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Abstract: The study of bio-inspired structures and their reproduction has always fascinated humans.
The advent of soft robotics, thanks to soft materials, has enabled considerable progress in this field.
Over the years, polyps, worms, cockroaches, jellyfish, and multiple anthropomorphic structures such
as hands or limbs have been reproduced. These structures have often been used for gripping and han-
dling delicate objects or those with complex unknown a priori shapes. Several studies have also been
conducted on grippers inspired by the seahorse tail. In this paper, a novel biomimetic soft pneumatic
actuator inspired by the tail of the seahorse Hippocampus reidi is presented. The actuator has been
developed to make a leg to sustain a multi-legged robot. The prototyping of the actuator was possible
by combining a 3D-printed reinforcement in thermoplastic polyurethane, mimicking the skeletal
apparatus, within a silicone rubber structure, replicating the functions of the external epithelial tissue.
The latter has an internal channel for pneumatic actuation that acts as the inner muscle. The study on
the anatomy and kinematic behaviour of the seahorse tail suggested the mechanical design of the
actuator. Through a test campaign, the actuator prototype was characterized by isotonic tests with an
external null load, isometric tests, and activation/deactivation times. Specifically, the full actuator
distension of 154.5 mm occurs at 1.8 bar, exerting a maximum force of 11.9 N, with an activation and
deactivation time of 74.9 and 94.5 ms, respectively.

Keywords: bio-inspired soft pneumatic actuator; soft robotics; seahorse tail; finite element analysis;
experimental characterization

1. Introduction

Humans have always been attracted to nature and its creatures. Bioinspiration pre-
cisely concerns the study of biological structures to understand their functioning and
characterize their materials, the interactions between the constituent elements, and their
replication. Studies in this area have made it possible to explain how evolutionary processes
over billions of years have led various species to adapt to the most hostile environments
efficiently and optimally. Not surprisingly, many scientists and engineers have often taken
inspiration from nature itself for technological innovations. The study of spiders’ arctic re-
lationships has enabled a rotary rolling diaphragm actuator [1]; understanding self-healing
epithelial tissues has driven the search for materials to make skins capable of restoring their
mechanical behavior [2,3]. In other cases, single human fingers have been made [4,5] or
entire anthropomorphic, three-finger tendon-driven hands [6] or five-finger pneumatically
actuated hands [7]. A gripper for granular materials of various sizes was made from the
study of the grasping mode of the elephant’s trunk [8]. Inspired by the elephant trunk, a
certain number of artificial muscle fibers provide for selective deformation in continuous
movements [9].

With the advent of soft robotics, the reproduction of bioinspired structures has in-
creased enormously, pushing it to an unexpected level compared to the past [10]. The two
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main drivers of this field of research have been both the availability of soft materials [11],
which are easily deformable and inherently safe, and 3D printing, especially fused de-
position modeling (FDM) [12], to make molds for injection silicone rubbers and to print
actuators [13] directly. In several works, studies of different reinforcing structures of marine
species are reported with the help of FDM technology; in particular, the potentialities of
FDM are shown to study their mechanical behavior even when not disposing of natural
specimens or when interested in making and testing structures that did not develop in
nature [14,15].

In recent years, it has been possible to reproduce bio-inspired structures such as
octopus tentacles [16,17], jellyfish with pulse-jet locomotion [18], soft appendages to make
underwater robots [19], the structure of a cockroach [20], the movement and control
of snakes [21] or dogs [22], worms for potential applications in colonoscopy [23], their
locomotion in different environments [24,25], or the combination of soft airtight skin and a
scissor structural skeleton [26,27].

Implementations of these capabilities are due to the spread of soft actuators, coming
to equip robots with a wide variety of abilities in a safe, simple, and versatile way [28].
Often, these actuations are based on soft pneumatic actuators (SPAs), i.e., actuations by
compressed air, which use the presence [4,29] or absence [30] of an external reinforcement
to guide the deformation of a hyper-elastic deformable component. Indeed, it is possible to
take advantage of specifically designed geometries either directly or by making deformable
components externally reinforced.

Because of the strong nonlinearities due to the nonlinear behavior of compressed air,
the nonlinear constitutive law of the hyper-elastic material, and the large deformations of
the actuator, the finite element method (FEM) is often used for the analysis, design, and
simulation of the performance of SPAs [31,32] or for topological optimizations [33].

The present work is in the context of bioinspiration, namely, the design, numerical
simulation by the FEM, and prototyping of a SPA inspired by the tail of the seahorse
Hippocampus reidi. The inspiration for the seahorse is due to the high number of degrees of
freedom of its tail, which is an excellent context for making a soft prototype. Regardless
of the species, seahorses, or Hippocampus, belong to the class of bony fishes and range in
size from 1.5 to 35.5 cm. They are adept at camouflaging themselves in their habitats and
swim very stunted, waving a dorsal fin and using their pectoral fins to guide. Because of
this poor swimming dexterity, seahorses are often found on the seabed resting with their
prehensile tails wrapped around seagrasses, mangroves, and coral reefs (Figure 1a) [34,35].
Their mass is up to 230 g, and although they are bony fish, they do not present scales but
have smooth, thin, taut skin over a series of bony plates. Their bodies have prismatic bony
plates, while their tails consist of square rings (Figure 1b). The skeleton of a seahorse’s tail is
a multifunctional device that provides structural support, protection, and prehension. The
tail can actively bend in the ventral direction (prehension), in the combined ventral-lateral
direction (helical bending), and in the dorsal direction (overstretching) [36], enabling the
seahorse to grasp and move objects or detach its body from the seabed (Figure 1c) [36,37]. A
study has dealt with the tail’s anatomy, going so far as to explain why the outer geometry of
the rings constituting it is square rather than cylindrical [37]. Several works have analyzed
the mechanisms of tail deformation [37–40]. In other studies, a cobot gripper inspired
by the seahorse tail structure was made for gripping objects [41,42]. Finally, soft robots
for object grasping have been made, such as the soft spiral robots (SpiRobs) [43] and
the square continuum robot (SCR) [44]. All the proposed devices are tendon-driven and
electrically powered.
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The seahorse H. reidi is one of the 35 known seahorse species in the world. The choice 
of this species is mainly due to the scientific community’s interest in it and, consequently, 
the anatomical resources available for its bio-inspired modeling [36,37]. This species has 
an average height of 14.4 cm, reaching specimens up to 19.2 cm, considering the head, the 
trunk, and the tail. The skeleton, made of vertebras, absorbs shock and protects the inner 
muscle that passes and runs from the top of the head to the end of the tail, within each 
vertebra. Along the trunk and tail, bony segments are approximately equidistant, while at 
the end of the tail, the segments appear close together. The seahorse can independently 
manage the folding of each segment from the others. The tail consists of a chain of squared 
segments that decrease in size (width, W, and thickness, t), while the skew (γ) increases 
as they move along the tail (Figure 2a). 

Figure 1. (a) H. hippocampus with its tail anchored to plant on seabed; (b) detail of plates and rings of
H. reidi species; (c) detail of detaching from seabed; (d) seahorse with tail slightly bent backward.

The proposed SPA is made of a 3D-printed reinforcement in thermoplastic polyurethane
(TPU), mimicking the skeletal apparatus, with an R PRO20 silicone rubber structure that
replicates the functions of the epithelial tissue. Inside the rubber structure is an air-feeding
channel that acts as the inner muscle of the seahorse, equivalently as a pneumatic actuator.
The choice of pneumatics is due to its ability to work economically and safely, avoiding
motors moving the cables of a possible tendon structure and minimizing the weight of the
actuator. A complete characterization was carried out for isotonic tests with an external null
load, isometric tests, and activation/deactivation times. The purpose of this work is not the
realization of an actuator for grasping objects but the development of a leg for sustaining a
multi-legged robot inspired by the movement of the seahorse, which can support its weight
with its tail, whose deformation will provide for generating forces for the locomotion. The
conceived idea of the robot expects four supporting limbs, just like the one characterized
in this work. By independently adjusting the feeding pressure, the deformation of each
actuator can be managed to generate the force necessary for locomotion. The latter can be
carried out by the alternative powering of two actuators at a time, e.g., the left front one
and the right rear one, and then reverse and pressurize the right front one and the left rear
one while the discharge of the previous ones occurs.

The following items represent the originality of this work:

• The design and fabrication of an actuator pneumatically powered and inspired by the
Hippocampus reidi;

• The methodology to achieve an integration between skeleton and epithelial tissue, as
for several biological structures in nature;

• A complete characterization of the designed SPA.

The paper is organized as follows: Section 2 describes the mechanical design of the
proposed actuator, passing through details on the Hippocampus reidi species, analyzed in
this study, the CAD modeling, and numerical simulations; in Section 3, the manufacturing
process to realize the SPA is detailed; and the experimental characterization and discussion
of the prototyped actuator are reported in Section 4.

2. Mechanical Design of the Bio-Inspired Actuator
2.1. The Studied Species: Hippocampus reidi

The seahorse H. reidi is one of the 35 known seahorse species in the world. The choice
of this species is mainly due to the scientific community’s interest in it and, consequently,
the anatomical resources available for its bio-inspired modeling [36,37]. This species has
an average height of 14.4 cm, reaching specimens up to 19.2 cm, considering the head, the
trunk, and the tail. The skeleton, made of vertebras, absorbs shock and protects the inner
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muscle that passes and runs from the top of the head to the end of the tail, within each
vertebra. Along the trunk and tail, bony segments are approximately equidistant, while at
the end of the tail, the segments appear close together. The seahorse can independently
manage the folding of each segment from the others. The tail consists of a chain of squared
segments that decrease in size (width, W, and thickness, t), while the skew (γ) increases as
they move along the tail (Figure 2a).
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As for the actuator to be developed, it is necessary to scale up W to realize the SPA 
by a molding process, print the reinforcement by the FDM, and assemble them easily and 
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obtained by the following equation: 𝑊 𝐹 ∙ 0.137 ∙ 𝑁 5.480  (4) 

  

Figure 2. (a) Detail of seahorse dimensions: fish height (A–B, with stretching tail), head length (A–C),
tail length (D–B, with stretched tail), maximum width (E–F), and constituent elements of tail segment
with its characteristic dimensions (W, t, γ); (b) detail of the components of tail segment; (c) examples
of logarithmic spiral in different natural structures: (1) pinecone, (2) chameleon tail, (3) shell, and (4)
seahorse tail.

Each segment turns out to consist of four L-shaped prismatic elements (left dorsal, right
dorsal, left ventral, right ventral), held together by a vertebra. The central amphicoelous
vertebra is made of a hemal spine, a neural spine, and two lateral processes [42] (Figure 2b).
The dorsal and ventral spines are the only spine tails that are not involved in the formation
of a joint. Each segment contains 13 joints: 8 act like gliding joints; the remaining 5 act like
ball-and-socket joints [39].

The tail is often held ventrally curled and is flexible. When forced, it can slightly bend
backward (Figure 1d) and, when coiled forward, follows a logarithmic spiral, as several
existing structures in nature (Figure 2c).

2.2. Characteristic Dimensions of the Actuator

Through studies on the size of the specimens of H. reidi [40], it was possible to express
the values of W, t, and γ of each segment of the tail as a function of the number of segments,
N. As shown in Figure 3a–c, W and t decrease as the number of sectors progresses, while
γ increases. The identified trends, by a regression for W, t, and γ as a function of N, are
reported in Equations (1)–(3):

W = −0.137·N + 5.480 (1)

t = −0.0021·N2 − 0.0046·N + 2.828 (2)

γ = 0.938·N + 6.358 (3)
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Figure 3. Dimensions of the H. reidi segments: (a) experimental and adopted W; (b) experimental and
adopted t; (c) experimental and adopted γ.

As for the actuator to be developed, it is necessary to scale up W to realize the SPA
by a molding process, print the reinforcement by the FDM, and assemble them easily and
correctly. The values of t and γ follow Equations (2) and (3). Based on the identified regres-
sion trends and setting a scaling factor F equal to 5, the adopted values of W (Figure 3a)
were obtained by the following equation:

W = F·(−0.137·N + 5.480) (4)

Moreover, the starting and the final radii of the logarithmic spiral were estimated. The
logarithmic spiral can be described by Equation (5):

r = a·eb·θ , (5)

where a is a scaling factor, b is the cotangent of the constant polar tangential angle φ, defined
as the angle between the tangent of a point P belonging to the spiral and the line connecting
the point to the origin O, as shown in Figure 4, and θ is the angle of rotation as the curve
spirals. In a cartesian coordinate system, for θ ∈ [0, 4π], the coordinates of the points
belonging to the spiral can be expressed by Equations (6) and (7):

x(θ) = r·cos(θ) (6)

y(θ) = r·sin(θ) (7)
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The constants a and b were set equal to 6 mm and 0.18, respectively. These values were
chosen to avoid collisions between the edges of the segments of the bio-inspired actuator.
The midpoint of each segment coincides with a point of the spiral. Specifically, to show the
influence of these parameters, different logarithmic spirals were constructed for a value of
a fixed at 6 mm with various values of b (Figure 4a) and for a value of b fixed at 0.18 with
various values of a (Figure 4b).

2.3. CAD Model of the SPA

The modeled SPA consists of a reinforcement inspired by the seahorse tail skeleton
and a covering inspired by its epithelial tissue. A feeding pneumatic channel, acting as
the inner muscle of the seahorse, is realized within the covering. The reinforcement wraps
and contains the radial deformation of the pressurized feeding channel, maximizing the
actuator elongation. For modeling the three components, the logarithmic spiral identified in
the previous Section was adopted as a guiding profile (with a limited θ in [0, 2.5π]), shown
as a green line in Figure 5a. In the same figure, the reinforcement with an overall amount
of 33 segments is shown. The first six segments have the same dimensions (W = 26.75 mm,
t = 2.8 mm) as the first segment identified in the previous Section, while the remaining
twenty-seven follow the trends reported in Figure 3a–c. The segments were connected only
on the dorsal side to allow for agile SPA elongation. Moreover, each segment consists of a
single squared element, joining the 4-L-shaped prismatic elements and not considering the
four processes that are present in the biological tail.
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The reinforcement was overlaid with a 6 mm thickness of coating on all sides, as shown
in Figure 5b, to be fully embedded inside the covering. The latter also shows cutouts (green-
colored ellipse, Figure 5b) in the ventral part that act as virtual hinges and fall between two
adjacent segments of the reinforcement. The covering between two consecutive cutouts
is called a sector (volume highlighted by yellow-colored lines, Figure 5b). The feeding
channel acts as a pneumatic actuator: it allows the spiral to be unrolled, extending the SPA
in the case of positive pressures, or to be rolled up, flexing the SPA in the case of negative
pressures. A connector equipped with a pneumatic fitting provides for the inlet/outlet of
the air into the feeding channel.

In Figure 5b, details about labyrinth gaskets to ensure the pneumatic and mechanical
seal between the connector and the SPA are reported. Figure 5c shows the modeled
assembly. The assembled 3D geometry of the actuator was modeled in Solid Edge 2024.
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2.4. The Numerical Model

It was developed to check the functionality of the proposed actuator and, hence,
proceed to the prototyping of it. Numerical models were implemented by the commercial
Ansys Workbench 2023 R2 code, working with four cores in parallel. A PC with a 2.2 GHz
8th-generation intel i7 8750H processor, an NVIDIA GTX 1050 Ti GPU, and 32 GB of RAM
was adopted. The 3D geometry of the actuator was exported into the FEM code. However,
a boolean subtraction operation was performed in the FEM code to remove all the volume
occupied by the reinforcement from the epithelial tissue. Bonded contacts were applied
between the outer surfaces of the reinforcement and the inner ones of the epithelial tissue.
Simulations were conducted on only half of the geometry, including symmetry constraints,
to minimize the computational time and cost.

The modeled components of the actuator are the R PRO20 coating and TPU reinforce-
ment structure. R PRO20 is a Shore A 21-hardness silicone rubber with an elongation at
a break of 250%. The mechanical behavior of the silicone rubber was modeled with the
2-parameter Mooney–Rivlin model, C01 = 0.0628 MPa, C10 = 0.0694 MPa, D1 = 0.61 MPa−1,
and Poisson’s ratio of 0.46, experimentally achieved. TPU was modeled as an isotropic
elastic material with a Young’s modulus of 50 MPa and a Poisson’s ratio of 0.4. The reason
for choosing isotropic behavior lies in the small deformations of the reinforcement when
the actuator operates.

The following common settings were adopted in all numerical models: automatic
meshing with elements less than 2.8 mm in size (106,431 nodes and 67,754 elements);
tetrahedral elements for modeling all components; a fixed constraint at the top end of the
covering (blue-colored Fixed Support A, Figure 6a); a pressure ramp in the range (−0.85–1.8)
bar acting on the surfaces of the feeding channel (red-colored areas Pressure B, Figure 6a)
in the simulated time interval 0–1 s; gravitational effects (yellow-colored Standard Earth
gravity C, Figure 6a); bonded contact constraints based on the penalty stiffness method
between the reinforcement and the cover; nonlinear analysis by the Newton–Raphson
method; large deformation algorithm; and auto time stepping, controlled by the program.
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Figure 6. The FEM model of the actuator: (a) constraints and boundary conditions; (b) deformation
results at different pressure levels.

Figure 6b shows the deformations resulting from the action of the feed pressure at
−0.8 bar, 0.0 bar (only gravitational effects), 0.6 bar, 1.0 bar, and 1.8 bar. Results show that
it is possible to adjust the extension and flexion of the SPA by pressure regulation. The
results in Figure 6b are only qualitative, but a quantitative comparison between numerical
and experimental results is in Figure 12b,c.
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3. The Prototype

For construction needs, the reinforcement must be realized and directly attached to
the core for the feeding channel. Hence, the reinforcement was designed to be rigidly
connected by removable structural attachments to the core. They were prototyped in TPU
by a QIDI i-fast 3D printer. The chosen layer thickness of 0.1 mm is compatible with the
0.4 mm nozzles used. A low printing speed, set equal to 40 mm/s, and an inner and outer
wall speed of 20 mm/s, for an extruder temperature of 220 ◦C and the printing plate at
65 ◦C, avoid warping and limit stringing. The filling percentage was set at 100% according
to a concentric configuration.

The designed reinforcement with the core and the refined one, after cleaning and
printing support removal, are shown in Figure 7a,b, respectively. To demonstrate the easy
deformability of the reinforcement without the core, as it occurs in the functioning of the
actuator, and to measure its overall plane development length, a 3D print without the core
was carried out. As shown in Figure 7c, the reinforcement can be fully unrolled, and its
length measures 435 mm.
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the figure).

The silicone rubber covering was made by injection inside a 3D-printed PLA mold.
After accurately mixing parts A (base) and B (catalyst) of the R PRO20 silicone rubber in a
ratio of 1:1, the mixture was cooled to delay solidification and put under a vacuum pump
for the removal of air bubbles; then, it was put into the mold.

Concerning Figure 8, the mold is made of three components: the lower mold, the
intermediate mold, and the upper mold. The molding process was divided into two stages:

- stage I: for the realization of the lowest half of the actuator. The reinforcement and core
are suspended in the lower mold by attachments mounted in the intermediate mold,
as shown in Figure 8a. In the same figure, the yellow surface represents the area to be
filled by silicone rubber. The latter, the blue-colored volume in Figure 8b, is poured
from above into the lower mold up to the interface surface between the two molds. In
Figure 8b, there are also details about the connection between the reinforcement and
intermediate mold (red line) and the reinforcement–core connections that ensure the
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proper distance between them (yellow circle). Figure 8c shows the experimental end
of the first stage;

- stage II: for the realization of the remaining half of the actuator. After 3 h at 20 ◦C,
the intermediate mold must be removed. The attachments between the reinforcement
and core must be cut. This operation allows the remaining part of the reinforcement
and the core to be surrounded by silicone rubber, and the core can be removed in
the final stage to obtain the feeding channel. It was no longer necessary to keep the
reinforcement and core raised, as the solid silicone rubber on the bottom acts as a
support. Hence, the upper mold replaces the intermediate one. Figure 8d shows
the mounting of the overall set of molds with the pneumatic fitting used to feed the
silicone by an injection process with a double-acting cylinder.
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Figure 8. SPA manufacturing process: (a) stage I: mold assembly with the cavity to be filled (in
yellow); (b) stage I: half SPA realized (blue), the link between intermediate mold and reinforcement
(along red line) and the detail about reinforcement–core connection (yellow circle); (c) experimental
top view of the end of stage I; (d) stage II: the intermediate mold is replaced with the upper mold,
and silicone rubber is injected by a double-acting cylinder.

After 3 h at 20 ◦C, the complete solidification of the silicone rubber occurs, and the
prototype is removed from the molds. The operation is completed with the extraction of the
core, the removal of the silicone burrs, and the assembly of the connector. The prototype of
the actuator is shown in Figure 9a. In Figure 9b, a similar actuator was realized by another
type of silicone rubber, which is not useful for the aim of the present work, to show how the
reinforcement (black lines) is included within the covering (translucent white structure).
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Figure 9. The prototype of the SPA: (a) the prototype made of R PRO20 adopted for the present work;
(b) a similar prototype for showing the reinforcement within the covering.

The connector for the air inlet/outlet was printed by a 1.75 mm wire diameter of PLA
with a layer height of 0.2 mm, a 100% infill, a printing speed of 100 mm/s, an extruder
temperature of 210 ◦C, and the printing plate temperature constant at 60 ◦C. After inserting
the connector, a plastic clamp, later covered by the same silicone rubber, must be externally
applied in correspondence with the gasket seals previously mentioned.

The overall mass of the prototype, measured by A CS-2000 balance (resolution ± 0.1 g),
is 473 g. In detail, the M5 pneumatic fitting has a mass of 7 g, the air inlet/outlet port of
18 g, and the SPA of 448 g.

4. Experimental Characterization

The prototype was experimentally characterized to achieve the pressure–deformation
relationship with a null external load acting on it, the exerted force–pressure relationship at
different deformation initial rates, and the activation/deactivation times.

In all the tests, the prototype was attached by its connector to the wrist of the OM-
RON TM5-700 cobot, set in collaborative function mode [45], and adopted to adjust the
placement of the actuator according to the test requirements. In addition, to limit the radial
deformation of the SPA, as also carried out in [46], a couple of interconnected PLA plates
(thickness 1.0 mm) were placed on the lower and upper surfaces of each sector, as shown in
Figure 10.

The same test bench was adopted for each of the tests. It is made of the components
reported in Figure 10a: (1) an SMC IR1220-N01-A precision pressure regulator (maximum
pressure of 4.0 bar) to adjust the pressure within the actuator, (2) a pneumatic 3/2 bistable
valve with manual lever operation (PNEUMAX CLD 228.32.9/2) as a pneumatic on/off
valve, (3) the actuator prototype, (4) a Honeywell ABPMANN004BGAA5 analog pressure
transducer (full range 4.0 bar, output signal 0.5–4.5 Vdc, accuracy ±0.25% of full scale,
response time 1 ms) to measure the feeding pressure value, (5) an analog AEP transducer
TCA10 tension/compression load cell (full scale ±10 kg; output signal ±10 Vdc; nominal
sensitivity 2 mV/V; sensitivity tolerance ≤ ±0.1%) to measure the exerted force by the
actuator, and (6) a National Instruments USB-6001 data acquisition board, to acquire the
signals of the pressure transducer and load cell. The load cell was mounted by a plastic
fixing plate on a grounded aluminum plate; a plastic contact plate was mounted on the load
cell to transmit the force exerted by the actuator to the load cell, as shown in Figure 10b.
All of the components were adopted during the experimental activity, except the load cell,
which was adopted only when force measurements were required.
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4.1. Isotonic Tests with an External Null Load

In the presence of only gravitational load, the deformation of the actuator was evalu-
ated as a function of the pressure in the range of −0.85–1.8 bar for a total amount of fifteen
pressure values. For each test, the pressure was adjusted using the precision pressure
regulator, and a picture was acquired by a 12-Mpixel camera placed one meter from the
actuator to limit distortion effects. An image analysis was carried out in the Solid Edge 2024
software environment to achieve the displacement of markers pointed in correspondence
with the midpoint of each sector along the spiral describing the feeding channel (Figure 10a).
The different deformations of the actuator are reported in Figure 11. The results of the
image analysis on the kinematics of the actuator are reported in Figure 12a.
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In addition, by the cobot, it was possible to evaluate the displacement of the lowest
point P (Plot 6 of Figure 11) of the actuator for each pressure value. Indeed, for each of
the configurations, the lowest point in contact with the load cell was brought with the
cobot to acquire the X and Z coordinates. Figure 12b shows the trends of displacement
along X and Z as a function of the pressure. Regarding the experimental X coordinates, for
the negative values of pressure, the displacement is rather small, going from +5.2 mm to
0 mm for a pressure of −0.85 to 0 bar; meanwhile, for positive values, the displacement
moves toward a positive value up to 0.8 bar (the maximum positive displacement is equal
to 8 mm at 0.6 bar). At about 0.9 bar, the X coordinate of P is equal to the one at rest;
hence, with an almost linear behavior, the displacement moves toward negative values
with the increase in the pressure. The maximum displacement is equal to −117.9 mm at
1.8 bar. In terms of the experimental Z coordinates, for the negative values of pressure,
the displacement is rather small, going from −10.5 mm to 0 mm for a pressure of −0.85 to
0 bar; meanwhile, for positive values, the displacement is interesting, reaching 144.1 mm
for 1.4 bar and 154.5 mm for a pressure of 1.8 bar. In the same figure, comparisons between
experimental results and numerical data are reported. The maximum absolute error is 11.81
and 8.42 mm for X and Z displacements, corresponding to 9.08% and 4.67% concerning the
overall displacement range, respectively. Simulations show a lower deformation along the
X direction and a higher one along Z. Such differences could depend on the viscoelastic
behavior of the silicone rubber not considered in the numerical model, the dimensions
of the molds, the core affected by 3D-printing tolerances, the realization process of the
SPA, and/or errors introduced by image analysis. However, such a result was considered
acceptable for validating the numerical model.
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By combining the X and Z displacement to obtain the moving experimental and
numerical centrode, the curves shown in Figure 12c were obtained. It can be noticed that
over 0.9 bar, the actuator moves backward, increasing the height from the ground. Over
this pressure value, both X and Z coordinates follow an almost linear behavior, which is
interesting as a range for the purpose of the actuator, developing a controller and avoiding
working at too high pressures that would result in excessive stresses, limiting the actuator’s
useful life. It is interesting to observe how the actuator seems to follow the behaviour of a
seahorse tail.

4.2. Isometric Tests

The force exerted by the actuator was achieved as a function of the pressure value,
for a given initial deformation. Except for the negative pressure range, where the actuator
cannot provide for a pushing force, before each test, the actuator was set to an initial
deformation corresponding to one of the pressure values between 0 and 1.6 bar with steps
of 0.2 bar, as shown in Figure 11. Tests were carried out approaching point P of the actuator
to the contact plate of the load cell, adjusting the position by the cobot (Figure 10b). Each
test was carried out three times showing maximum deviations of ±0.2 N, thus showing
good reproducibility.

The force curves developed for different initial pressures (equivalently initial defor-
mations) are shown in Figure 12c. The maximum achieved force is 11.9 N for a pressure
of 1.8 bar, starting from an initial pressure of 0 bar, while at the same pressure value, it
drops to 0.8 N for an initial pressure of 1.6 bar. Therefore, when initializing the actuator
with a higher initial pressure, the forces that develop decrease because more strain energy
is required.

4.3. Activation/Deactivation Times

Both times were evaluated by setting the operating pressure with the precision pressure
regulator and managing, by the 3/2 valve, the instants at which to give tON for starting the
extension of the actuator or take off tOFF for starting the relaxation. The activation time Ta
is defined as the interval between tON and the instant at which the reference pressure is
reached, whereas the deactivation time Td is the interval between tOFF and the reaching
of the environmental pressure, as shown in Figure 13. Both times increase with operating
pressure. In the 0–1.8 bar range, the activation and deactivation times increase from 34.7 to
75.1 ms and from 25.7 to 94.8 ms, respectively.
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a 3D-printed reinforcement in TPU, mimicking the skeletal apparatus, with R PRO20
silicone rubber coating, replicating the functions of epithelial tissue. A pneumatic channel
interacting with the coating acts as the muscle for the motion of the tail. The process
of making the actuator itself is innovative and allows intimate integration between the
reinforcement structure and the coating, as is the case for several biological structures in
nature. The pneumatic actuation ensures safe modulation of extension or flexion, avoiding
the use of electric motors and thus burdening the device.

Indeed, the realized prototype was characterized by isotonic tests for a null external
load, isometric tests, and activation/deactivation times in the range of 0–1.8 bar. The tests
demonstrate the possibility of using the actuator as a leg to support a multi-legged robot.
Indeed, the displacement of the actuator–ground contact point shows an almost linear
characteristic in the 0.9–1.8 bar range. The maximum developed force of 11.9 N is seen at
1.8 bar. Pressure values over 1.2 bar are sufficient to support the actuator itself and integrate
it into a more complex structure. Activation and deactivation times are less than 100 ms, so
with an appropriate controller, it is possible to have a ready and responsive system.

Comparisons between experimental results and numerical data are reported. The
maximum absolute error is 11.81 and 8.42 mm for X and Z displacements, corresponding to
9.08% and 4.67% concerning the overall displacement range, respectively. Such differences
could depend on the viscoelastic behaviour of the silicone rubber not considered in the
numerical model, the dimensions of the molds, the core affected by 3D-printing tolerances,
the realization process of the SPA, and/or errors introduced by image analysis.

Further studies will be conducted to have strain state control not only for ventral
deformation but also according to more complex profiles, such as overstretching and helical
bending, by more pneumatic feeding channels in parallel.

Moreover, this work could contribute to the development of new technologies, such
as prehensile robots or new types of terminal devices. The process presented, on the other
hand, could help the integration of skeletal structures and epithelial tissues.
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