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Abstract: This paper introduces a reinforcement learning method that leverages task decomposition
and a task-specific reward system to address complex high-level tasks, such as door opening, block
stacking, and nut assembly. These tasks are decomposed into various subtasks, with the grasping and
putting tasks executed through single joint and gripper actions, while other tasks are trained using
the SAC algorithm alongside the task-specific reward system. The task-specific reward system aims
to increase the learning speed, enhance the success rate, and enable more efficient task execution.
The experimental results demonstrate the efficacy of the proposed method, achieving success rates
of 99.9% for door opening, 95.25% for block stacking, 80.8% for square-nut assembly, and 90.9% for
round-nut assembly. Overall, this method presents a promising solution to address the challenges
associated with complex tasks, offering improvements over the traditional end-to-end approach.

Keywords: deep reinforcement learning; soft actor—critic; task decomposition; high-level task

1. Introduction

Robot manipulators are characterized by high efficiency and accuracy in performing
repetitive and precise tasks, thereby augmenting their considerable potential for application
across various fields such as manufacturing, logistics, and service industries [1]. Robot
manipulators, constructed with a structure resembling that of the human arm, consist of
joints like wrists and elbows, which are interconnected by links, enabling them to execute
movements similar to those of humans [2]. The structural design of these manipulators
enables a range of motion and rotation capabilities, providing both flexibility and precision.
These attributes allow robot manipulators to have the ability to adapt to a wide range of
human behaviors and demands. This capability is considered an essential characteristic in
the field of human-robot interaction (HRI) [3]. The properties of robot manipulators can
complement human work abilities and contribute to increasing not only efficiency but also
safety in more complex and diverse work environments.

In general, robots exhibit superior abilities to humans in repetitive and precise tasks,
whereas humans are capable of comprehensive thinking and judgment [4]. Consequently,
collaboration between humans and robots not only compensates for the weaknesses of each
but also maximizes their strengths, leading to mutual synergistic effects that extend the
application range of robots and enhance work efficiency [5]. To enhance this human-robot
synergy effect, continuous research and development has been studied, resulting in the
emergence of the concept of collaborative robots (cobots) and their expansion into various
fields. Unlike traditional industrial robots that are primarily used in automated manufac-
turing and logistics industries, cobots are increasingly being applied to a wider range of
tasks due to their capability to execute high-difficulty operations [6]. Therefore, cobots are
expanding into diverse fields such as food and beverages, service, and healthcare, becoming
commonplace in daily life in various forms such as robots that make coffee, open doors,
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or assist in medical surgeries [7,8]. Through these cases, interaction between humans and
robots in unstructured environments is recognized as an important issue [9]. To implement
effective interaction, it is necessary to develop various robot control algorithms that are
customized to specific tasks and situations.

Meanwhile, control techniques based on system models, such as linear quadratic
control [10], sliding mode control [11], computed-torque control [12], and model predictive
control [13], allow for the precise prediction and control of robot movements. This requires
the mathematical modeling of the system’s physical and mechanical characteristics and
tuning of parameters like control gains. However, it is very difficult to build a perfect math-
ematical model that considers all situations and the physical and dynamic characteristics
of the system, and parameter tuning for optimal control performance not only takes a lot of
time but also has the possibility of failure. To overcome these limitations, various control
techniques, including direct teaching, teleoperation, and reinforcement learning, have been
investigated. Direct teaching is a method where the user manually manipulates the position
or path of the robot arm to teach the robot the desired task [14]. Teleoperation technology
utilizes various interfaces such as keyboards, joysticks, and touchscreens to control the
robot [15]. The advantage of these approaches is that it does not require the mathematical
modeling of the system or gain tuning. However, while control methods through direct
teaching or teleoperation can be effective for simple tasks, they may have limitations for
complex tasks or unexpected situations, potentially requiring additional programming
or human intervention [16]. To address these limitations, researchers are trying to give
robots the ability to think and act on their own with active decision making. For example,
technology has been developed to enable robots to make flexible and intelligent decisions,
such as responding to environmental changes, recognizing obstacles, and automatically
adjusting their paths as needed. In particular, reinforcement learning algorithms are one
of the primary methods to achieve this objective and have recently received significant
attention among researchers.

Reinforcement learning is a machine learning technique that trains an agent through
trial and error to actively decide on actions that maximize cumulative rewards within
an environment [17]. Through this technique, the agent learns to efficiently respond
and adapt to achieve its goals in various situations. This approach is similar to how
humans learn, where the agent updates its behavior through trial and error and ultimately
establishes an action policy that maximizes cumulative rewards [18]. This process enables
the agent to robustly respond to various environmental changes and acquire the ability to
actively recognize and solve problems like humans [19]. Moreover, since reinforcement
learning is achieved through interaction with the environment, it has the advantage of
not requiring gain tuning or mathematical modeling. Based on these characteristics of
reinforcement learning, del Real Torres et al. [20] suggest that there is potential and promise
for the application of reinforcement learning algorithms in automation fields, particularly
in smart factories and robotics. Despite these advantages, reinforcement learning still
faces challenges in terms of adapting to complex environments, ensuring stability, and
maintaining predictability, especially in complex tasks such as block stacking and pick and
place during robot manipulator tasks [21].

The Hierarchical Reinforcement Learning (HRL) approach is one of the methods to
overcome these challenges. HRL utilizes a hierarchical structure in the learning process
to effectively solve complex and high-dimensional tasks [22]. The authors of [23] utilized
the HRL approach, which divides pick-and-place tasks into three subtasks: approach,
manipulate, and retract. These three subtasks are trained by the Deep Deterministic
Policy Gradient (DDPG) algorithm [24] with the Hindsight Experience Replay (HER)
technique [25] and are coordinated using a High-Level Choreographer (HLC). Through
this, pick-and-place tasks are successfully performed. Additionally, another research
article [26] decomposes pick-and-place tasks into two reaching tasks and one grasping
task. The two reaching tasks are trained using soft actor—critic (SAC), and the grasping
task is implemented with a simple method of applying force to the gripper. Afterward,
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the pick-and-place task is successfully performed by sequentially connecting the subtasks:
reaching, grasping, and reaching. Previous research applied task decomposition techniques
and a task-specific reward system only to pick-and-place tasks among high-level tasks. To
the best of our knowledge, no existing research has demonstrated a high success rate in the
performance of the other high-level tasks through the application of task decomposition
technology and a task-specific reward system, which motivates this article.

This paper proposes a reinforcement learning method based on task decomposition
and a task-specific reward system for performing tasks more complex than the pick-and-
place task, such as door opening, block stacking, and nut assembly. Initially, the door-
opening task is subdivided into the processes of reaching—grasping—turning—pulling, the
block-stacking task into reaching—grasping-reaching-putting, and the nut assembly task
into reaching-aligning-reaching—grasping-assembling—putting. Among the subdivided
subtasks, the grasping and putting tasks are implemented through single joint and gripper
actions, while the remaining tasks establish optimal policies through the SAC algorithm
and a task-specific reward system. Here, the task-specific reward system is used to increase
the training speed of the agent, improve success rates, and facilitate the subsequent tasks of
grasping and putting. Subsequently, by sequentially connecting the established policies, we
confirm the successful execution of high-level tasks such as door opening, block stacking,
and nut assembly. This demonstrates that the proposed method overcomes the limitations
of the end-to-end approach and represents a useful solution for solving various complex
and challenging tasks.

2. Related Work
2.1. Hierarchical Reinforcement Learning

HRL is an approach that utilizes a hierarchical structure in the training process to
effectively address complex and high-dimensional tasks within the field of reinforcement
learning. Traditional reinforcement learning involves an agent interacting with the envi-
ronment and updating its action policy in response to rewards or penalties received as
feedback. However, in complex tasks, the high dimensionality of the problem makes it
challenging for agents to train and find the optimal policy. HRL addresses these issues
by introducing a hierarchical structure into the decision-making process of the agent. The
main idea of HRL is that, instead of learning a single complex policy for the entire task, it
focuses on learning sets of subpolicies for specific aspects or subtasks. These subpolicies
are organized in the hierarchical method, enabling more efficient learning and decision
making. In summary, HRL is a more effective approach than traditional reinforcement learn-
ing by utilizing structured decision-making layers to solve problems arising in complex,
high-dimensional tasks.

2.2. Soft Actor-Critic

SAC is an off-policy, model-free approach in reinforcement learning. This algorithm
focuses on maximizing cumulative rewards while learning stochastic policies in continuous
state space. It particularly shows outstanding performance in training agents with high-
dimensional states and continuous action space, such as robotic arms and autonomous
driving. Furthermore, by incorporating the maximum entropy method and soft Q-functions,
it enables exploration to occur effectively for a variety of experiences in uncertain environ-
ments. The core principle of maximum entropy RL is to integrate the concept of entropy into
the decision-making process. Therefore, maximum entropy RL aims to establish policies
that not only maximize cumulative rewards over time but also ensure a diverse distribution
of actions in each state. This approach achieves a harmonious balance between exploration
and exploitation based on the state. A policy optimization formula of SAC is represented
as follows:

7" = argmax ) B a)ep [1(st, ar)+aH(n( - [s,))], @)
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where r(st, a;) denotes an immediate reward function when the state is s; and action is at.
For a given policy 7t and state s;, the term H(7t( - [s,)) denotes the entropy that encourages
the exploration. « is the temperature parameter that adjusts the level of randomness in
the chosen policy and reflects the relative importance of the entropy component in the
overall structure of the policy. This approach is adjusted according to the reward context of
each state: in states with high rewards, policies with low entropy (i.e., more predictable
actions) are considered sulfficient, while in states with low rewards, policies with high
entropy (i.e., more exploratory actions) are preferred to encourage broader exploration.
Moreover, SAC employs a soft Q-function to facilitate exploration and prevent the policy
from becoming overly biased, thereby adding flexibility to the decision-making process.
The SAC algorithm utilizes an actor—critic structure, where the actor decides the actions
of the agent based on the current state, and the critic evaluates the action determined
by the current state. In the SAC research in [27], the actor and critic are implemented
as deep neural networks, with the policy network functioning as the actor and the soft
Q-network serving as the critic. The objective function of the critic network is defined using
mean squared error (MSE) between the Q-value and the target Q-value, with the goal of
minimizing this MSE. The Q-value is estimated through the soft Q-network and the target
Q-value is approximated through the target soft Q-network. The formula is as follows:

JQ(G): E(st, ay)~D %(Qﬁ(st/ at) - (Qﬁ(st/at)»z ’ (2)

Furthermore, the parameters of the soft Q-network are denoted by 6, and the pa-
rameters of the target soft Q-network are represented by 0. The parameters 0 is updated
by copying from 6 at fixed intervals, a process that enhances the stability of the critic
network’s training. Additionally, optimization of 6 employs the stochastic gradient descent
(SGD) method to minimize the Bellman residual. The gradient of the objective function is
expressed as follows:

Vo Ja(8) = VoQo (s ar)(Qg(syar) — (r(syan)+v(Qg(ser1,ar) — alog(my (agqlse1)))- (3)

Next, the objective function of the actor network is expressed as Equation (4), based on
the Kullback-Leibler divergence (KLD) between the entropy of the policy and the Q-value,
where ¢ represents the parameters of the actor network.

Jn($)= EStND[EafNT[(b [cxlog(ﬂd)(at|st) — Qp(spar)]]- 4)

Before the gradient is calculated, the objective function of the actor network is modified
through the reparameterization trick, represented as a;= f, (€t; s¢). The policy of SAC lever-
ages a differentiable Q-function as its target, thus enabling the attainment of low variance
through the reparameterization trick. This method significantly enhances the convergence
speed of policy. Furthermore, utilizing this trick leads to the reparameterization of the
actor’s objective function as the following form:

Jn(d)= ES¢~D,et~N[“10g7T¢>(fq)(etr'st)|St) — Qo(spfe(enst))], ®)

Then, the actor network is updated through SGD to minimize the KLD between the
entropy of the policy and the Q-values. The gradient of the objective function is as follows:

Vo In(h) = Voalog(my (aglsy)) + (Vaxlog(me (atlsy)) — VaQ(syar)) Ve ersy).  (6)

Through this process, the agent establishes an optimal policy that maximizes both
rewards and entropy by utilizing experiences gained from the variety of actions.

3. Proposed Method: Task Decomposition for High-Level Task

Task decomposition is a technique to simplify complex high-level tasks by dividing
them into simpler and easier low-level tasks. In the Robosuite environment, high-level tasks
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such as door opening, block stacking, and nut assembly are decomposed into subtasks, and
SAC is utilized to train agents to establish optimal policies for each decomposed subtask.
Afterwards, the established subpolicies are modularized and connected sequentially to
enable efficient performance of complex tasks. This method allows for the experimental
validation of the performance of the agent. All tasks begin training from an initial state as
shown in Figure 1.

(b) O ©

Figure 1. The initial state of each task provided by Robosuite: (a) door-opening task; (b) block-stacking
task; (c) nut assembly task.

3.1. Door Opening

The door-opening task is one of the common benchmark tasks in the fields of robotics
and automation. The environment for the door-opening task is designed around a scenario
in which a robot manipulator interacts with a door handle to open the door. The goal
of this task is to enable the robot manipulator to accurately grasp the door handle and
successfully open the door. In this paper, the door-opening task is divided into the following
four subtasks.

Reaching task: reaching the door handle;

Grasping task: grasping the door handle;

Turning task: turning the door handle to unlock the door;
Pulling task: pulling the door open while holding the handle.

The door-opening task is performed by sequentially linking the four tasks. Except
for the grasping task, the reaching, turning, and pulling tasks are trained using the SAC
algorithm. The first reaching agent is trained to perform the end effector reaches the
position of the door handle, which is generated randomly. The agent of the grasping
is designed to perform the end effector grasps of the handle through a single gripper
action without any training. The turning agent is trained to release the lock by turning the
handle. Finally, the agent for the pulling is trained to pull the door. Figure 2 shows the
implementation process of the door-opening task using the proposed method.
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@ Initial state

Door opening task

(@ Reaching and grasping ® Turning

Figure 2. The overall workflow of the proposed method for the door-opening task.

3.2. Block Stacking

Block stacking is the task of stacking or loading blocks. It is a major task that can be
used in various application fields such as manufacturing, logistics, and construction. The
environment for the block-stacking task includes a scenario where the robot manipulator
interacts with multiple blocks to stack them. The objective is for the robot manipulator
to accurately manipulate and stack the blocks at the target position. In this research, the
block-stacking task is divided into the following four subtasks.

Reaching task: reaching the target block;

Grasping task: grasping the target block;

Reaching task: stacking the grasped target block on top of the base block;

Putting task: putting the target block and checking the state of the stacked blocks.

The block-stacking task is implemented by sequentially linking four subtasks. During
this process, two reaching agents are trained using the SAC algorithm. The agent designed
for grasping is configured to enable the end effector to grasp the target block using a single
gripper action, without any training. The second reaching agent is trained to reach the
grasped target block to the target position, which is on top of the base block. The putting
agent is designed to check the stacked state of target blocks with single joint and gripper
actions, not requiring any training. Figure 3 illustrates the implementation process of the
block-stacking task using the proposed method.

@ Initial state

Block stacking task

(@ Reaching and grasping (® Stacking

Figure 3. The overall workflow of the proposed method for the block-stacking task.
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3.3. Nut Assembly

The nut assembly task is the main task for the mechanical automation of robot manip-
ulators. The environment of the nut assembly task includes a robot manipulator, nuts, and
pegs that the nuts are to be fitted onto. The goal of this task is for the robot manipulator
to accurately grasp the nut, move it, and align it with the peg. Through the proposed
methodology, nut assembly can be divided into six subtasks as follows:

Reaching task: reaching above the nut handle;

Aligning task: aligning the orientation of the nut and the end effector;
Reaching task: reaching the handle of the nut;

Grasping task: grasping the handle of the nut;

Assembly task: assembling the nut onto the peg;

Putting task: checking the peg-in-hole state.

The nut assembly task is implemented by sequentially linking these subtasks. Addi-
tionally, all subtasks except for the grasping and putting tasks are trained using SAC. The
first reaching agent is trained to reach the target position set directly above the handle of
the nut. The aligning agent is trained to adjust the orientation of the end effector and the
nut. The second reaching agent is trained to reach the handle of the nut. The agent for the
grasping is configured to enable the end effector to grasp the handle using a single gripper
action, without the need for any training. The assembling agent is trained to precisely
peg-in-hole the nut onto the peg. Finally, the putting agent is designed to check the state of
the assembled nut through single joint and gripper actions, without any training. Figure 4
shows the process of implementing the nut assembly task using the proposed method.

@ Initial state

Nut assembly task

@ Reaching and aligning (® Reaching and grasping

Figure 4. The overall workflow of the proposed method for the nut assembly task.

3.4. Designing States, Actions, and Task-Specific Reward System
3.4.1. States and Actions

In this subsection, we describe the state and action for each task. Table 1 details the
state of the robot manipulator and the state of the object for each task. In this paper, the
Panda robot manipulator is used as the agent in all experimental environments. Since the
Panda robot manipulator consists of seven joints and one gripper, the action a; € R®is
defined for all tasks as in Equation (7) and represented by eight torques T; as in Equation (8).
The direction of motion for each joint is determined by the sign of its action value. A
positive action value indicates counterclockwise rotation and a negative value indicates
clockwise rotation. Similarly, the action value of the gripper is categorized into opening
and closing operations based on its sign. A positive action value corresponds to a closing
operation, while a negative value corresponds to an opening operation. Additionally, the
number of states varies depending on the task, with 46 for door opening, 51 for block
stacking, and 57 for nut assembly.

at= [Tlt/TZtrT3t/T4t/T5trT6trT7t/T8t]r (7)
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1< <1Viel?2 -8 (8)

First, the definition of the state that is commonly utilized across all tasks is as follows:
the state of the robot manipulator’s end effector, which is denoted as See = [Pee, Qee] € R’,
comprises its current position and orientation. Here, the position is represented by Pee € R,
and the orientation is expressed in quaternion form as Q.. € R*. The cosine and sine values
of the robot manipulator’s joint angles are represented by @ps € R’ and O, € R’.
The joint velocities are denoted by @, € R’. Lastly, the position and velocity of the
manipulator’s gripper are indicated by Sy € R*. In this study, both the initial position
of the robot manipulator and the position of the generated object are defined within the
Cartesian coordinate system.

Table 1. This table represents the state of the robot manipulator commonly used for all tasks and the
state of the object used for each task.

Posture of the Robot Manipulator

See: position and orientation of the end effector
Bcos: cosine values of the joint angles

Osin: sine values of the joint angles

Oy: joint velocity

Sg: position and velocity of the gripper

Door opening Block stacking Nut assembly
Py,: door handle position Sp: position and orientation of the target block ~ Sn: position and orientation of the nut
Py,: positional difference between handle Py: positional difference between target block Sy: positional difference between nut and
and end effector and end effector end effector
P4: door position Ps: position and orientation of the base block Py, nut handle position
Py: positional difference between door and Ps: positional difference between base block Pon: positional difference between nut handle
end effector and end effector and end effector
©;: hinge angle P,: positional difference between target block Pp: peg position
Oy: handle angle and base block Pp: positional difference between nut and peg

Next, the definition of the state used for each task is as follows: First, in the door-
opening task, P, € R® denotes the position of the door handle that the robot manipulator
aims to reach. The positional difference between the end effector and the door handle is
denoted as P}, = Pee — Pp. Additionally, Py € R3 represents the position of the door. The
positional difference between the end effector and the door is represented by Ps= Pee — Py.
Moreover, ®; and Oy, are the angles of the door’s hinge and handle, both expressed in
radians. Second, in the block-stacking task, S, = [Py, Q,] € R’ is comprised of the
position and orientation of the target block. Here, P, € R® represents the position of
the target block, which is the objective for the first reaching task, and Q,, € R* denotes
the orientation of the target block, which is expressed in quaternion form. P = Pee — P},
means the positional difference between the end effector and the target block. Ps € R
denotes the position of another block that is designated for stacking, termed the base
block. The difference in position between the end effector and base block is expressed as
Pi= Pee — Ps. The positional difference between the target block, which is the objective for
the first reaching task, and the base block is denoted as Po= P}, — Ps. Finally, in the task
of nut assembly, S, = [Pn, Q] € R is a vector consisting of the nut’s current position
P, € R?and orientation Q, € R*. The difference in position and orientation between
the end effector and the nut is denoted by Sn= See — Sn. P € R? indicates the position
of the nut handle, which is to be grasped next. The positional difference between the end
effector and the nut handle is expressed as Poh= Pee — Py Pp € R? is the position of
the peg designed to fit the nut. The positional difference between the nut and the peg is
represented by 1~°p: Pn — Pp.
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3.4.2. Task-Specific Reward System for Reaching

The task-specific reward system for the reaching task is designed by considering the
difference between the end effector’s position and the target position, as well as the energy
consumption of the robot manipulator. It is defined as r = rp+re, where

i=

Xee — Xt Kx 0 0 8
rp= Pg KPe, Pe=Pee — Pt = |y, —y,|, K= 0 Ky 0|, re=—0.00003 x Z [Ei]. (9)
Zee — Zt 0 0 K, i=1

Here, Table 2 provides detailed descriptions of the target position and reward feedback
parameters for each subtask. Considering the robot manipulator’s initial position, feedback
parameters Ky, Ky and K are established to precisely reach the target destinations for each
task. These parameters adjust the robot’s dynamic movements to achieve more precise
targeting. All K feedback parameters are initially set intuitively to suit each task, and then
through a process of trial and error, the parameters are adjusted to optimized values.

Table 2. This table indicates that the target position and reward feedback parameters vary for each
subtask within the reaching task.

Subtask Target Position Ky Ky K,
Reaching task in door opening Py,: door handle -05 -2 —4
First reaching task in block stacking Py: block -2 -2 -1
Second reaching task in block stacking Ps: above target block -2 -2 -1
First reaching task in nut assembly P;: above nut handle -2 -2 -1
Second reaching task in nut assembly Py nut handle -2 -2 -1

In the door-opening task, to reach the door handle, the most important factor is
aligning the z-position of the end effector with that of the door handle, followed by
aligning the y-position. Therefore, according to priority, the absolute values of the feedback
parameters are set large in the order of K, Ky, and Ky, as shown in Table 2. This is essential
for the gripper to properly grip the door handle. Additionally, in the block-stacking and nut
assembly tasks, to increase the accuracy of arriving at the (x, y) position of the object, the
values of the feedback parameters Ky and Ky are increased to be higher than K,. Aligning
the z position of the end effector is important, but more emphasis should be placed on
matching the (x, y) position first in reaching the task. This is because precisely aligning
the (x, y) position allows for accurate object grasping through the simple gripper action.
Lastly, energy reward (9) is used as the actuator force F; that is measured at each joint
through a simulation tool during the movement of the robot manipulator.

3.4.3. Task-Specific Reward System for Turning and Pulling

In this section, the task-specific reward system for the turning task is designed by
considering the difference between the door handle angle and the target angle for unlocking.
Similarly, for the pulling task, the task-specific reward system is defined utilizing the
difference between the hinge angle and the target angle for pulling. As well as the energy
consumption of the robot manipulator. It is defined as r = ry+re, where ry,= Ko (0, — @)2.

Table 3 represents the target angle and feedback parameter according to the subtask.
Depending on the task, the target angle is set to the unlock angle or the door-opening angle,
and the feedback parameter K, is used the same for both tasks and set to the high value to
increase sensitivity to angle changes. Also, the formula for the energy reward is the same
as Equation (9).
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Table 3. The target angle and reward feedback parameters for each subtask within the turning and

pulling task.
Subtask 0, Target Angle © Ko
Turning task in door opening Oy,: door handle angle %7’( —-10
Pulling task in door opening O;: hinge angle %7’[ —10

3.4.4. Task-Specific Reward System for Aligning

The task-specific reward system for the aligning task is designed by the orientation
difference between the end effector and the nut, as well as the energy consumption of the
robot manipulator. It is defined as r = ro+r. where,

Oee — O K 0
ro= O} KO¢, Og= O¢e — On = [d)ee B d)n}, K :{ Oe Kd)]/ Ke=K¢p =-1. (10
ee n

The quaternion values in the state are converted to Euler form to set the reward. The
orientation of the end effector and nut is aligned using the pitch and yaw values. In this
subtask, the feedback parameters K¢ and K¢, are both equal to —1 (10). The formula for
the energy reward is the same as Equation (9).

3.4.5. Task-Specific Reward System for Assembly

The task-specific reward system for assembly task is designed by the positional differ-
ence between the nut and peg, as well as the energy consumption of the robot manipulator.
It is defined as r = rp+re where,

Xn — Xp K« O 0
rp= PeT KPe, Pe=Pn — Pp = |y, — Yp | K=|0 Ky 0], K=Ky=-2 K,=-1. (11)
Zn — Zp 0 K

In assembly tasks, it is important to prioritize the accuracy of the (x, y) positions not
only for achieving precise peg-in-hole alignment between the nut and peg but also for
facilitating the assembly process and enhancing efficiency. Therefore, to effectively perform
assembly tasks, the feedback parameters Ky and Ky are set to absolute values higher than
Kz (11). The formula for the energy reward is the same as Equation (9).

4. Simulation Environment—Robosuite

Robosuite [28] is a framework that is designed for the development of algorithms
in robot control and reinforcement learning. This framework provides a comprehensive
set of tools for controlling robot systems. Additionally, it offers high compatibility with
commonly used manipulators such as the Franka Emika Panda, Kinova3, Jaco, URS5, etc.
One of the strengths of Robosuite is its provision of various gripper and object models.
Users can utilize Robosuite to experiment and evaluate various control and reinforcement
learning algorithms in different tasks such as block stacking, pick and place, and nut
assembly. The flexible modular software architecture of Robosuite is designed to allow
users to easily define and extend robots and their working environments, significantly
enhancing the framework’s usability and applicability. Moreover, Robosuite supports a
variety of machine learning techniques, not only reinforcement learning but also inverse
reinforcement learning and imitation learning. These techniques facilitate the development
and testing of robotic intelligence control algorithms, enabling users to address complex
task environments and scenarios more effectively.

5. Experimental Results

In this section, we present the experimental results aimed at deriving the optimal
policies for each agent to successfully handle complex tasks such as door opening, block
stacking, and nut assembly using the proposed method. The training process for all
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tasks was repeated four times. The training results are shown in figure, which averages
the cumulative rewards for each episode obtained over four trials, and then shows the
convergence of rewards and policy optimization trends through moving averages.

5.1. Door Opening
5.1.1. Reaching Agent for Approaching the Door Handle

The first step in the door-opening task is to approach the door handle. The policy of
the agent was established by the proposed reward system to achieve the goal of reaching
the door handle from the initial position. The agent was trained for 3000 episodes with
300 steps per episode. Figure 5a illustrates that the reward converged to zero, indicating
that the optimal policy for reaching the handle was established. The episode was considered
a success if the end effector reached a certain range from the door handle, as follows:

(Xee = Xn)? < 7.5 X 1075, (Yoo — y3)° < 7.5 X 107%, (2ee — 21)> < 7.5 x 107°. (12)

The trained agent was tested for 500 episodes to reach the door handle, and these tests
were repeated four times. The performance evaluation was found to be 99.95%, as shown
in Table 4.

Table 4. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator reaching the door handle using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
100% 100% 100% 99.8% 99.95%
Reach Door 0 dnockthe oot Pull Door
0 — AT 2000

T

-2000

-100 0
-200 -4000 ~2000

-300
6000 —-4000

Moving Average Reward
Moving Average Reward
Moving Average Reward

-400 -6000

~8000

508 —— Reaching Agent
-8000 — Pulling Agent
0 500 1000 1500 2000 2500 3000 . TR ulling Agen

-10000
Episode
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

(a) (b) ()

Figure 5. Trend in moving average reward during door-opening task across episodes: (a) reaching
agent; (b) turning agent; (c) pulling agent.

5.1.2. Turning Agent for Unlocking

Rotating the handle was the second step in the door-opening task. The initial state of
the agent was set to the information when the end effector grasped the door handle through
the trained reaching agent and a simple gripper action. In this initial state, the agent
was trained over 2000 episodes, with each episode consisting of 300 steps. Additionally,
the agent was trained based on the proposed reward system, which aimed to minimize
the difference between the current angle of the door handle and the angle required for
unlocking. The convergence of the reward to the zero signified the establishment of the
optimal unlocking policy, as shown in Figure 5b. Currently, success of the episode was
defined as achieving the angle that released the lock. This criterion is represented as follows:

2
(@h - 152n) < 0.0025. (13)
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The performance of trained agents was evaluated four times, with each evaluation
consisting of 500 episodes. Through Table 5, it is demonstrated that each test achieved a
100% success rate, with an overall average success rate of 100%.

Table 5. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator turning the door handle using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
100% 100% 100% 100% 100%

5.1.3. Pulling Agent for Opening Door

Pulling the door open was the third step in the door-opening task. At this point, the
initial state of training was set by using the first agent to reach the door handle and grasp it
through a simple gripper action, and then using the second agent to turn the door handle,
thereby unlocking it. In this initial state, the agent was trained across 2000 episodes, each
consisting of 300 steps, based on a reward system for pulling the door. This reward system
was designed to minimize the difference between the hinge angle and the angle required
to open the door. Figure 5c represents the establishment of the optimal policy for pulling
the door, as shown by the convergence of rewards to zero throughout the training process.
Additionally, the episode was considered to have achieved its goal when the hinge angle
reached the angle required for the door to open, with the following condition:

1 2
(@i - 6n> < 0.02. (14)

To evaluate the pulling agent, the trained agent was tested four times, each consisting
of 500 episodes. The average success rate was found to be 99.9%, as shown in Table 6. Also,
since the door was opened through the pulling agent, the success rate of the pulling agent
can be considered the success rate of the door-opening task. Consequently, the average
success rate of the door-opening task was 99.9%.

Table 6. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator pulling the door using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
99.6% 100% 100% 100% 99.9%

5.2. Block Stacking
5.2.1. Reaching Agent for Approaching the Target Block

The first objective of the block-stacking task was to reach the block, which is called a
target block. The position of the target block was randomly generated within predefined
boundaries, and its orientation was also randomly determined by z-axis rotation. The
training of the agent, aimed at minimizing the positional difference between the end effector
and the target block, spanned 5000 episodes, each comprising 300 steps. Figure 6a illustrates
that the reward converged to zero, indicating that the optimal policy was established.
Moreover, success was defined as the end effector accurately reaching the generated target
block. This criterion is expressed as follows:

(Xee — %) < 125 x 1074, (Yoo — v)° < 125 X 1074, (zee — )2 < 175 x 1074 (15)

The trained agent was evaluated four times, each consisting of 500 episodes. As
indicated in Table 7, the average success rate for reaching the target block stood at 98.95%.
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Table 7. This is the success rate for each trial and the average success rate for all trials. The test
process involves the robot manipulator reaching the block using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
99.0% 99.2% 98.8% 98.8% 98.95%
Reach CubeA Stack CubeA
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Figure 6. Trend in moving average reward during block-stacking task across episodes: (a) first
reaching agent; (b) second reaching agent.

5.2.2. Reaching Agent for Stacking the Block

Holding the target block and reaching over the base block in the target position
was the second objective of the block-stacking task. In this case, the initial state was set
when the end effector reached and grasped the target block by the first agent and simple
gripper manipulation. From the initial state, the agent was trained across 5000 episodes,
each consisting of 300 steps, utilizing the same reward system as the first reaching agent
to minimize the positional difference between the target position and the end effector.
Figure 6b shows the moving average trend initially fluctuating before gradually stabilizing,
through which we can see that the reward converges to zero. In addition, the episode was
considered a success when the end effector grasped the target block and reached the target
position above the base block. This criterion is represented as follows:

(Xee — x5)2 < 1.25 x 1074, (yoo — yo)° < 125 x 1074, (zee — 25)° < 175 x 1074 (16)

The performance of the trained agent was evaluated in four trials with 500 episode
tests to evaluate its performance in reaching the target position, resulting in an average
success rate of 95.25%, as shown in Table 8.

Table 8. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator stacking the block using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
96.0% 95.2% 94.6% 95.2% 95.25%

Additionally, the block was stacked through the second agent, and the purpose of
the putting task was to verify the state of the stacked blocks. Therefore, the success rate
of the second agent and the putting task was the same, so the average success rate of the
block-stacking task was 95.25%.
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5.3. Nut Assembly
5.3.1. Reaching Agent for Approaching Nut Handle Above

The first step of nut assembly was to approach the area above the nut handle. To
achieve this, training for the agent spanned 2000 episodes, each consisting of 300 steps, and
the agent was trained according to the proposed reward system. This system was designed
to reach above the nut handle from the initial position by minimizing the difference
in position between the target position and the end effector. Figure 7a illustrates the
convergence of rewards to zero, which indicates the establishment of the optimal policy for
reaching the target position. The performance of the trained agent was evaluated based
on the success rate, which was determined by whether the end effector reached the target
position according to the following criterion:

(Xee = x1)2 < 125 x 1074, (Yoo — y,)° < 125 x 1074, (zee — 7)< 175 x 1074 (17)
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Figure 7. Trend in moving average reward during nut assembly task across episodes: (a) first reaching
agent; (b) aligning agent; (c) second reaching agent; (d) assembly agent.

The trained agent’s ability to reach the target location was evaluated over 500 episodes
four times. As shown in Table 9, the average success rates were 99.9% for the square nut
and 99.875% for the round nut.
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Table 9. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator reaching above the nut handle using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
Square 99.8% 100% 100% 99.8% 99.9%
Round 99.9% 99.6% 100% 100% 99.875%

5.3.2. Aligning Agent for Rotating Nut

To match the orientation of the end effector and the nut was the second step of nut
assembly. The initial position of the end effector was set above the nut handle through
the first agent. In this initial state, the agent was trained across 2000 episodes, each
comprising 300 steps, with the goal of minimizing the difference in pitch and yaw between
the end effector and the nut. Figure 7b illustrates that the reward converges to zero, which
demonstrates that the optimal policy for orientation alignment was found. The episode
was considered a success when the difference in pitch and yaw between the end effector
and the nut satisfied the following conditions:

(Bee — 0n) < 0.01, (Pee — bn)> < 0.001. (18)

As represented in Table 10, the performance of the trained agent was evaluated over
500 episodes, repeated four times, demonstrating an average success rate of 97.45% for the
square nut and 97.4% for the round nut, as indicated in Table 10.

Table 10. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator aligning the nut using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
Square 98.6% 97.6% 97.0% 98.0% 97.45%
Round 97.2% 97.8% 96.6% 98.0% 97.4%

5.3.3. Reaching Agent for Approaching Nut Handle

The third step was to approach the nut handle. Initially, the end effector reached above
the nut handle via the first agent, and then, its orientation with the nut was aligned by the
second agent to establish the initial state. In this initial state, the agent was trained over
6000 episodes with 300 steps per episode according to the proposed reward system to reach
the nut handle. In Figure 7c, it can be seen that the reward converges to zero, which means
that the optimal policy for reaching the nut handle was established. The success of the
episode was determined by whether the end effector reached the nut handle based on the
following condition:

(Xee = Xan)? < 125 X 1074, (yoo — Yon)* < 125 x 1074, (zee — zon)? < 175 x 1074 (19)

The performance of the trained agent to reach the nut handle was evaluated in
500 episodes, repeated four times. As a result, the average success rates were 95.7%
for square nut and 98.45% for round nut, as indicated in Table 11.

Table 11. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator reaching the nut handle using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
Square 96.0% 95.0% 94.2% 97.6% 95.7%
Round 98.8% 97.6% 99.0% 98.4% 98.45%
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5.3.4. Assembly Agent for Peg in Hole

The fourth step of nut assembly was completing the peg-in-hole task with the nut.
First, the end effector reached above the nut handle, aligned its orientation with the nut,
and then reached the nut handle. This was accomplished using the first, second, and
third agents, respectively. Subsequently, the nut handle was grasped through a simple
gripper action. Using this state as the initial state, the agent was trained for 10,000 episodes,
with 300 steps per episode, through the proposed reward system that was designed to
perform peg-in-hole task with precision. Figure 7d shows that the reward converges to zero,
indicating that the optimal policy was established. At this point, success was defined as
precisely fitting the nut onto the peg and ensuring the difference was within the predefined
threshold as follows:

2
(xn = %p)7 < 125 x 107, (y, =y, )" < 125 x 1074, (2 — 7)" < 175 x 1074 (20)

The agent trained to accurately perform the peg-in-hole task was tested for 500 episodes,
repeated four times. Finally, Table 12 shows the success rate and average success rate for
each trial. Through this, the average success rate was 80.8% for square nut and 90.9% for
round nut.

Table 12. This is the success rate for each trial and the average success rate for all trials. The test
process involved the robot manipulator assembly of the nut using the established policy.

Trial 1 Trial 2 Trial 3 Trial 4 Average
Square 80.4% 81.8% 80.2% 80.8% 80.8%
Round 89.8% 90.8% 91.0% 92.0% 90.9%

Furthermore, the peg-in-hole task was achieved through the fourth agent, and the
purpose of the putting task was to verify the peg-in-hole state. So, since the success rate
of the fourth agent and the putting task was the same, the average success rate for the
square-nut assembly was 80.8%, and that for the round-nut assembly was 90.9%.

Remark 1. As mentioned in the experimental results, except for the first task, subsequent tasks
used the agent that was trained in the previous subtask to create the initial state. For example, in
the door-opening task, the process of reaching the door handle was implemented using a reaching
agent, and the door handle was grasped through a simple gripper action. This state of holding the
door handle was then used as the initial state for the turning agent. Another example is in the nut
assembly task, where the first reaching agent was used to reach above the nut handle, and an aligning
agent was used to align the orientation of the end effector with the nut. Subsequently, the nut handle
was reached using the second reaching agent. The nut handle was grasped through a simple gripper
action. The state of holding the nut handle was used as the initial state for the assembly agent. Thus,
for tasks following the first, initial states were set using agents from the previous subtask.

6. Discussion

Through the proposed method of this research, high success rates of 99.9%, 95.25%,
90.9%, and 80.8% were achieved in door-opening, block-stacking, and round- and square-
nut assembly tasks, respectively. As a result, it can be considered that higher performance
was achieved compared to the benchmarking results of Robosuite. In particular, the
Robosuite benchmarking results for the block stacking and nut assembly tasks showed
poor learning performance. However, applying the proposed method for the same tasks
resulted in achieving high accuracy and learning rates. Moreover, comparing the proposed
method to the excellent performance of the door-opening task in Robosuite indicates that
the proposed method obtained similar or even superior results. This suggests that the
proposed method exhibits strengths not only in complex tasks but also in less complex
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tasks. This demonstrates that the proposed method is versatile and effective in performing
complex and diverse tasks.

However, there are some limitations to the methodology of this study. Unlike round-
nut assembly, achieving precise peg-in-hole fitting in square-nut assembly tasks requires
setting a reward that considers the orientation of the square nut. However, by setting it
to the same as that for the round nut, the success rate was relatively lower compared to
the round-nut assembly task. In other words, the proposed method has the advantage of
improving the performance of the reinforcement learning algorithm by designing a reward
system for a specific task. However, it may be sensitive to changes in the environment of
the task, making it difficult to generalize the reward system. Additionally, the approach of
sequentially connecting optimal policies to perform complex tasks has the problem that
failures of subtasks accumulate and affect the final performance.

To overcome these limitations, future research could consider training additional
agents that effectively connect optimal policies for subtasks. The objective is to increase the
overall task success rate and enhance flexibility and adaptability in performing complex
tasks. This can be achieved by establishing advanced policies that efficiently integrate and
connect tasks, rather than simply sequentially connecting policies for each subtask. Through
future research, it is possible to prevent the negative impact on overall performance caused
by failures in subtasks while simultaneously enhancing flexibility and adaptability, thereby
further improving the ability to perform complex tasks.

7. Conclusions

This paper proposed a reinforcement learning method based on task decomposition
and a task-specific reward system for performing complex high-level tasks such as door
opening, block stacking, and nut assembly. Initially, the door-opening task was decomposed
into subtasks of reaching—grasping—turning—pulling. The block-stacking task was divided
into subtasks of reaching-grasping— reaching—putting, and the nut assembly task was
divided into subtasks of reaching-aligning—reaching—grasping—assembling—putting. The
grasping and putting tasks were implemented with single joint and gripper actions, while
agents for the other tasks were trained using the SAC algorithm and a task-specific reward
system. Here, the task-specific reward system was used to increase the learning speed of
the agents, enhance their success rates, and facilitate the subsequent tasks of grasping and
putting more efficiently. The proposed method was validated by successfully completing
tasks with a 99.9% success rate for door opening, 95.25% for block stacking, 90.9% for
round-nut assembly, and 80.8% for square-nut assembly. This demonstrates a significant
improvement over existing methods in performing complex tasks. By overcoming the
limitations of end-to-end approaches, it proves to be a valuable solution for solving diverse
and complex tasks while also presenting new directions for future research.
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