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Abstract: An incremental deep deterministic policy gradient (IDDPG) algorithm is devised for the
trajectory tracking control of a four-wing variable sweep (FWVS) aircraft with uncertainty. The
IDDPG algorithm employs the line-of-sight (LOS) method for path tracking, formulates a reward
function based on position and attitude errors, and integrates long short-term memory (LSTM) units
into IDDPG algorithm to enhance its adaptability to environmental changes during flight. Finally,
environmental disturbance factors are introduced in simulation to validate the designed controller’s
ability to track climbing trajectories of morphing aircraft in the presence of uncertainty.

Keywords: morphing aircraft; deep deterministic policy gradient; path tracking; environmental
disturbance

1. Introduction

The morphing aircraft is a novel conceptual aircraft with deformable structure, which
can autonomously adapt its morphology in response to changes in flight environment and
mission requirements [1,2]. In comparison to traditional fixed-wing aircraft, morphing
aircraft exhibit significant advantages on multiple fronts: firstly, the deformable structure
of morphing aircraft can be utilized to enhance aerodynamic characteristics, reduce flight
energy consumption, and expand the flight envelope; secondly, active morphing assists in
maneuvering, thereby augmenting control capabilities; additionally, morphing aircraft can
adapt to various flight environments and mission requirements by altering configurations,
thereby broadening its applicability [3,4].

For morphing aircraft, each configuration will generate unique performance (such as
speed, climb rate, range, endurance, etc.) under specific flight conditions (Mach number,
altitude, angle of attack, and sideslip angle). For a given flight profile, optimal morphologies
for various flight phases can typically be theoretically calculated. However, in practical
flight missions, obtaining all optimal configurations within the entire flight envelope is
challenging. Moreover, mission parameters may be modified or entirely changed during
flight. In such cases, the deformation strategy derived from the theoretical method may not
be globally optimal. Real-world mission requirements underscore the need for morphing
aircraft to evolve toward intelligence and autonomy to effectively adapt to increasingly
complex flight environments.

In the past three decades, artificial intelligence (AI) technologies have undergone
rapid development [5,6]. Various AI approaches, such as reinforcement learning [7,8] and
deep reinforcement learning [9], have provided more intelligent solutions for deformation
strategies in morphing aircraft. Deep learning, a key branch of machine learning, employs
multi-layer neural networks for data perception and representation, demonstrating robust
capabilities in handling complex classification tasks [10]. Reinforcement learning engages
in iterative learning through continual trial and error, enhancing its ability to make behav-
ioral decisions by interacting with the environment and receiving feedback. The core of
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reinforcement learning lies in modifying its own strategy based on evaluative feedback
signals from the environment, thereby achieving decision optimization [11]. Common
reinforcement learning algorithms include deep Q-network (DQN) [12], deep determin-
istic policy gradient (DDPG) [8], proximal policy optimization (PPO) [13], among others.
Ref. [14] proposes a Q-learning-based adaptive control method for a swept-wing aircraft.
However, this method faces limitations due to an excessively discrete action space. Addi-
tionally, both the Q-function and reward function are solely dependent on the aircraft’s
configuration rather than its flight state, resulting in a narrow applicability scope. The
DDPG algorithm is a commonly used algorithm in deep reinforcement learning, combining
deterministic policy gradient methods with DQN. It employs deep neural networks to
approximate state action policies and is suitable for handling continuous action problems.
Ref. [15] designs a DDPG algorithm to learn deformation strategies under both symmetric
and asymmetric conditions for a morphing aircraft with simultaneous changes in wing
span and sweep angle. The literature [16] introduces an enhanced DDPG algorithm for the
design of deformation strategies in a morphing unmanned aerial vehicle (UAV), allowing
for the deformation of wing sweep angle, wing span, wing area, and other flight structures
based on environmental conditions and mission objectives.

Reinforcement learning control strategies enable aircraft to converge from various
initial states to predefined endpoints. However, during the training of the learning algo-
rithm, the large action space often results in slow training speeds. To address this issue, this
study draws inspiration from trajectory tracking control design principles. In the simulated
environment of reinforcement learning, a reference trajectory is introduced. Thus, the action
space is defined as the error between the current action and the reference trajectory, thereby
reducing the action search space. Additionally, system reference trajectories are typically
based on nominal models, but actual systems may exhibit model uncertainties and obsta-
cles [17,18]. Model uncertainty significantly affects the control effectiveness of traditional
trajectory tracking control methods. Addressing the challenges posed by model uncertainty
and obstacle presence, this study incorporates long short-term memory (LSTM) recursive
neural networks [19,20] into the reinforcement learning algorithm to record the positions of
reference trajectories and obstacles. Consequently, reinforcement learning-based trajectory
tracking control can optimize an optimal trajectory and control strategy near the reference
trajectory, matching the real model, and enhancing computational efficiency based on
historical flight data.

This paper introduces an incremental model with uncertainties for a four-wing
variable-sweep (FWVS) aircraft and redesigns the action and state spaces based on this
model. In Section 3, line-of-sight (LOS) is employed as a path-tracking method with a
reference trajectory, and a reward function based on position and attitude errors is designed.
Section 4 integrates the LSTM into the DDPG algorithm framework to enhance its real-time
adaptability to environmental changes during flight. The resulting algorithm, IDDPG, is
established. In Section 5, through simulation, the IDDPG algorithm demonstrates faster
convergence and achieves integrated tracking control of climb trajectories for a variant
aircraft model with uncertainties using deep reinforcement learning. To assess the adapt-
ability of the controller to environmental disturbances, such as obstacles, simulations with
environmental interference are conducted. Section 6 provides a summary of the entire work.

2. Model Description
2.1. Mathematical Model of Four-Wing Variable-Sweep Aircraft

The subject of this study is a FWVS aircraft with a tandem wing configuration. Typi-
cally, this type of tandem wing aircraft employs a passive variable-sweep angle scheme,
with the main wings folding before takeoff and expanding during flight to reduce the fuse-
lage size while ensuring sufficient lift for the aircraft [16]. This type of aircraft can control
flight attitude and trajectory by adjusting the sweep angle of its four main wings, sim-
plifying control surfaces. In principle, this design enables a stable flight without ailerons
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or horizontal tails, presenting significant practical and theoretical research value. It is
important to note that this morphing aircraft only considers symmetric deformation.

The control inputs for the FWVS aircraft are the variation in the sweep angles of its
four main wings, as shown in Figure 1. These angles represent the rotation of the z-axis in
each wing coordinate system with respect to the body coordinate system. Here, the xi-axis
is aligned with the wing coordinate system’s Oxaya plane, and the yi-axis passes through
the wing rotation center, pointing to the right side of the aircraft. The sweep angles of each
main wing are denoted as a1, a2, a3, a4.

  
Figure 1. Schematic diagram of the FWVS aircraft.

Adopting clockwise rotation as positive, during symmetric deformation, a1 = −a2 < 0,
a3 =− a4 < 0, and |ai| ∈ [0o, 30o]. Following the definition in Ref. [21], the control variable
is simplified as the deformation rate:

λ1 =
|a1|
30o , λ2 =

|a3|
30o , (1)

that is λi ∈ [0, 1]. i = 1, 2 represent the front wing and rear wing, respectively.
This study employs OPENVSP 3.21.1 software for aerodynamic analysis of the FWVS

aircraft. Under various sweep angle deformations and flight conditions (including angle
of attack, Mach number, and Reynolds number), the longitudinal aerodynamic force
and moment coefficients of this aircraft are computed. Ultimately, polynomial fitting is
utilized to obtain expressions for lift coefficient CL, drag coefficient CD, and pitch moment
coefficient Cm.

CL = 0.01×
(

47.95− 4.077λ2
1 − 4.579λ2

2 + 16.89λ2
1λ2

+17.44λ1λ2
2 − 20.41λ1λ2 − 16.23λ2

1λ2
2

)
(9.448α + 0.3397),

CD = 0.01×
(

83.58− 5.229λ2 − 0.1296λ2
2 − 4.34λ1

−0.409λ2 + 3.595λ1λ2)
(

28.85α2 + 0.2363α + 0.8429
)

, (2)

Cm = 0.01×
(
−8.103− 11.67λ2

1 − 4.252λ2
2 − 27.26λ1 + 37.47λ2

)
×(

−8.207α2 + 10.03α + 0.34
)
+ (7.248λ1 + 36.89λ2 − 69.24)q,

where α is the angle of attack, and q denotes the pitch angle rate.
During the deformation process, changes in the sweep angle induce variations in

the center of mass and aerodynamic center, leading to alterations in pitch moment. The
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rotational velocity and acceleration of the wing give rise to additional inertial forces Fxdyn,
Fzdyn, and moment Mdyn, which can be expressed as follows [21]:

Fz = mg cos θ − D sin α− L cos α
Fxdyn = 2mal

(
ȧ2

1 cos a1 − ä1 cos a1 + ȧ2
3 cos a3 − ä3 cos a3

)
Fzdyn = 2mal

(
ȧ2

1 sin a1 − ä1 sin a1 + ȧ2
3 sin a3 − ä3 sin a3

)
Jy = 0.0242 + 4× 2.6× 10−5 + 4mac2 + ma

(
l2
1 + l2

2 + l2
3 + l2

4
)

Mdyn = 2maql(ȧ3l2 cos a3 − ȧ1l1 cos a1)+
2mal(q sin θ + Fz/m)(sin a1 + sin a3)−
2macl

(
ȧ1 cos a1 − ä3 cos a3 − ȧ2

1 sin a1 + ȧ2
3 sin a3

)
MGdyn = −2magl cos θ(sin a1 + sin a3)

(3)

where Fz represents the sum of external forces acting in the body’s z-axis direction, Jy
denotes the moment of inertia, c is the mean aerodynamic chord length, l is the mean arm
length, li is the wingspan of the ith main wing, and MGdyn represents the additional inertial
pitch moment caused by changes in the center of mass.

This paper primarily focuses on the longitudinal motion of the FWVS aircraft. There-
fore, it is assumed that the lateral attitudes are all zero. Consequently, the simplified
longitudinal kinematic equations can be obtained as follows:

ẋ = V cos γ

ḣ = V sin γ

V̇ =
(

T cos α− D−mg sin γ + Fxdyn cos α + Fzdyn sin α
)

/m

γ̇ =
(

T sin α + L−mg cos γ− Fzdyn cos α + Fxdyn sin α
)

/mV
α̇ = q− γ̇

q̇ =
(

M + MGdyn + Mdyn

)
(4)

where T is thrust, x denotes horizontal displacement, h represents flight altitude, V indicates
flight velocity, and γ expresses the flight path angle.

2.2. Kinematic Incremental Model of the FWVS Aircraft

Here, we first formalize the dynamic model of the FWVS aircraft into a general
form. The aircraft controls its position and attitude by simultaneously adjusting the sweep
angles of the front and rear wings, as well as the thrust magnitude. Thus, in Equation (4),
u = [λ1, λ2, T] represents the control input and X = [x, h, V, α, γ, q] expresses the output
state variables, and we can obtain

Ẋ = f (X, u). (5)

Based on the description of the aircraft kinematics in Equation (5), for a given reference
trajectory Xr = [xr, hr, Vr, αr, γr, qr] and ur = [λ1r, λ2r, Tr], the following representation can
be formulated:

Ẋr = f (Xr, ur), (6)

among them, r represents the reference state.
By subtracting Equation (5) from Equation (6), the incremental model for this morphing

aircraft can be obtained

∆Ẋ = f (∆X + Xr, ∆u + ur)− f (Xr, ur), (7)

where ∆X = X − Xr, ∆u = u− ur.
Due to the strong nonlinearity and time-varying characteristics of this morphing

aircraft, obtaining an accurate mathematical model is challenging. Reinforcement learning
is particularly suitable for such cases with imprecise models. Considering the uncertainty
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in the model, this paper incorporates it into the model parameters. We assume uncertainty
in the lift coefficient of the system, expressed in the following form:

CL =
(
0.01×

(
47.95− 4.077λ2

1 − 4.579λ2
2 + 16.89λ2

1λ2
+17.44λ1λ2

2 − 20.41λ1λ2 − 16.23λ2
1λ2

2
)
(9.448α + 0.3397)

)
(1 + ε)

(8)

where ε ∈ [−0.2,+0.2] represents an uncertain parameter with fixed boundaries. This
indicates that the range of uncertainty for CL is between −20% and 20%. Finally, the lift
coefficient CL is incorporated into the incremental model (7) to obtain the incremental
model of the FWVS aircraft with uncertainty.

3. Reinforcement Learning Environment Design

For reinforcement learning, if the action space is designed to be excessively large, it can
result in high computational complexity during network training and slow convergence
speed. Considering that an aircraft follows a corresponding reference trajectory during
actual flight, to address the issue of slow training convergence due to an excessively large
action space, this study constrains the action space around the reference trajectory during
network training. This approach aims to reduce computational complexity. In configuring
the reinforcement learning environment, the incremental kinematic model based on the
reference trajectory, as depicted in Equation (7), is employed.

3.1. Action Space and State Space Design

To apply reinforcement learning algorithms to the FWVS aircraft, it is essential to
establish the reinforcement learning environment. It includes defining and designing the
state space, action space, and reward function. The reinforcement learning environment not
only needs to be a Markov decision process but also must meet the mission requirements
of the aircraft. In this section, the deformation process is represented as a standard Markov
decision process [22], consisting of states S, actions A, rewards R, and discount factor η. If
we analogize the reinforcement learning model to a traditional controller, the inputs can be
likened to actions and outputs can be considered as state values. Hence, the state variables
consist of current flight parameters describing the flight status of the aircraft, specifically
flight altitude h, horizontal displacement x, flight speed V, pitch angle rate q, angle of
attack α, and flight path angle γ.

The reinforcement learning task designed in this study is trajectory tracking. To reduce
exploration in the action space and expedite convergence, the action space is designed in prox-
imity to the reference trajectory. Specifically, it is represented as A = [δλ1, δλ2] ∈ [−0.1, 0.1],
signifying the selection constraint of actions within a range of ±0.1 from the reference
trajectory. Here, δλi = λi − λri represents the difference between the current actual value
and the reference value. Based on the flight mission and reference trajectory data for the
variant aircraft, a fixed thrust value of 7.3 N is set during the actual algorithm execution.

3.2. Reward Function Design Based on LOS

Reinforcement learning is an algorithm that relies on reward functions for training,
analogous to deep learning where the reward function serves as a supervisory signal.
Therefore, a reasonable designed reward function is crucial. In the field of reinforcement
learning, reward functions can be categorized as sparse and non-sparse rewards [23]. Sparse
rewards imply that an effective reward signal is received only after completing a specific
task. This implies that, during the interaction between the agent and the environment, no
rewards are obtained, which is highly detrimental to exploration. Consequently, the agent
receives a reward of zero for most actions due to the vast action space, leading to numerous
futile explorations and slow convergence. Hence, this paper adopts a composite reward
function combining sparse rewards with non-sparse rewards to expedite convergence while
actively guiding the completion of flight tasks.
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3.2.1. Sparse Reward Design

Initially, a sparse reward approach is employed to address the task success, designing
a terminal reward. Physically, upon reaching the target point, the agent receives a positive
reward, while exceeding a threshold based on the aircraft’s own state results in a negative
reward. If either condition is triggered, the state of the variant aircraft is reset, initiating the
next flight task. The design is as follows:

Initially, a sparse reward mechanism is employed to design the terminal reward.
Physically, upon reaching the target point, the aircraft receives a positive reward rc, while
exceeding the state threshold of aircrafts results in a negative reward ro. If either condition
is triggered, the state of the variable aircraft is reset, initiating the next flight task. The
design of rc is as follows:

rc = t ≤ t f &
∣∣h− htarget

∣∣ ≤ δh&
∣∣V −Vtarget

∣∣ ≤ δV&
∣∣γ− γtarget

∣∣ ≤ δγ&|q| ≤ δq, (9)

where t f represents the maximum time to complete the task. htarget, Vtarget, and γtarget
denote the target values for flight altitude, speed, and flight path angle, respectively. δh,
δV , δγ, and δq express the maximum allowable error ranges for altitude, speed, flight path
angle, and pitch angle rate, respectively.

The design of ro is as follows:

ro = t > t f ||h /∈ [hmin, hmax]||V /∈ [Vmin, Vmax]|||q| > qmax||γ /∈ [γmin, γmax]|||α| > αmax, (10)

where hmax and hmin represent the maximum and minimum values for flight altitude
constraints, respectively. Vmax and Vmin denote the maximum and minimum values for
flight speed constraints. qmax expresses the maximum permissible pitch angle rate and
αmax signifies the maximum allowable angle of attack. γmax and γmin are the maximum
and minimum values for flight path angle constraints.

Furthermore, to enhance the reward for exemplary flight states and increase the diver-
sity of samples [24], substantial coefficient factors are applied to the two rewards mentioned
above. The terminal reward R f is then obtained by combining the two designed rewards:

R f = 600rc − 100ro. (11)

3.2.2. Non-Sparse Reward Design

Non-sparse reward is a deliberately crafted "dense reward", typically manifested as a
reward function associated with the state. To enhance the utility of flight process samples,
the following action reward function and state reward function have been designed based
on the concept of non-sparse rewards:

(1) Action Reward: The morphing aircraft must ensure stable flight during the de-
formation process, and to achieve smoother trajectories, an action penalty function Ra is
designed as follows:

Ra = w3|∆A|, (12)

where ∆A represents the change in actions and w3 is a negative value used to guide action
λ1 and λ2 toward slow variations.

(2) LOS-based State Reward: The reinforcement learning algorithm should guide the
FWVS aircraft to track the reference trajectory and accomplish the tracking flight task.
Therefore, a process reward Rm based on the LOS method is designed.

The line-of-sight method [25] is a guidance approach that provides the controlled
object with a visual range, aiming to perform path tracking within this range. For UAVs,
the field of view is defined as a circular area with its own center of mass as the center
and a radius of R. Assuming a decoupled vertical plane for path tracking, an appropriate
radius is selected to ensure that this circle has two points with the target path. The closer
intersection to the UAV is chosen as the target point. The direction from the aircraft’s
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current position to this point is considered as the target heading ψLoS, where ∆ψ represents
the angle between the heading line and the x-axis. Assuming that the heading direction and
the desired path are in the same horizontal plane, the principle of this method is illustrated
in Figure 2, when there are two intersections between the expected path and the circular
field of view. Let (xd, hd) be the intersection point between the circular field of view and
the desired path; then, the target heading angle can be obtained as follows:

∆ψ = arctan
yd√

R2 − y2
d

. (13)

x

y

xd, hd

desired path

yD

Figure 2. Schematic diagram of LoS path tracking method.

Additionally, when there are no intersection points between the desired path and
the circular field of view, i.e., when the UAV is too far from the desired path, the vertical
direction is selected as the target heading. The objective is to approach the desired path at
the fastest speed.

Subsequently, based on this method, a process reward for path tracking is designed.
The variables directly related to the path include the relative distance D and heading angle
ψ between the morphing aircraft and the reference trajectory, which can be obtained at any
moment. Let the position vector at the current time be denoted as XUAV = [x1, h1], and the
position vector of the target be denoted as Xtarget = [x2, h2]. Then, the relative distance D
and heading angle ψ can be defined as follows:

D =
√
(x1 − x2)

2 + (h1 − h2)
2,

ψ = arctan h1−h2
x1−x2

.
(14)

To ensure convergence, the process reward Rm is designed in the exponential function
form to guide the aircraft toward the target trajectory:

Rm = 0.8e−5×10−4D + 0.2e−2×10−3ψ. (15)

For this flight mission, the overall reward function Rtotal is a synthesis of the various
rewards mentioned above. It ensures that the variant aircraft consistently satisfies pro-
cess constraints while completing smooth flight during the autonomous decision-making
process. The form of the overall reward function Rtotal is

Rtotal = R f + Ra + Rm. (16)
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4. Morphing Aircraft Tracking Control Method Based on IDDPG

The morphing aircraft, during its flight, not only needs to track the reference trajectory
but also requires obstacle avoidance. Thus, we integrate LSTM [19], a network with unique
memory units, into both the Actor and Critic networks to receive environment data with
temporal features. This makes the learning model better understand the dynamic changes
between aircraft states.

4.1. LSTM Recurrent Neural Network

The LSTM network is an improved type of recurrent neural network, consisting mainly
of four components: the forget gate, input gate, output gate, and memory cell. LSTM not
only addresses the short-term memory issue but also mitigates problems such as gradient
vanishing and exploding in the loss function. The algorithmic framework is illustrated
in Figure 3, where xt represents the input, σ and tanh denote the sigmoid function and
hyperbolic tangent function. ft, it, and ot express the computed results of the forget gate,
input gate, and output gate, respectively. c′t represents the candidate for the current memory
cell, ct is the updated cell state, and ht is the state of the hidden layer. w f , wi, wc, and wo
indicate the weight matrices for the respective components. Thus, ct and ht are expressed
as follows: {

ct = f ∗t ct−1 + i∗t c′t
ht = ot tanh(ct)

(17)

where

ft = σ
(

w f · [ht−1, xt] + b f

)
it = σ(wi · [ht−1, xt] + bi) (18)

c′t = tanh(wc · [ht−1, xt] + bc)

ot = σ(wo · [ht−1, xt] + bo)

s s s

tanh

tanh

forget

 gate

input gate

output 

gate

t
c1t

c
-

1t
h
-

 
t
h

 
t
h

 
t
x

Figure 3. LSTM algorithm framework.

4.2. The IDDPG Algorithm Design Process

For complex environments and tasks, learning the optimal policy from scratch after
specifying a reward function involves a computationally intensive process. Therefore, a
pre-training approach [23] is employed, utilizing expert data to facilitate faster convergence
during training.

Specifically, the IDDPG algorithm is based on the incremental kinematic model of
a morphing aircraft, dividing the entire reinforcement learning process into two phases:
pre-training and DDPG training. Pre-training essentially involves supervised learning,
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utilizing high-quality data for behavioral cloning to construct the initial action policy. The
learning objective expression is

L(a∗, πθ(s)) = ∥a∗ − aθ∥2 (19)

where πθ(s) represents the reinforcement learning policy, θ is the hyperparameter for
reinforcement learning, a∗ expresses the expert action, and aθ is the action output by the
learning network. L indicates the error loss function. The closer the output action is to the
expert action based on the loss function, the better the learning outcome.

The initial policy network parameters obtained from pre-training are input into the
Actor network in the second phase for online training. This stage employs the DDPG
algorithm, and as the actions at each time step are deterministic, noise is introduced to
enhance policy exploration.

at = µ(st|θµ) +Nt, (20)

where st and at represent the state and action at time t, respectively. µ(st|θµ) signifies
the parameterized policy network responsible for obtaining actions corresponding to the
state st. Nt denotes time-dependent Ornstein–Uhlenbeck (OU) noise. OU noise differs
from Gaussian noise in that the difference between adjacent steps is not significantly large;
instead, it tends to explore a certain distance in the direction of the mean based on inertia
from the previous step, either positively or negatively. This is advantageous for exploration
in a specific direction.

For the studied FWVS aircraft’s flight states in this paper, estimation is performed
using a differentiable function approximator Q

(
st, at|θQ). At each time step t, N mini-

batch data are sampled from the buffer to update the parameters of the Actor and Critic
networks. The parameter updates for the Q network employ the temporal-difference
algorithm, minimizing the mean squared error of the loss function J at each time step t.

J =
1
N ∑t

(
yt −Q

(
st, at|θQ

))2
. (21)

In reinforcement learning, the objective is to find the optimal policy π∗ that maximizes
the expected return. In the case of continuous control, the gradient ∇θµJ is taken with
respect to the hyperparameters θ to update the policy network. By using the expression in
Equation (21), the expression for ∇θµJ is obtained as shown in Equation (22).

∇θµJ ≈ 1
N ∑t∇aQ

(
st, at|θQ

)
|s=st ,a=µ(st |θµ)∇θµ µ(st|θµ)|st . (22)

The IDDPG algorithm adopts the framework of DQN with dual networks. It requires
simultaneous updating of the hyperparameters for both the Q network Q

(
s, a|θQ) and pol-

icy network µ(s|θµ). This is typically achieved through the following soft update method:{
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (23)

where θQ′ and θµ′ represent the corresponding network parameters after updating the Q
network and the policy network, respectively. τ denotes the soft update rate, with values in
the range of [0, 1]. Figure 4 illustrates the learning training framework of the IDDPG policy.

In Figure 4, the environmental model within the entire algorithm framework is the
previously established FWVS aircraft. The aircraft, based on the policy network, adjusts
the variable-sweep angles, resulting in new flight states. These states are fed back into the
policy network, creating a closed loop. Considering the need for the morphing aircraft to
choose deformation strategies based on different flight states during training, OU noise
is introduced to enhance exploration. The action space is defined as the increments in
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the variable rates of wings δλ1 and δλ2 , and the state space is defined as a continuous six-
dimensional flight state. Additionally, the IDDPG algorithm incorporates LSTM networks
into both the Actor and Critic networks, enhancing memory for reference trajectories and
obstacle positions to further improve algorithm performance. Furthermore, the algorithm
stores experiences [st, at, rt, st+1] in a memory cell during the training process (where rt is
the single-step reward generated under the action at time t). The learning process maps the
current state to the optimal action, and based on the received rewards, computes gradients
to update the neural network parameters, ultimately obtaining the optimal deformation
strategy during the acceleration climb.

Four wing variable 

sweep angle aircraft

Online policy network 

update parameters mq

Online Q network update 

parameters Qq

Finally update parameters 

of policy network
Finally update parameters 

of Q network
'mq 'Qq

optimizer optimizer

Policy Network Q Network

OU Noise

memory pool

Pre training

Soft updates

update mq pÑ update QÑ

mq
Ñ J

( )|t ta s
mm q=

( )'1 |
t
s

mm q+

[ ]1
, , ,
t t t t
s a r s

+

[ ]1, , ,
t t t t

N s a r s +

down-sampling

Actor Critic

( )tsm

ta

1, ,t t ts r s +

Soft updatest
y

Qq

Figure 4. Learning and training framework of FWVS aircraft.

4.3. Design and Training of the IDDPG Network
4.3.1. Design of the IDDPG Network

The environmental data received by the aircraft exhibit temporal characteristics during
task execution. The LSTM network, with its unique memory units, is better suited for
capturing the positions of obstacles and reference trajectories [26].

The environmental data received by the aircraft exhibit temporal characteristics during
task execution. The LSTM network, with its unique memory units, is better suited for
capturing the positions of obstacles and reference trajectories [26]. The overall network
framework of the IDDPG algorithm is illustrated in Figure 5. The Actor network comprises
two LSTM layers and one fully connected layer (denoted as FC), responsible for generating
control signals, specifically the variable wing sweep rate. The Critic network consists of
two parts. The first part, denoted as FC1, is a fully connected network responsible for
processing outputs from the Actor network. The second part is an LSTM network, mirroring
the structure of the Actor network, tasked with handling environmental state information.
Finally, the results from these two parts are processed through another fully connected
network, FC2, to calculate and output the Q value of the Actor network. Considering the
task environment, 128 hidden layer neurons were chosen for the LSTM network.

From the above algorithmic process, it is evident that the IDDPG algorithm is based
on the Actor-Critic network. The structure of the network significantly influences the
algorithm’s performance, necessitating design optimization.
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Figure 5. LFramework of the IDDPG network.

The Actor network is the policy network, established through a neural network to map
from the current state to the next action (Figure 6). In the IDDPG algorithm, the input to the
Actor network consists of the aircraft’s state variables and altitude error, forming a seven-
dimensional array st = [x, h, V, γ, α, q, ∆h]. This network consists of two hidden layers,
with the first layer being an LSTM network housing 128 hidden neurons to effectively
process environmental information, enhancing real-time performance [27]. The second
layer employs fully connected architecture with 256 hidden neurons. Additionally, the
rectified linear unit (Relu) function is chosen as the activation function between each
hidden layer to reduce the probability of gradient vanishing issues [28]. Data from the
first two layers flow directly into the subsequent layer through the activation function, and
the final layer connects to the two-dimensional action space. Considering that the actions
(sweep angle deformation rate) are constrained, the Tanh activation function is chosen for
the final layer to limit the output within a specified range.
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Figure 6. Actor network structure diagram.

In the IDDPG algorithm, the Critic network establishes a mapping from actions and
states to the Q function through a neural network, with the structure designed as depicted
in Figure 7. The input layer of the Critic network is composed of state variables and the
output actions from the Actor network, forming a nine-dimensional array. The output
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represents the Q-function, denoted as Q(s, a). There are two fully connected hidden layers,
with the first and second layers having 128 and 200 hidden neurons, respectively. Unlike
the Actor network, the final layer is directly connected to a one-dimensional output layer,
which is further used to iteratively update the Bellman equation in reinforcement learning
to maximize the output Q value.

Relu

Relu

Relu

Relu

Relu

Activation 

function
Activation 

function

Action

Q(s, a)

128 neurons

LSTM network
256 neurons

Fully Connected 

Neural Network

Figure 7. Critic network structure diagram.

4.3.2. IDDPG Network Parameter Settings

In the IDDPG algorithm, apart from the Actor–Critic network structure, another crucial
factor influencing algorithm performance is the setting of hyperparameters. This includes
the total number of steps, total number of episodes, Actor learning rate, Critic learning
rate, noise variance, and discount factor, among others. Based on empirical findings in the
references and extensive trial-and-error simulations, the final values and definitions of all
hyperparameters are presented in Table 1.

Table 1. The hyperparameter of IDDPG algorithm.

Hyperparameter Parameter Value

Target network update rate 0.001
Actor network learning rate 0.0001
Critic network learning rate 0.001

Experience replay pool capacity 106

Number of small batch samples 256
Discount factor 0.991

Maximum number of episodes 80,000
Maximum steps per episode 800

Sampling time (s) 0.02

It should be noted that the above parameter settings were obtained through extensive
trial and error.

Here, an episode is defined as the process in which the agent executes a particular
policy in the environment from start to finish. The IDDPG algorithm defaults to a maximum
of 55,000 episodes, with the first 20,000 episodes constituting an offline pre-training process
using expert data to avoid inefficient random exploration in the early stages of the IDDPG
algorithm. Due to a sampling time of 0.02 s, the maximum number of steps per episode
is set to 800, ensuring that the total time for each episode does not exceed 16 s. The Actor
learning rate and Critic learning rate define the step size for gradient updates during
network parameter optimization. After multiple trials, the Actor and Critic learning
rates are determined to be 0.0001 and 0.001, respectively. The buffer size for storing past
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experiences is set to 1,000,000, and the batch size of samples used during each gradient
update is determined to be 256.

Another innovation of the IDDPG algorithm is the introduction of noise to increase
sample diversity. In this study, OU noise with a variance of 0.15 is employed. Finally,
considering that the initial actions may not necessarily lead to the expected state, the
weights for future rewards need to decrease gradually. Therefore, a discount factor is
introduced to calculate the expected future returns during the learning process and adjust
the impact of future rewards, typically chosen as 0.991.

5. Simulation and Analysis
5.1. IDDPG Algorithm Network Training

To validate the proposed IDDPG algorithm framework, simulations are conducted
using the reinforcement learning toolbox in Matlab. Initially, without incorporating the
kinematic incremental model, the impact of integrating LSTM networks into the DDPG
algorithm will be assessed. The learning environments for both DDPG and LSTM–DDPG
are constructed using the nonlinear expression (4) of the FWVS aircraft model, along with
the state and action spaces, and reward function proposed in Section 3.2. However, the
non-sparse reward state is replaced with the following form:

R′m = w4rh + w5rV + w6rq, (24)

where rh = e−5×10−4
√
(h−htarget) represents altitude reward, rV = e−2×10−3

√
(V−Vtarget) is

flight speed reward, and rq = e−5
√
(q−qtarget) denotes pitch angle rate reward. The weights

wi assigned to each reward are designed as [0.5, 0.4, 0.1]. When both velocity and altitude
reach the target endpoint, the corresponding rewards reach their maximum values, and
the weighted state reward reaches 1. Table 2 displays the reward function parameters
determined after multiple simulation trials.

Table 2. Reward function parameters.

Reward Function Parameters Parameter Value

htarget 232 m
Vtarget 32 m/s
qtarget 0 rad/s

δh 1 m
δV 0.5 m/s
δγ 0.1 rad
δq 0.1 rad/s

hmax, hmin 235 m, 198 m
Vmax, Vmin 33 m/s, 20 m/s

αmax 1 rad/s
qmax π/4 rad

The network training performance of the LSTM–DDPG algorithm is compared with
the traditional DDPG algorithm [29], and the results are illustrated in Figure 8. It is evident
that the LSTM–DDPG algorithm converges more rapidly to a higher average reward and
exhibits greater stability. The incorporation of LSTM networks enables the DDPG algorithm to
better discern valuable data, leading to optimal results and avoiding unnecessary exploration
during the climb phase of the FWVS aircraft. This highlights the excellent performance of the
LSTM network.
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Figure 8. Comparison of average rewards for LSTM–DDPG and DDPG algorithm training.

Subsequently, the IDDPG algorithm, generated based on the kinematic increment
model incorporating a reference trajectory, is employed to validate whether the inclusion
of trajectory constraints accelerates the convergence speed of the network. In this simu-
lation, the reinforcement learning environment utilizes the incremental model (7) of the
morphing aircraft, with an action space a =

[
δλ1 , δλ2

]
∈ [−0.1, 0.1] and hyperparameters

referenced in Table 2. Furthermore, in comparison to LSTM–DDPG, the IDDPG algorithm
incorporates the state reward function Rm, as depicted in Equation (15), within the reward
function module. The simulation results are illustrated in Figure 9. Table 3 presents the
average single-training time, total training time, and average reward for three algorithms:
DDPG [29], LSTM–DDPG, and IDDPG.

Table 3. Algorithm comparison.

Algorithms DDPG [29] LSTM–DDPG IDDPG

Single-training time 0.31 s 0.35 s 0.35 s
Total training time 37.5 h 30.8 h 18.2 h

Average reward 531 787 791

Figure 9. Algorithm training average reward comparison chart.

The simulation platform of each algorithm in Table 3 is the Mac system M2 chip, and
the Matlab version is 2023b.

Based on the simulated training process and Table 3, it can be observed that IDDPG
significantly reduces training time compared to DDPG, while achieving substantial im-
provements in training effectiveness and reward values. Additionally, as depicted in
Figure 9, the LSTM–DDPG algorithm, without environmental modifications, achieves
successful episodes around 8000, with the average reward converging after approximately
15,000 episodes. In contrast, the IDDPG algorithm, after redesigning the action space,
achieves successful episodes before 5000 and starts converging to the maximum average
reward just beyond 10,000 episodes. This indicates that the incremental model and action
space derived from the reference trajectory can reduce the exploration space for actions,
thereby accelerating the convergence rate (Table 3).
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5.2. Flight Control Simulation Based on IDDPG Algorithm

Upon completion of the training for the FWVS aircraft control strategy, simulation
testing is conducted. The testing set is configured for 1000 episodes to assess the defor-
mation effectiveness and success rate of accomplishing the tasks for the FWVS aircraft.
The initial state is set to s0 = [0 m, 200 m, 20 m/s, 0 rad, 0.0799 rad, 0 rad/s], and the target
states, represented by h f = 232 m, Vf = 32 m/s, and q f = 0 rad/s are defined. The
objective is to complete the process of accelerating climb within a total time not exceeding
16 s. To evaluate the algorithm’s adaptability to different initial environments, random
initial heights are selected:

h0 = 200 + rand(0.5), (25)

where rand(ζ) represents a random number within the range of ζ. In this simulation, the
uncertain parameter ε in Equation (8) is set to 0.1, indicating a 10% deviation in the lift
coefficient under the current conditions. To validate the proposed algorithm’s effectiveness
compared to the traditional DDPG method [29], in this example, we trained and simulated
both the proposed IDDPG and the DDPG methods separately.

After validation, employing the agent trained through IDDPG as the controller for
the aircraft resulted in a success rate of 91.32%, whereas DDPG achieved a success rate of
78.26%. For different initial altitudes, Figure 10 illustrate the state variations for the FWVS
aircraft under the training agents of IDDPG and DDPG.

(b) Horizontal displacement variation curve(a) Height variation curve
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Figure 10. State variable variation curves under different initial states (the red curve is IDDPG, the
black curve is DDPG).
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It should be noted that, once the learning network is trained, it can rapidly output
action commands based on the current state of FWVS. The time required for the trained
learning network to output action commands based on the current state of FWVS is on the
order of 10−2 seconds (this is the result of running on the Mac M2 chip, Matlab2023b).

From Figure 10, it can be observed that, under the DDPG−trained agent, the FWVS
aircraft (all black curves) deviates from the target point under different initial altitudes
and lift coefficient uncertainties. In contrast, the FWVS aircraft under the influence of the
IDDPG−trained agent (all red curves) reaches the target point despite slight oscillations
compared to the corresponding DDPG curves. Furthermore, all state variables throughout
the entire flight process satisfy the imposed constraints, successfully accomplishing the
task of ascending to level flight.

Figure 11 illustrates the control variations of IDDPG for completing the flight task.
It is observed that, during the climbing phase, the primary adjustments are made to
the trailing−edge wing, while in the acceleration phase, the leading−edge wing plays a
predominant role after reaching a certain altitude. However, the results indicate notice-
able oscillations in control inputs, suggesting a potential issue with a large action space.
Figure 12 visually presents the aircraft shape during the flight process. In the climbing
phase, the trailing−edge sweep angle gradually increases, generating a pitching moment
to increase lift. After reaching the target altitude, the trailing−edge sweep angle reaches its
maximum value. At this point, the leading edge sweep angle is employed to control the
pitch−down moment, maintaining a level flight state.

(a) deformation curve of leading-edge sweep angle (b) deformation curve of trailing-edge sweep angle

Figure 11. Action variation curve.

 
Figure 12. Outline diagram of the aircraft during flight.

Furthermore, employing the trained network, simulation experiments are conducted
for trajectory tracking control and obstacle avoidance control. A test set of 1000 episodes is
utilized to evaluate the effectiveness of tracking a reference trajectory. The various initial
values, distributed on either side of the reference trajectory, are chosen to assess the tracking
performance. Additionally, an uncertainty coefficient ε for lift is set to 0.1. The reference
trajectory is depicted by the solid blue line in Figure 13.
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(a) Flight altitude tracking curve (b) Flight speed tracking curve

(c) Angle of attack tracking curve (d) Flight path angle tracking curve

Figure 13. Tracking curves of reinforcement learning controllers under different initial values.

As depicted in Figure 13, post−training with the IDDPG algorithm, the FWVS aircraft
demonstrates rapid and accurate trajectory tracking to accomplish the task of accelerated
climb, even in the presence of initial state errors and lift coefficient uncertainty. This
validates the robustness of the IDDPG strategy to uncertainties in the deformation process.

Moreover, due to the unique memory units of the LSTM network, the UAV can better
record obstacle positions and consider information from previous time steps when selecting
actions. To further validate the information processing capabilities of the IDDPG network,
obstacles are introduced into the flight environment to create different scenarios. A comparison
is then made with the traditional DDPG method to assess its performance against the proposed
approach. The initial state is set to s0 = [0 m, 200 m, 20 m/s, 0 rad, 0.0799 rad, 0 rad/s], with
the reference trajectory represented by the solid orange line in Figure 14. The obstacle is
positioned at x = 150 m, h = 215 m, and the circular obstacle has a radius of 1 m, as depicted
by the black circle in Figure 14. Trajectory test for obstacle avoidance is conducted with the
IDDPG network, achieving a success rate of at least 78.5% after numerous tests, whereas
DDPG achieved only 48% success in a comparable scenario. Figure 14 illustrates the flight
trajectories for obstacle avoidance during the 500th, 600th, and 899th instances.

(a) IDDPG (b) DDPG

Figure 14. Tracking path of morphing aircraft with different iterations (The black dot is the obstacle
added during algorithm training).
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From Figure 14a, it can be observed that the FWVS aircraft trained with the IDDPG
algorithm successfully resumes tracking the reference trajectory after avoiding obstacles.
However, under the DDPG−trained agent (Figure 14b), the FWVS aircraft deviates from
the target trajectory while avoiding obstacles and struggles to reach the target point. Here,
“i” denotes the number of successful episodes.

6. Conclusions

This paper focuses on the trajectory tracking control of a FWVS aircraft using rein-
forcement learning, proposing the IDDPG algorithm. This algorithm not only utilizes
LOS for target point tracking, enhancing the algorithm’s realization rate in target point
tracking, but also integrates LSTM units to improve the algorithm’s adaptability to envi-
ronmental changes during flight. Subsequently, through a significant amount of training,
it is concluded that the IDDPG algorithm has a faster convergence speed than the DDPG
algorithm, and it also achieves a good tracking control effect for the FWVS with uncer-
tainties. Lastly, to further validate the adaptability of this controller to environmental
disturbances, simulations are conducted by introducing environmental perturbations. The
results indicate that the FWVS aircraft can successfully navigate around obstacles and
retrace the reference trajectory.
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