gap, and b values of 0 and
1000 s/mm2 in 3 orthogonal directions. ADC maps were calcu-
lated for each image voxel as ADC(x, y, z) � �1/1000 · ln[S(x, y,
z)/S0(x, y, z)], where S(x, y, z) is the signal intensity of the voxel
at coordinate (x, y, z) with b � 1000 s/mm2 and S0(x, y, z) is the
signal intensity at voxel (x, y, z) with b � 0 s/mm2.

ADC Histogram Analysis
ADC histogram analysis was performed using previously de-
scribed techniques (13-15). Briefly, contrast-enhancing tumor
regions were segmented on T1 subtraction images calculated by
subtracting precontrast from postcontrast T1-weighted images
(22). ADC characteristics from within enhancing regions were
then extracted. A double Gaussian mixed model was used to
describe the ADC histogram using nonlinear regression, where
ADCH reflects the mean ADC in the larger of the two Gaussian
distributions and ADCL is the mean ADC value of the lower
Gaussian distribution (Figure 2). Both ADCL and ADCH were
used as the primary imaging biomarker for the current study
using GraphPad Prism version 6 (GraphPad Software, Inc., La
Jolla, CA).

Definition of Tumor Progression
Progression was defined prospectively by the treating neuro-
oncologists if subsequent scans showed an increase in imaging-
evaluable tumor (�25% increase in the sum of enhancing
lesions, new enhancing lesions � 1 cm2, an unequivocal qual-
itative increase in nonenhancing tumor, or an unequivocal new
area of noncontrast-enhancing tumor). Patients were required to
have a stable or decreasing contrast agent dose before partial or
complete response could be determined. In addition, patients
who required an increased dosage of steroids to maintain neu-
rologic function, even when anatomical images showed no
worsening, were considered to be stable but required early

reevaluation. Patients who experienced significant neurologic
decline were also declared to have progressed at the time of
irreversible decline. Landmark PFS was defined as the time
between the MRI scan following completion of RT � TMZ and
progression. Landmark OS was defined as the time between the
MRI scan and death.

Statistical Analyses
Receiver operating characteristic (ROC) analysis was used to
determine whether a low ADCL could identify patients who
progressed within 6 months from starting adjuvant TMZ (i.e.,
PFS6) and patients who died within 12 months from starting
adjuvant TMZ (e.g., OS12) using area under the ROC curve (AUC)
as a measure of performance. An ADCL value of 1.0 �m2/ms and
ADCH value of 1.6 �m2/ms were chosen as the primary biomark-
ers of interest because these values were near the median of the
patient distribution and found to have the highest likelihood
ratio (sensitivity/[1 � specificity]) for both PFS6 and OS12. This
cutoff was then used to stratify PFS and OS using both log-rank
analysis on Kaplan-Meier data and multivariate Cox regression
analysis using age as an additional covariate. A P value less than
.05 was considered statistically significant, and a P value less
than .10 was considered trending toward significance.

RESULTS
ROC Analysis
Results suggest ADCL is a significant predictor of patients that
will progress within 6 months of starting adjuvant TMZ (Figure
3A; ROC AUC � 0.68 � 0.053 SEM, P � .0011); however, ADCH

was not a significant predictor of progression by 6 months
(Figure 2A; ROC AUC � 0.5768 � 0.057 SEM, P � .2187). A
threshold of ADCL � 1.0 �m2/ms had a low sensitivity (34%)
and high specificity (90%) for identifying patients that would
progress within 6 months, meaning a high proportion of patients
with low ADCL after RT � TMZ will progress early after starting
adjuvant TMZ (Figure 3B; t test, P � .027). (For reference, an

Figure 2. ADC histogram analysis. (A) Postcon-
trast T1-weighted image showing ring-enhancing
tumor in the left frontal lobe. (B) T1 subtraction
map generated from subtracting precontrast from
postcontrast T1-weighted images. (C) Enhancing
tumor mask extracted from T1 subtraction maps.
(D) ADC map used for diffusion MRI phenotyp-
ing. (E) Resulting ADC histogram (raw data,
black closed circles; double Gaussian mixed
model fit, solid red line). ADCL � mean of the
lower Gaussian distribution estimated the double
Gaussian mixed model fit. ADCH � mean of the
higher Gaussian distribution estimated from the
double Gaussian mixed model fit.
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ADCL � 1.2 �m2/ms used in previous studies showed a sensi-
tivity of 71% and specificity of 57% for PFS6.)

ADCL also trended toward being a significant predictor of
OS12 (Figure 3C; ROC AUC � 0.62 � 0.066 SEM, P � .0547),
whereas ADCH did not predict OS12 (Figure 3C; ROC AUC � 0.55
� 0.064 SEM, P � .4104). ADCL showed a relatively low sensi-
tivity (33%) but high specificity (82%) of predicting OS12 when
using ADCL � 1.0 �m2/ms for patient stratification. (For ADCL

� 1.2 �m2/ms, sensitivity/specificity � 73%/48%.)

Progression-Free Survival
Patients with an ADCL � 1.0 �m2/ms had a significantly shorter
PFS compared with the rest of the patients (Figure 4A; log-rank,
P � .0001). Median PFS for patients exhibiting a low ADCL

(� 1.0 �m2/ms) was 156 days compared with a median PFS of

288 days for patients with a high ADCL (� 1.0 �m2/ms). Simi-
larly, patients with an ADCH � 1.6 �m2/ms also demonstrated a
significantly shorter PFS compared with the rest of the patients
(Figure 4B; log-rank, P � .0012), with a median PFS of 173 days
compared with 304 days for patients with an ADCH � 1.6
�m2/ms. A Cox multivariate regression that examined the ef-
fects of age, ADCL, and ADCH on PFS confirmed that ADCL was
a significant predictor of PFS (Cox: HR � 0.11 [95% CI: 0.03,
0.39], P � .0006) and age trended toward significance (Cox:
HR � 1.02 [95% CI: 1.00, 1.04], P � .0521). No association
between ADCH and PFS was observed when accounting for age
and ADCL (Cox regression, P � .9498). No differences in ADCL

were observed between O6-methylguanine methyltransferase
methylated and unmethylated tumors (t test, P � .38), but
methylated tumors had significantly higher values of ADCH (t

Figure 3. ROC curves. (A) ROC curve showing the sensitivity and specificity of ADCL and ADCH in detecting patients
who progressed within 6 months of starting adjuvant TMZ (PFS6) (ADCL: ROC AUC � 0.6820 � 0.05252 SEM, P �

.0011; ADCH: ROC AUC � 0.5768 � 0.057 SEM, P � .2187). (B) ADCL and ADCH measurements for individual tu-
mors categorized based on progression before or after 6 months from the start of adjuvant TMZ (PFS6). Significant dif-
ferences in ADCL (t test, P � .027) but not ADCH (t test, P � .412) were observed between patients progressing before
and after 6 months from the start of adjuvant TMZ. (C) ROC curve showing the sensitivity and specificity of ADCL and
ADCH in detecting patients who died within 12 months of starting adjuvant TMZ (OS12) (ADCL; ROC AUC � 0.6176
� 0.06551 SEM, P � .0547; ADCH: ROC AUC � 0.55 � 0.064 SEM, P � .4104). (D) ADCL and ADCH measure-
ments for individual tumors categorized based on death before or after 12 months from the start of adjuvant TMZ
(OS12). No significant differences were observed in measurements of ADCL (t test, P � .318) or ADCH (t test, P �

.527) when patients were stratified by OS12.
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Figure 4. Progression-free and overall survival. (A) Kaplan-Meier curves showing significantly lower PFS in patients with
ADCL � 1.0 �m2/ms (log-rank, P � .0001; Cox multivariate, P � .0002). (B) Kaplan-Meier curves showing signifi-
cantly lower PFS in patients with ADCH � 1.6 �m2/ms in univariate analysis (log-rank, P � .0012); however, ADCH

was not significant in multivariate analysis (Cox multivariate, P � .9498). (C) Kaplan-Meier curves showing significantly
lower OS in patients with ADCL � 1.0 �m2/ms (log-rank, P � .0002; Cox multivariate, P � .0487). (D) Kaplan-Meier
curves showing significantly lower OS in patients with ADCH � 1.6 �m2/ms in univariate analysis (log-rank, P �

.0487) but not when accounting for age and ADCL (Cox multivariate, P � .5478). (E) Kaplan-Meier curves showing
differences in OS based on ADCL higher or lower than 1.0 �m2/ms for both bevacizumab-naïve (log-rank, P � .0130)
and bevacizumab-treated (log-rank, P � .0029) patients at recurrence. No differences in OS were observed between
patients treated with bevacizumab and those who were not within high ADCL (log-rank, P � .1977) or low ADCL (log-
rank, P � .8959) groups. (F) Kaplan-Meier curves showing no differences in OS based on ADCH higher or lower than
1.6 �m2/ms for both bevacizumab-naïve (log-rank, P � .1330) and bevacizumab-treated (log-rank, P � .1510) patients
at recurrence.
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test, P � .0443; mean ADCH for methylated � 1.50 �m2/ms;
mean ADCH for unmethylated tumors � 1.72 �m2/ms).

Overall Survival
Patients with an ADCL � 1.0 �m2/ms had a significantly shorter
OS compared with patients who had a higher ADCL (Figure 4C;
log-rank, P � .0002), with median OS for patients with a low
ADCL (� 1.0 �m2/ms) around 407 days compared with 648 days
for patients with a high ADCL (� 1.0 �m2/ms). Similarly, pa-
tients with an ADCH � 1.6 �m2/ms also had a significantly
shorter OS compared with patients who exhibited a higher ADCH

(Figure 4D; log-rank, P � .0487), with median OS for patients
with a low ADCH around 491 days compared with 662 days for
patients with a high ADCH. Cox multivariate regression con-
firmed that both age (Cox: HR � 1.03 [95% CI: 1.01, 1.05], P �
.001) and ADCL (Cox: HR � 0.31 [95% CI: 0.09, 0.98], P � .047)
were correlated with OS. ADCH was not significantly associated
with OS when accounting for age and ADCL (Cox, P � .5478).

Significant OS differences were observed between high and
low ADCL in both patients who received bevacizumab at first
recurrence (n � 87; log-rank, P � .003) and those who did not
(n � 33; log-rank, P � .01) (Figure 4E). No differences were
observed between high and low ADCH in patients who received
bevacizumab at first recurrence (log-rank, P � .1510) and those
who did not (log-rank, P � .1330) (Figure 4F). No differences in
OS were observed between patients treated with bevacizumab
and those who were not within high ADCL (log-rank, P � .20) or
low ADCL (log-rank, P � .90) groups.

DISCUSSION
Diffusion MRI measures of ADC have been shown to be corre-
lated with both tumor cellularity (19, 23-25) and mitotic activity
(26). Therefore, successful radiochemotherapy would be ex-
pected to result in a relatively higher amount of tumor cell
destruction, leading to an increase in the diffusivity of water
within the tumor as a result of the lack of restrictions to diffu-
sion from structures such as cell membranes. Tumors with a low
ADC following combined RT � TMZ, on the other hand, may
consist of a more cellular, aggressive, possibly more treatment-
resistant tumor phenotype. Results from this study support this
hypothesis, suggesting patients with an ADCL � 1.0 �m2/ms in
contrast-enhancing tumors have a significantly shorter PFS and
OS after starting adjuvant TMZ compared with other patients.

Previous studies using ADC histogram analysis have shown
that tumor ADCL values greater than 1.2 �m2/ms have a signif-
icantly longer PFS and OS in recurrent GBM treated with bev-
acizumab (13-15, 27). Using the threshold of 1.0 �m2/ms, we did
not observe any difference in OS between patients treated with
bevacizumab and those who were not. However, we did observe
this trend at recurrence when using a threshold of 1.2 �m2/ms
(data not shown), but this threshold was not significant when

used for evaluating adjuvant TMZ and thus was not used in this
study. Together, these results may suggest patients with a low
ADCL (� 1.0 �m2/ms) after RT � TMZ are likely to be nonre-
sponsive to any subsequent therapies, including bevacizumab or
additional chemotherapies; patients with a high ADCL (� 1.2
�m2/ms) are likely to respond favorably to bevacizumab at first
recurrence; and patients with an intermediate ADCL (1.0
�m2/ms � ADCL � 1.2 �m2/ms) may benefit from subsequent
chemotherapy before treatment with bevacizumab.

There are a few limitations to this study that should be
noted. It is important to point out that there was a potential
selection bias because only patients who successfully completed
surgical resection and RT � TMZ with a measurable contrast-
enhancing tumor (�0.1 cc) were eligible for ADC histogram
analysis. In addition, it is conceivable that some patients deter-
mined to have early progression after completing RT � TMZ
actually had pseudoprogression, or treatment-related changes in
vascular permeability that mimic radiographic changes similar
to treatment failure or tumor growth. The addition of multi-
modal imaging techniques, including perfusion MRI (28), may
have allowed for a more accurate delineation of pseudoprogres-
sion from true progression. Despite this potential confounding
variable, we found significant differences in both PFS and OS in
all patients based on diffusion characteristics as well as in
patients with a PFS greater than 3 months from the end of RT �
TMZ, where the incidence of pseudoprogression is likely to be
highest. Moreover, this study involved acquiring diffusion MRIs
using a variety of MRI systems and field strengths for the
purpose of mimicking a clinical trial environment. Recent stud-
ies have shown that errors in ADC measurements vary nonlin-
early from the scanner isocenter and that different MRI systems
have different degrees of nonlinearity (29). Thus, this study
would have benefited from the use of a temperature-controlled
water phantom to account for system-specific errors in ADC
measurements.

In summary, this study demonstrates that diffusion charac-
teristics obtained using ADC histogram analysis can be used to
predict PFS and OS after completing RT � TMZ and before
adjuvant TMZ therapy. Results suggest that patients with an
ADCL � 1.0 �m2/ms are at increased risk for early progression
and early death, indicating that ADC histogram analysis may be
useful for patient-risk stratification after completing RT � TMZ.
Future studies aimed at integrating ADC histogram analysis into
clinical decision making as well as identifying biological corre-
lates of diffusion characteristics are warranted.
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