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Abstract: This article contains the results of identifying the potential of coniferous trees to act as
bioinspiration for the structural design of columns in single-story warehouses subjected to high wind
velocity and severe seismic action. This study starts by analyzing the biomechanics of coniferous
trees, continues with an abstraction of the relevant features, and ends with the transfer of a design
methodology for long reinforced and prestressed concrete columns. To verify the applicability and
validity of the mathematical relationships extracted from the bibliographic study to characterize
the biomechanics of coniferous trees, a study site is conducted for Norway spruce trees felled by
the wind in the Bilbor area. The design methodology for long reinforced and prestressed concrete
columns bioinspired by the Norway spruce trees is experimentally validated using two case studies.
The first case study deals with the effect of centric prestressing on long concrete columns, and the
second on the influence of the walnut shell powder on the adhesion of the reinforcement in concrete.
The case studies presented aim to transfer some characteristics from trees to reinforced concrete to
improve the performance of long columns under horizontal forces. The results obtained indicate a
good approximation of the trees’ structural behavior for this site and for ones investigated by other
researchers in different forests.

Keywords: biomimetic concrete column; Norway spruce; prestressed reinforced concrete; biome-
chanics; energy dissipation; walnut shell

1. Introduction

People’s needs for sheltering new technological processes in factories, storing material
goods in modern logistics centers, and building mega shopping centers have been ma-
terialized through projects of single-story constructions with significant heights on sites
with severe seismic actions [1]. The need for large free heights of 10 m and above results
from the organization of technological flows and the good functionality of the building,
while the site is chosen mainly according to the development of the infrastructure and
the workforce available for future economic activity [2]. Considering the above criteria,
it is observed that the free height of the columns that make up these structures is almost
impossible to reduce, thus the structural engineer is responsible for finding solutions suit-
able for the design theme, which must also be economically competitive and in line with
sustainable development.

In nature, materials have specifications starting from the atom level, such as spider
silk, wood, shells, etc. People have imitated nature by creating new synthetic materials
such as cement materials (e.g., concrete) [3,4] and alloys (e.g., steel), sometimes starting at
the atom level, such as Nylon and Kevlar [5].

Columns are crucial structural elements in a load-bearing structure. They have the
role of transferring the loads applied at roof level, on the facades, and those on their height
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to the foundations. In single-story warehouses (Figure 1), the columns are often subjected
to high eccentric compression and shear force, identical to trees. From a mechanical point
of view, the trunks of trees have the role of transferring the loads applied to the crown and
trunk (own weight of the branches and trunk, precipitations, and wind action) to the root
system [6–9]. For both columns and trees, the static scheme is that of a vertical cantilever
embedded at the base. As the length of the cantilever increases, it is necessary to increase
the bending stiffness to avoid excessively large lateral displacements leading to loss of
stability; therefore, it is necessary to increase the resisting bending moment to be able to
take up the demanding bending moment, otherwise the cantilever would break in the most
severely stressed cross-section. The bending stiffness can be expressed as E·I, where E
is a mechanical characteristic of the material (longitudinal modulus of elasticity) and I is
a geometric characteristic of the section (moment of inertia or, more specifically, second
moment of area). Therefore, to obtain a higher bending stiffness, we need to increase at
least one of the terms. If we keep the materials used, it follows that increasing the stiffness
can only be achieved by increasing the dimensions of the cross-section.
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Figure 1. Load-bearing structure for a single-story warehouse on a site with severe seismic action, 
ground acceleration ag = 0.35·g. Reproduced with permission from ©SDC Proiect 
[http://www.sdcproiect.ro/wp-content/uploads/2018/10/IMG_1887-08-06-18-11-30-1.jpg/ (accessed 
on 4 March 202)].  

 
Figure 2. Coniferous forest trees (spruce species) as freestanding (left) versus densely growing 
(right). Adapted from ©Swedishwood [https://www.swedishwood.com/optimized/default/siteas-
sets/1-trafakta/2-att-valja-tra/01/com/fristaende-gran-com.jpg/ (accessed on 4 March 202)]. 
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namics, morphology, rooting, and energy dissipation. 
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have an amazing ability to withstand high horizontal forces. The form–structure–model 

Figure 1. Load-bearing structure for a single-story warehouse on a site with severe seismic ac-
tion, ground acceleration ag = 0.35 g. Reproduced with permission from ©SDC Project [https:
//www.sdcproiect.ro/wp-content/uploads/2018/10/IMG_1887-08-06-18-11-30-1.jpg (accessed on 4
March 2024)].

Nowadays, the most used and financially accessible building materials are concrete
and steel. Concrete has physical (high resistance to fire and aggressive environment,
medium specific weight, low thermal expansion, etc.) and mechanical properties (sufficient
compressive strength, favorable elasticity mode, etc.) that make it recommendable for
widespread use in load-bearing structures. However, the low tensile strength of concrete is
an impediment, involving its association with other reinforcement materials (with tensile
strength 100 to 1000 times that of concrete), resulting in a composite material, i.e., reinforced
concrete [10]. An excellent reinforcement in concrete is steel in the form of ribbed bars.
Steel has a thermal expansion compatible with that of concrete and good adhesion when
embedded. When reinforced concrete structures exhibit deformations above the service-
ability limits, or when the goal is to reduce the dimensions and the elements’ own weight,
active reinforcement (pre-tensioned or post-tensioned) can be used in association with the
concrete, thus resulting in a composite material like the first but with superior mechanical
performance, i.e., prestressed concrete. In the modern era, engineering solutions for the
reinforcement (using passive reinforcement) of reinforced concrete have been studied and
then successfully implemented by engineers and professors such as Emil Mörsch and Fritz
Leonhardt [11–16]. Regarding prestressed concrete, prestressing engineering solutions
were studied and successfully applied in construction by the pioneering French builder
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Freyssinet and immediately continued by his successors [17–19]. Since the beginning of the
modern use of reinforced concrete, the strut-and-tie model and the stress-field model have
been used as design principles, with reinforcements positioned inside the concrete member
where tensile stresses would exceed the tensile strength of the concrete.

The purpose of this article is to identify the relevant mechanical, physical, dynamic,
and morphological properties to verify the potential of coniferous trees (Figure 2) as a bio-
logical role model in the design of long reinforced and prestressed concrete columns. Being
aware of existing differences, this article is focused on the similarities that can improve the
design of this type of column and its foundations within single-story warehouses.
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Figure 2. Coniferous forest trees (spruce species) as freestanding (left) versus densely growing (right).
Adapted from ©Swedishwood [https://www.swedishwood.com/optimized/default/siteassets/1-
trafakta/2-att-valja-tra/01/com/fristaende-gran-com.jpg/ (accessed on 4 March 2024)].

In this article, bioinspiration is oriented towards a direct and pragmatic applicability
in structural engineering, and, through biomimetics, an attempt is made to decipher the
natural design strategy of coniferous forest trees transferring to long prestressed reinforced
concrete columns and their foundations. The particularities of the trees are analyzed
through the lens of biomechanics, considering as studied parameters statics, dynamics,
morphology, rooting, and energy dissipation.

2. Analysis and Abstraction of the Biological Model
2.1. Biomimetics and Trees

Biology has a large potential to generate structural solutions for today’s reinforced
concrete constructions [20,21]. The present research aims to clarify how tall forest trees
have an amazing ability to withstand high horizontal forces. The form–structure–model
relationship is investigated by abstracting and adapting bioinspired load-bearing struc-
tures. Biological models are processed to understand the natural response and the natural
balance within the structure. We must notice that such an approach does not explain the
entire complexity of the natural biological role model but tries to discover the mechanical
fundamentals through complex modeling of innovative reinforced and prestressed concrete
members. Figure 3 shows the relationship between biology and technical implementation
in case studies comprising analysis, abstraction, and implementation [22].
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Figure 3. Interaction between the study of biology and technical implementation in biomimetics,
based on [22].

2.2. Dynamics and Damping

Dynamics. Biomechanics studies trees as mechanical objects [23] using principles
from engineering and physics to understand the structural properties of trees and how they
interact with the environment. Tree growth rate is directly influenced by physiological as-
pects, especially those affecting photosynthesis and water transport [24]. But whether they
are optimal or not, the size and shape of the tree is limited by biomechanical constraints [25].
Tree wood, as well as most plant materials, is viscoelastic because its mechanical properties
are both elastic and viscous [26]. These properties involve a non-linear behavior [27,28],
and, when mechanically stressed, live wood does not fit into a current mechanical model,
as, for example, it does for concrete and steel. Thus, it is important to acknowledge the
limitations of attempts to characterize and quantify trees using exact parameter values,
and to recognize the failures when theory and reality do not coincide [29]. In addition,
biological materials change their properties as trees grow and age [25,30–35], thus making
the dynamic response difficult to predict.

Frequency. The frequency of swinging trees has been the subject of numerous studies
and proposed relationships for the dominant frequencies of trunks [36–44]. Figure 4
shows a synthesis of the natural frequency determined on coniferous trees. Based on
the cantilever beam model, Blevins [45] proposed the following relation for the natural
vibration frequency:

fn =
λ2

2·π·L2 ·

√
E·I0

ρ·A0
(1)

where λ is a dimensionless parameter depending on the variations of the tree properties
(e.g., shape, mass, and stiffness distribution), L is the height of the trunk, E is the elasticity
modulus, I0 is the second moment o area at the base (the basal area moment of inertia), ρ is
the density of the material, and A0 is the cross-sectional area at the base of the cantilever
beam (trunk).

Furthermore, Scannell [46], Petty, and Swain [47] quantified the influence of the
branches in decreasing the frequencies of the amplitude of the trunk swings. On the other
hand, the empirical relationship proposed by Moore and Maguire [36] was validated for
about 600 coniferous trees of different heights, diameters, and species:

fn = 0.0948 + 3.4317·DBH
L2 − 0.7765·Ip·

DBH
L2 (2)

where L is the height of the trunk, DBH is the diameter of the trunk measured at chest level
(approximately 1.35 m above the ground), and Ip is a parameter equal to 1 if the genus is
Pinus and 0 otherwise.

Damping. While the natural frequency of a tree is relatively easy to quantify and
overall measure, the quantification of damping is much more complex [28]. Tree damping
includes several components, e.g., (a) aerodynamic damping, (b) internal or viscoelastic
damping, (c) mass damping, (d) damping by root–soil interaction, and (e) collision of
branches or other crowns [28,48]. Figure 4 summarizes the frequency and damping values
of about 900 coniferous trees of different sizes and masses, calculated and published
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in [36–41,49–52]. However, the fraction of critical damping ξ (damping ratio) can vary
greatly. In particular cases, it was observed that, due to the very high damping by the
oscillations of branches (c) and the collision between branches (e), the trees were almost
critically damped (ξ ≈ 100%), returning to their original position (rest position) after only
one or two cycles of free vibration [49].

In the experimental and numerical studies of [49,53], it was observed that by removing
the branches, the natural frequency of the tree changed and the damping started to decrease,
but only after about 80% of the branches were cut (Table S1).
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2.3. Morphology and Deformation Capacity

Morphology and material properties. The dynamic behavior of the trees is dominated
by the size and morphology of the specimen [24]. Small morphological changes can lead to
spectacular differences in the dynamic behavior of the trees [28,56]. Furthermore, different
shapes of the trees are characterized by distinctive scattering of the material density, stiff-
ness, and mass distributions [35]. Thus, the shape of the tree has more significant influence
than the properties of the intrinsic material [28]. The response of the tree to the strong wind
acting on the dominant direction results in lower heights of the tree [28], higher material
density of the trunk on the extreme compressed fiber [57], more developed roots [58,59],
larger diameter of the branches, and crowns in a flag shape [60]. At the same time, in
response to wind action, changes are observed in the structure of the cell walls and in
the properties of the wood [61]. Natural wood from woody plants mainly contains about
75 ÷ 80% cellulose and lignin. At the level of the cambium, the trees produce reaction wood
so that the cross-section can withstand high mechanical stresses. In gymnosperms (i.e.,
coniferous trees), reaction wood is a compression wood type, having a high lignin content
and lower cellulose content [62]. Compression wood has eccentric annual growth rings and
a higher density than normal wood. Compression wood is found in the compressed fiber
of trunks and branches [63], in contrast with most angiosperms, where the reaction wood
is called tension wood, having an increased cellulose content of up to 60% [62,64]. Tension
wood is found in the stretched fiber of trunks and branches. In porous woody angiosperms,
hardwood fibers of tension wood have also been observed to produce a gelatinous cell wall
layer. This gelatinous layer allows the tension wood to have greater elongations than the
surrounding wood [61,65].

The Norway spruce has a macroscopic structure of a cellular solid type consisting
of parallel tubes, called wood cells, that have a hierarchical internal structure [66]. The
stiffness and the strength of wood are much higher along the longitudinal axis compared
with directions perpendicular to it [67]. The cell wall is a fiber composite made of cellulose
microfibrils embedded into a matrix of hemicelluloses and lignin (Figure 5) [68]. The matrix
allows relatively large shear deformation between neighboring fibrils [69]. Cellulose fibrils
wrap the tube-shaped woody cells at an angle called the cellulose microfibrils angle, γ,
which varies between 0◦ and 90◦ [66].

Plastic deformation in wood. Wood is a composite material, with wood cells having a
rather complicated deformation behavior, especially in large deformations [66]. In general,
a typical σ-ε (normal stress-specific longitudinal strain) curve for ductile materials has an
elastic slope for small strains, followed by an elastoplastic or even plastic slope for large
strains. In studies on spruce, it was observed that the angle of the microfibrils decreases
when the strain increases [69,70], the microfibrils reacting like a spring. At the trunk
level in the stretched fiber, bending deformations produce a reduction of the angle of the
microfibrils (from γ to γ’) that occurs simultaneously with a shearing of the matrix between
the fibrils (Figure 5). The fibrils can be considered inextensible, and the deformation takes
place because of the sliding of the cellulose fibrils against each other thanks to the property
of the matrix between the fibrils (Figure 5). Undeformed cellulose fibrils take up most
of the load, while deformations are consumed by shearing the hemicellulose and lignin
matrix. An important condition for this deformation mechanism to happen is the existence
of a strong bond between the matrix and the fibrils, there being a chemical compatibility
between the hemicellulose and the fibrils (both being polyoses). Hemicellulose acts as an
adhesive between the cellulose fibrils and allows sliding [66].

Mechanochemical model for the deformation of hemicellulose in cell walls of
coniferous wood. At the contact between hemicellulose and cellulose fibrils, a hydrogel-
type matrix is formed, and it is assumed that, when the fibrils are subjected to axial stress at
the fibril–matrix interface above a certain limit value of the unit shear stress (τ), the matrix
shears and flows by opening and reforming hydrogen bonds. The mechanical response
of the hemicellulose and lignin matrix is represented as a characteristic curve τ-η (shear
stress–strain, Figure 5) [66,69,71].
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Figure 5. Cell wall structure in coniferous wood, representing the main cell walls cw1 and cw2,
respectively, the middle lamella between the cells (left side), data from [68]. Geometry of cellulose
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corner), data from [66,69,71].

Young’s modulus. To be able to perform a modal analysis of the tree and to determine
its eigenmodes and their corresponding frequency, the Euler–Bernoulli formulation may
be used. In this regard, it is necessary to know the longitudinal elasticity modulus of the
material and the geometric characteristics of the equivalent cantilevering beam. For about
650 trees, averages of these quantities are summarized in [72] and shown in Table 1. Given
that the cellulose microfibrils remain mainly undeformed, the Young’s modulus of the
material is mainly reported on their stiffness.

Table 1. Average value of green wood properties of some conifers, data from [72].

Genus/Species Number of Trees
Investigated

Modulus of Elasticity
of Green Wood, Eg

(GPa)

Density,
ρ (kg/m3)

The Ratio of Crown
Weight to Stem Weight,

Wcrown/Wstem

Spruce (Picea spp.)
Norway spruce (Picea abies) 32 6.23 598 0.32
Sitka spruce (Picea sitchensis) 175 7.53 447 0.50
White spruce (Picea glauca) 6 7.40 466 0.34
Pine (Pinus spp.)
Corsican pine (Pinus nigra) 57 8.70 657 0.34
Lodgepole pine (Pinus contorta) 40 6.90 487 0.33
Scots pine (Pinus sylvestris) 20 7.33 700 0.29
Red pine (Pinus resinosa) 300 8.80 410 0.22
Douglas fir (Pseudotsuga spp.)
Douglas fir (Pseudotsuga menziesii) 17 9.83 583 0.16

2.4. The Root System: Reaction Forces (Tree–Ground Anchorage Forces)

The root system can be regarded as a foundation system of the superstructure. How-
ever, in contrast, the root system brings together the root biomass with the related soil.
Moreover, it is a living organism that grows together with the crown and the trunk. Its
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mechanical performance is given by the roots’ properties, the bonded soil, and the size of
the system, which is variable as the cross-section decreases with the depth [9]. Figure 6
explains the four mechanisms through which the root–soil connection gives resistance to
the tree base.
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When a horizontal force acts on the tree trunk, the weight of the roots and their
associated soil help to weigh down the root–soil plate, which is the first component. The
soil under and around the plate is broken during uprooting (Figure 7); consequently, the
soil’s tensile strength contributes to the load-bearing capacity of the foundation (the second
component). The third component is the tensile strength of the roots parallel to the direction
of action of the horizontal force. And the fourth is the bending resistance of the roots and
the soil around the plastic zone (area b in Figure 6) [73].

The length of the root network increases with age and can reach kilometers or even
tens of kilometers [74]. The anchoring performance of the system is given by the roots that
carry the tensile stresses and the adjacent soil sustaining the compression stresses. The
reaction forces at the root–soil plate level depend on the following factors [9]:

• Structure and mechanical properties of the roots;
• Spatial distribution and way of anchoring of the roots;
• The structure and physical/mechanical properties of the soil, of which moisture plays

an essential role;
• The interaction between the roots and the surrounding soil.

The distribution of the reaction forces into the four components is very variable
due to the highly complex structure [9]. However, considering a body of rotation as a
biomechanical model with the main and lateral roots generally converging in a direction
towards the theoretical fixation point O1 (Figure 8), it can be further considered that the
directions of the reaction forces in the roots and their resultant forces, T (tension) and
Cinf + Clat (compression), converge at the same point. It follows that, for the tree loaded
with self-weight + external actions, in a stable equilibrium state, the tensile reaction forces
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in the roots act on one area of the contour surfaces, and the compression from the ground
reinforced with roots acts on the rest. To quantify these tree–soil connection forces, a force
distribution model on the contour surfaces can be adopted. In this context, Grudnicki [9]
adopts the simplified linear distribution of the reaction forces on the contour surfaces,
which also facilitates the determination of the resultant forces T, Cinf, and Clat (Figure 8).
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Figure 7. Sequences in root–soil system failure when a tree is pulled with an increasing horizontal
force (red arrows). (a) Formation of crack close to stem base on windward side, (b) cracks extending
windward and leeward, (c) appearance of cracks for the maximum uprooting turning moment,
adapted from [73].
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2.5. Failure of Trees under Wind Action

Mayer states that no tree can withstand a violent storm and questions how to put
into practice the results obtained from investigations on tree oscillations [76]. The failure
mode of the trees under the dynamic action of wind is unknown to us because the real
dynamic process has never been verified by field experiments on a natural scale in which
all the relevant parameters have been monitored [77]. And the assumption that peak wind
loading during a storm is the key factor causing degradation has never been verified in
situ, and it is possible that a more important factor is root fatigue from several previous
storms [77].

Studies on the impact of certain hurricanes on urban pines in Florida, USA show that
failure by trunk breakage occurred mostly in Pinus elliottii (slash pine) trees—64% during
Hurricane Jeanne—while the majority of Pinus clausa (sand pine) trees broke only during
Hurricane Jeanne—71% [78]. Continuing with another hurricane (Ivan), here the primary
failure mechanism was uprooting. Except for post-storm investigations in which the wind
speed of tree failure was estimated [79], to date there are no scientific methods that can
predict tree failure at a certain wind speed [24]. In Figure 9, the representative shapes of
tree instability are sketched [7].
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Figure 9. Shapes of tree deformability and instability due to wind action (the direction of wind is
represented using the red arrow). (a) Bending and elastic buckling of the trunk, in which case the
trunk returns to its original vertical position, (b) bending and plastic buckling of the trunk, in which
case the stem remains deformed, (c) breakage of the trunk, and (d) overturning the tree by uprooting.
Adapted from [7].

Resistance to uprooting. An approach for the assessment of uprooting resistance is
to estimate the weight of the root–soil plate (foundation consisting of roots + associated
soil) and then calculate the resisting bending moment at overturning [80]. The tree is
uprooted if the resisting bending moment at overturning is exceeded, while this moment
depends on the weight, depth, and diameter of the foundation and on the properties of
the soil [43,73]. In addition to the weight of the foundation, there are other factors that
can contribute to the stability of the tree foundation, such as the tensile strength of the
roots parallel to the direction of the wind or the plasticizing strength of the roots and soil.
Due to the complexity of the individual assessment of each individual factor, their input is
introduced into Equation (3) as the coefficient Arsw [80], based on tree pulling experiments
from [81]. The Arsw coefficient indicates the ratio between the weight of the root–soil plate
and the total anchoring force of the roots in the soil [73,80].

MR_rs =
mrsplate·g·hrsplate

Arsw
(3)

hrsplate =
hrscone

3
(4)

where MR_rs is the resisting bending moment of the total root–soil plate anchorage (kN·m),
mrsplate is the fresh mass of the root–soil plate (kg), g is the gravitational acceleration
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(m·s−2), and hrsplate is the mean depth (m) of the root–soil plate volume (Equation (4) and
Figure 10). The contribution of the root–soil plate to the total anchoring force is considered
30% for Scots pine, 20% for Norway spruce, and 30% for birch, respectively [80].

Resistance to stem breakage. If we accept the hypothesis that when the tree trunk
is bent, or any cross-section of the distribution of normal stresses varies linearly, then the
maximum stress values at the edge fibers decrease to zero as we approach the neutral
axis [80,82]. In this hypothesis, the critical section is considered at the height z = 1.35 m
(breast height) measured from foot to top, the trunk diameter being equal to DBH (diameter
at breast height) [80]. The trunk is considered to break when the maximum stress exceeds
the flexural strength for green wood, ffl,gw,stem [47,83,84], while the resisting bending
moment to breaking the trunk (maximum turning moment a tree stem can withstand
without breakage) can be calculated using Equation (5) [80,82,85].

MR_stem =
π·DBH3

32
·ffl,gw,stem (5)

Figure 11 shows values of resistance to overturning by uprooting and by breakage
of the trunk for several Scots pine trees [86]. Analyzing the results, one can see that all
trees loaded with self-weight and a lateral force failed by overturning with uprooting, the
trunk bending resistance being almost four times higher than the uprooting resistance.
The following data are considered in the calculations: modulus of elasticity 7000 MPa,
flexural (bending) strength of the stem 32 MPa (=70% of breaking stress), fresh density of
soil 1700 kg/m3, tree species Scots pine [86].
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2.6. The Biomechanical Model of Conifers

In terms of stability, a tree can be divided [9] into:

• Elevation, consisting of stump, trunk, and crown;
• Foundation, consisting of roots and related soil, called the root–soil system.

Modeling the trunk as a beam element of variable cross-section along the length of
the shaft has been shown to provide valid results in determining the natural period of
vibration [72]. This solution allows the biomechanical model to consider the degree of
flexibility/fixation of the trunk in the foundation.

So, a first simplified option is to consider the trunk as a cantilevered vertical beam,
fully fixed at the base and with a bending stiffness adjusted according to the effective
stiffness of the trunk–root–soil system. By idealization, the elevation is considered fixed
in the foundation at ground level, and the root system is considered to be a reinforced
foundation created by the tree [9]. The appropriate body of rotation as a biomechanical
model for the root–soil system of the spruce is a cylinder or a truncated cone of shallow
depth (Figure 10). To establish the distribution of self-weight and external loads, one starts
from the contour curves of the spindle and the crown; in this field, there are mathematical
relationships published in specialized works of dendrometry [9].

The second option consists of joining the trunk–root–soil system, consisting of the
trunk modeled as a beam with a certain spring and rotation stiffness. There is a lot of
information about the dynamics of fully fixed cantilevers but much less about cantilevers
with semi-rigid joints. The latter situation is encountered in structural engineering, es-
pecially in the design of columns with foundations placed on soft soils. For a root–soil
system of circular shape in the plane, the rotational stiffness equation can be written as
for a circular plate placed on deformable soil, i.e., the Winkler foundation model (Winkler
bedding coefficient/soil spring constant) [72,87,88]:

K =
Grs·drsplate

4

6·(1 − νrs−s)
(6)
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where Grs is the shear modulus of the root–soil system, drsplate is the diameter of the circular
foundation (approximated as a mean value), and νrs-s is Poisson’s ratio of the root–soil
system. This calculation approach is specific to building foundations, but here G and ν

refer to the behavior of the root–soil composite material in the root–soil system.
Degree of fixation of the trunk in the foundation. Knowing the degree of fixation of

the trunk in the root–soil system helps us to quantify and distinguish the flexibility of the
root–soil system from stem flexibility in living trees. The stiffness of the root anchorage is
influenced by the modulus of elasticity, the cross-sectional area, and the architecture of the
roots, and by the physical and mechanical characteristics of the soil. Mathematically, root–
soil system stiffness can be quantified using an elastic spring constant/stiffness coefficient
for root–soil rotational stiffness. Thus, in [89], Equation (7) is written for the secant stiffness,
kroot, where ME_stem is the bending moment calculated at the base of the trunk, Φi is the
rotation due to the pulling force, and Φ0 is the initial (existing) rotation before pulling test.

Φi = 11.9·
(

DBH2·H
)−0.53

(7)

where Φi is expressed in degrees [◦].
Regarding the spruce trees presented in [75], having the dimensions DBHA = 69 cm

and HA = 39 m and DBHB = 16 cm and HB = 16 m, it was observed that the maximum
bending moment (MA ≈ 900 kN·m) for the one with the thicker trunk was achieved for
a rotation ΦA ≈ 3.5◦, while, for the spruce with a thinner trunk, the maximum bending
moment (MB≈11 kN·m) was approx. 80 times smaller but reached a rotation 10 times
larger (ΦB ≈ 26◦). In [87], it was noted that root rotation contributed between 5 and 15% to
the total flexibility of Sitka spruce trees.

2.7. Study Site

In Spring 2020, many coniferous trees (Picea abies) were downed by strong winds in
the Călimani Mountains (Romania) (Figure 12). On this site, we conducted a study on an
area of about 1 ha, with mainly Norway spruce vegetation (47◦09′ N, 25◦48′ E, ≈1125 m
altitude), the age being 80 years. The average annual temperature is 5.4 ◦C The annual
amount of annual precipitation is 926 mm at the nearest meteorological station. The soil
type has been classified typical Districambosol, and the texture is brown acid. The slope of
the land for the measured trees is 25 degrees, facing East.
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Carpathians, Romania).

The forest was affected by strong winds, with many trees being uprooted, broken,
or left leaning (Figures S1–S30). From these, we selected 30 specimens of uprooted trees,
ensuring that they had close values for diameter, height, and crown size. We measured
the diameter of the trunk, the length of the stem, and the dimensions of the root system
(thickness, diameters, depth, (Figure 13 and Table 2)).
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16 30.0 43 38.5 30 3.1 2.2 37.2 171.4 4.6 
17 29.0 36 34 28 2.2 1.7 17.6 118.1 6.7 
18 28.5 41 36 30 3.0 1.8 30.5 140.2 4.6 

Figure 13. Measured parts of a root–soil plate: orthogonal diameters (drsplate1 and drsplate2) and depth
(hrsplate and hrscone) (near Bilbor, Călimani Mountains, Eastern Carpathians, Romania). Measurement
on site of the root–soil plate size and the DBH.



Biomimetics 2024, 9, 165 15 of 29

Table 2. Descriptive characteristics of the 30 specimens of Norway spruce investigated in the
Bilbor region.

No. Height
(m)

Diameter at
Base (cm)

DBH
(cm)

hrsplate
(cm)

drsplate1
(m)

drsplate2
(m)

MR_rs
(kN·m)

MR_stem
(kN·m)

MR_stem/MR_rs
(-)

1 29.0 41 36 25 3.4 2.7 34.2 140.2 4.1
2 29.0 42 36 30 3.5 1.8 37.2 140.2 3.8
3 28.5 38 32 27 2.3 1.6 16.3 98.4 6.0
4 30.0 43 38 34 3.4 2.4 57.3 164.8 2.9
5 30.5 45 39 29 3.2 2.0 33.5 178.2 5.3
6 31.0 51 42 30 3.5 2.4 46.1 222.6 4.8
7 30.5 50 41 26 3.4 2.5 34.7 207.0 6.0
8 30.0 43 39 29 3.2 2.1 34.8 178.2 5.1
9 27.5 36 32 20 2.0 1.4 6.8 98.4 14.5
10 29.0 40 38 24 3.0 2.3 23.8 164.8 6.9
11 29.5 41 38.5 30 3.2 2.4 41.6 171.4 4.1
12 28.0 39 37 29 3.0 1.8 28.5 152.2 5.3
13 27.0 38 34 26 2.8 1.7 20.2 118.1 5.9
14 28.0 37 32 28 2.1 1.7 16.7 98.4 5.9
15 31.0 42 38 30 2.4 2.1 26.8 164.8 6.1
16 30.0 43 38.5 30 3.1 2.2 37.2 171.4 4.6
17 29.0 36 34 28 2.2 1.7 17.6 118.1 6.7
18 28.5 41 36 30 3.0 1.8 30.5 140.2 4.6
19 29.0 40 36 27 3.3 2.5 36.1 140.2 3.9
20 30.5 41 39 34 3.5 2.6 63.3 178.2 2.8
21 30.0 48 40 30 3.4 2.6 47.7 192.3 4.0
22 31.0 50 42 26 3.6 2.7 39.5 222.6 5.6
23 27.0 35 32 25 2.2 1.6 13.3 98.4 7.4
24 27.0 37 34 28 2.7 2.0 25.5 118.1 4.6
25 30.0 40 37 32 3.2 2.2 44.0 152.2 3.5
26 28.0 36 33 30 3.1 2.0 34.5 108.0 3.1
27 30.0 50 42 34 3.4 2.2 53.4 222.6 4.2
28 30.0 48 40 27 3.1 2.6 34.9 192.3 5.5

Table 2. Cont.

No. Height
(m)

Diameter at
Base (cm)

DBH
(cm)

hrsplate
(cm)

drsplate1
(m)

drsplate2
(m)

MR_rs
(kN·m)

MR_stem
(kN·m)

MR_stem/MR_rs
(-)

29 28.5 42 37 29 2.8 2.1 29.7 152.2 5.1
30 30.5 51 42 32 3.5 2.5 54.3 222.6 4.1

Note: the height of the tree, the diameter of the stem at the base, the diameter of the stem at breast height, and
the two diameters of the root–soil system (with elliptical shape in plane) were measured on site. The thick-
ness of the root–soil plate was evaluated with on-site measurement. The ratio MR_stem/MR_rs was calculated
considering the following estimated values based on the on-site information correlated with the bibliographic
resource [80], as follows: flexural strength of the green wood in stem ffl,gw,stem = 30.6 MPa; modulus of elas-
ticity of green wood = 6300 MPa; crown-to-stem weight ratio = 0.50; contribution of root–soil plate weight to
total anchorage Arsw = 20%; mean density of the fresh root–soil plate = 1500 kg/m3; mean density of green
wood = 800 kg/m3. In Equation (1), for coniferous λ is considered 1.5, according to [72]. First natural frequency is
calculated with Equation (1) and verified with Equation (2); in the end, same value of 0.10 Hz was obtained for all
30 specimens investigated.

The calculations made based on field investigation (Table 2) show that the MR_stem/MR_rs
(-) average ratio was 4.9 (standard deviation 2.1, with range of values between 2.8 and
14.5). The natural frequency calculated using Equation (1) and verified with (2), shows that
all trees studied had almost identical dynamic characteristics, the frequency being equal
to 0.10 Hz. This confirms the hypothesis that trees in the same stand have equal natural
frequencies. The two calculated parameters, the MR_stem/MR_rs ratio and the fundamental
frequency (natural frequency), fall within the average values obtained from the previously
cited studies. As a result, the computational relationships and assumptions used for the
biomechanical model confirm an adequate abstraction of the biological model.
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3. Design Methodology Transfer from Coniferous Trees to Load-Bearing Structures

In general, the design of a structure starts from an architectural concept, most of the
time aesthetically motivated but not always with well-defined ideas about methods of
realization and performance in relation to its function and environmental conditions. Con-
temporary structural engineers use general design prescriptions, building statics, seismic
analysis, and other such design tools to produce an initial design (structural concept).
The structural concept may be refined through an iterative process until certain prescrip-
tive conditions are met. Questions regarding the suitability of shape, building materials,
construction methods, performance objectives, cost optimization, etc., are sometimes ad-
dressed from the beginning of the design process, especially by experienced and dedicated
designers. But, at other times, such questions are addressed too late to add value to the
project [5].

3.1. Steps from Biomimetics to Know-How Transfer

The first step is to identify and note the characteristics of coniferous forest trees that
may be applicable and associate them with the design and construction of the single-story
frame structures (fully fixed columns at the base and beams with hinges at the ends).
Although there are many differences between biology and structural engineering, in this
study, the focus is on the similarities that can help improve the design of tall single-story
structures through bioinspiration.

In step two, affinity conditions are stated based on the in-depth study from step one.
And in the third step, experimental tests are used to verify the efficiency of the

mimicked property.

3.2. Step 1: Identifying the Structural Characteristics of Coniferous Forest Trees

According to the bibliographic study undertaken, the following structural characteris-
tics of coniferous forest trees are relevant for the study of long reinforced and prestressed
concrete columns [5,28,90–97]:

• Trees are three-dimensional structures statically determined;
• From the building statics’ perspective, trees are vertical cantilevers;
• In a tree, the values of internal forces due to its own weight are minimal in relation to

the external forces caused by wind and/or snow;
• All the elements of a tree are made of the same material, but the chemical composition,

density, and mechanical properties can vary, and the load-bearing capacity varies
along the element depending on the size of the applying force in that cross-section;

• Trees are believed to have a minimum mass structure with elements optimized for
function and shape;

• The lack of mechanical ductility of the trees is compensated by greater flexibility
and damping;

• The average fraction of the critical damping, ξ, lies between 5% and 12.8%;
• Trees maintain relatively large lateral displacements in extreme wind conditions;
• Tree joints can have a quasi-plastic response to extreme loads;
• Tree joints are endowed with a higher tenacity than that of the trunk and branches;
• Trees are systems with several degrees of freedom and with high damping;
• Trees in the same stand, although they have different heights, have the same natu-

ral frequency;
• Due to the high damping capacity and the multitude of independently vibrating

elements (leaves and branches), trees rarely enter resonance;
• Tree trunks are naturally prestressed in both directions, longitudinally and circumfer-

entially;
• Tree roots are thus designed to deform and uplift to a certain extent to prevent perma-

nent damage to the base of the trunk.

However, it is important to mention the structural characteristics of coniferous forest
trees [36–39,41,49–51,72], which differ substantially and are difficult to implement in a
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single-story warehouse with long reinforced and prestressed concrete columns embedded
at the base and hinged at the top. In the following, a Norway spruce tree in an arboretum
is discussed in comparison with a column from a single-story warehouse, both of equal
heights. The warehouse has a height of 10 m and a roof area per column of 300 m2,
considering the columns as having a square cross-section of 60 × 60 cm (on a site with low
seismicity) and 100 × 100 cm (on a site with high seismicity). The roof is made of main and
secondary roof beams of prestressed reinforced concrete, on top of which is placed a light
covering made of corrugated steel sheets and a heat-insulating layer (own weight of the
roof skin is 45 kg/m2, technical load is 50 kg/m2, and snow load is 150 kg/m2):

• The slenderness of the spruce trunk is 5 times higher than that of the columns for low
seismicity regions (ag = 0.10 g) and 10 times higher than that of the columns for high
seismicity regions (ag = 0.30 g);

• The ratio between the weight of the crown and that of the stem (Wcrown/Wstem = 0.5)
is 24 times smaller than the ratio of roof’s total loads (including self-weight) and
column weight (Wroof/Wcolumn = 12) for areas with low seismicity and 8 times smaller
(Wroof/Wcolumn = 4) for areas with high seismicity;

• The natural period of vibration for trees is between 10.0 and 2.0 s, while for a single-
story warehouse it is between 2.3 and 0.7 s;

• The alternation of synchronous and asynchronous oscillations of the branches with
the effect of dissipating the energy induced by wind or earthquake actions contrast
with the movement of the roof beams connected to the column;

• The root system is a hybrid between a shallow and a deep foundation (with individual
footing and ground anchors), while for reinforced concrete columns such a solution
would be too expensive, being used especially for special structures such as towers for
wind turbines. In general, nowadays, the common solutions used for the foundations
of the columns in single-story warehouses are either a shallow foundation as individual
footing or a deep foundation with individual footing sitting on piles.

4. Features of the Biological Role Model Meant to Be Abstracted and Later Transferred

Establishing the affinity conditions is the second step in the biomimetic design. If
we start from the assumption that nature can be seen as a textbook for engineers and
we consider the principles of structural design, to understand and transfer the design
knowledge from a living tree to an engineering structure, for example, a single-story frame
structure with columns as vertical cantilevers, the following affinity conditions must be
met [5,98,99]:

• Structural applicability (geometric similarities and use and behavior of materials);
• Functional similarity (similar loading conditions and similar climatic actions);
• Similar structural response (behaving in the same way under comparable exter-

nal actions);
• Cost efficient (being as profitable as possible in terms of material and energy consump-

tion and production costs).

The chosen biological role model is the Norway spruce, and the features meant to
be replicated in bioinspired long reinforced concrete columns with respect to the affinity
criteria are:

• At the macro-level, longitudinal prestressing for gaining increased flexural stiffness
and self-centering capacity (Figure 14). The technical implementation consists in using
prestressed unbonded steel strands inside the reinforced concrete column;

• At the meso-level, viscoelastic damping through sliding of the cellulose fibrils with
shearing of the hemicellulose and lignin matrix between them (Figure 15). The tech-
nical implementation is solved by greatly upscaling the fibrils (diameter of ≈3 nm)
embedded into a matrix of hemicellulose and lignin and substituting them with steel
strands (diameter of ≈9 mm) embodied in a concrete mixture with lignin and hemi-
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cellulose content. Thus, it targets a controlled bond slip of the steel strands when in
tension or in compression.
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Figure 15. Deformation of cellulose fibril and of hemicellulose-lignin based matrix in cell walls of
Norway spruce wood, and deformation of steel strands inside a concrete member when controlled
bond slip of reinforcement is enabled. The red arrow represents the direction of the axial force inside
of the fibril, respectively inside of the steel strand.

5. Results and Discussion

Step 3 presents the design and testing of bioinspired structural concrete, first at the
macro-level (a reinforced concrete column centrically prestressed) and second at the meso-
level (characterization of reinforcement bond in concrete in the presence of lignin).
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5.1. Experimental Study on the Influence of Centric Prestressing in Long Reinforced
Concrete Columns

Chirit,escu and Kiss carried out an experimental study on long prestressed and re-
inforced concrete columns in order to determine the influence of centric prestressing on
the bending stiffness and energy dissipation capacity of concrete columns [100–102]. The
study consisted of physical experiments and numerical simulations on columns with a
cross-section of 250 × 250 mm (Figure 16), tested as cantilever elements with a length
of 3.2 m and two forces concentrated at the top (Wext, the equivalent axial force due to
roof’s self-weight of the warehouse; Flat, the equivalent lateral force caused by wind action
and seismic action) (Figure 17). The materials used for series S01 were concrete C60/75
and reinforcing steel/passive reinforcement B500C, while series S02 is like S01 except that
approx. 60% of the passive reinforcement area was replaced by prestressing steel/active
reinforcement Y1860S7, so that the resisting bending moments for the two cross-sections
were equal (Table 3). Column S02 was centrically prestressed in the longitudinal direction
with a P0 force, resulting in a mean precompression stress of approx. 5.6 MPa.
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Table 3. Mechanical properties of used materials, data from [100].

Modulus of Elasticity
MPa

Characteristic Strength
(fck, fpk, fyk)

MPa

Ultimate Strain
(εcu, εpu, εsu)

[–]
Concrete
C60/75 39,000 60 0.3%

Prestressing steel
Y1860S7 199,000 1860 2.2%

Reinforcement
B500C 205,000 500 7.5%

As a result of the experimental tests in the laboratory, the following were found:

• For the same lateral force of 24 kN (approx. 80% of the failure force), the reinforced
concrete column (S01) had an average lateral displacement of 426 mm (≈13.3% drift)
compared with the prestressed reinforced concrete column (S02), which had an average
lateral displacement of 289 mm (≈9.0% drift), which means an increase in stiffness of
almost 50%;

• Section S02 was less ductile than S01, the energy dissipation capacity being reduced
by about 40%. This was caused by the much lower ultimate elongation of the pre-
stressing steel (2.2%) than that of the reinforcing steel (7.5%), collaborated with the
uninterrupted adhesion (full bond) of the active reinforcement along the entire length
of the column;

• The prestressed elements had self-centering capacity;



Biomimetics 2024, 9, 165 21 of 29

• The use of centrically prestressed reinforced concrete columns for single-story ware-
houses was efficient to reduce lateral displacements at the top of the building (through
longitudinal prestressing, the bending stiffness associated with large bending moments
was reduced, Figure 17). Cracking of the concrete occurred much later compared with
reinforced concrete members without prestressing but, at the same time, a reduced
value of the behavior factor must be considered in the seismic design depending on the
displacement ductility factor (µδ = ∆u/∆c) and on the real curvature ductility factor
(µθ = ϕu/ϕc) of the cross-section.

5.2. Experimental Study on the Influence of the Walnut Shell on the Bond of the Reinforcement
in Concrete

In this study, it was aimed to mimic the viscoelastic damping of coniferous trees during
wind action. When their trunks bend and the cellulose microfibrils wrapped along the
wood cells allow the trunk and branches to bend by shearing the hemicellulose and lignin
matrix, the microfibrils remain inextensible. In the case of reinforced concrete columns,
flexural deformation occurs because of cracking of the concrete and elongation of the steel
reinforcement in the tension fiber of the cross-section. At high stresses, the reinforcement is
stretched beyond the elastic limit and yields, with a strain at maximum force of minimum
7.5% (reinforcing steel of ductility class C). But, when prestressing steel is used (such as
strands), the strain at maximum force is only 2.2% [100,104]. To increase the deformation
capacity of the prestressed concrete elements (implicitly the energy dissipation capacity),
new solutions are needed; in this case, a biomimetic approach is used. It is desired to
increase the deformation capacity of concrete columns reinforced with steel strands not
by elongation of the reinforcement but by controlled slipping of the strands. The technical
implementation aims to obtain the hydrogel behavior of the strand-type reinforcement
embedded in concrete. To obtain this result, an experimental study was carried out on the
bond of seven-wire strand prestressing steel (Y1860S7), having a total diameter of 9 mm,
centrically embedded in a standard concrete specimen (cube with side 100 mm, without
transversal reinforcement) for a pull-out test (Figure 18 and Figures S32–S38; Videos S1
and S2).
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Figure 18. Sketch (not at scale) and photo with test set-up for reinforcement bond with concrete.

To establish the effect of lignin and hemicellulose on the reinforcement bond in con-
crete, a parametric study was carried out on concrete compositions of minimum class
C30/37. The concrete class was chosen in accordance with the good execution practice of
prestressed reinforced concrete elements (monolithic and prefabricated). For specimen V3,
the concrete strength class obtained was C32/40, and for specimens V4, V5, and V6, C35/40
(Table 4). The parameters considered were lignin and hemicellulose, as lignosulfonate-
based admixture (activated in the plasticizer, in V4), as additive of non-activated lignin and
hemicellulose in the form of peanut shell powder (V5), and as additive of non-activated
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lignin and hemicellulose in the form of walnut shell powder (Figure 19) (V6). The dosage
used was about 1% of the amount of binder (cement). The chemical compositions of peanut
shell and walnut shell are noted in Table 5. The reference specimens (V3) were made of
concrete without additives and admixtures.

Table 4. Results of the pull-out tests.

Specimen Concrete Grade Maximum Value of
Pull-Out Force kN

Average Value for
Maximum Force kN

V3
V3–1

C32/40
21.39

19.88V3–2 21.9
V3–3 16.35

V4
V4–1

C35/45
16.98

17.43V4–2 16.92
V4–3 18.39

V5
V5–1

C35/45
15.33

17.2V5–2 18.81
V5–3 17.46

V6
V6–1

C35/45
14.25

12.06V6–2 N/A
V6–3 9.87Biomimetics 2024, 9, x FOR PEER REVIEW 23 of 29 
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force–slip curve for the strand embedded in concrete had the allure of the shear stress–
strain curve for cellulose microfibrils wrapped in the hemicellulose and lignin matrix (Fig-
ure 20). The hydrogel-like mechanical behavior may be due to the walnut shell powder 
acting as a glue between strand and concrete. But, to demonstrate this action, microscopic 
studies should be carried out to find out exactly how the powder reacts in the composition 
of the concrete and the chemical bond at the concrete–strand interface. The concrete mix-
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Table 6. Concrete ingredients used to obtain 3.3 L of fresh concrete (grade C35/45) to cast specimen 
V6. 

Ingredient Type Amount 
CEM I 52.5R Cement 1155 g 
Water Water 533 g 
Dry aggregates Source: river  

Sand 0–2 mm 2767 g 
Fine gravel 2–8 mm 1320 g 

Medium gravel 8–16 mm 1921 g 
Sika Plastiment BV 440 Plasticizer (lignosulfonate based) 13.3 g 
Walnut (Juglans regia) shell 
powder 

0.063–0.125 mm 11.5 g 

Figure 19. Walnut shell before and after fine grinding [105]. Reproduced with permission from Daria
Rozian “Influent,a ligninei asupra rezistent,ei la compresiune a betonului s, i asupra aderent,ei armăturii
în beton” (Master Dissertation), advisor: T.-N. Toader, UTCN, 2022.

Table 5. Chemical composition of peanut shell and walnut shell.

Compound Walnut Shell [106] Peanut Shell [107]
Ash 3.4% 3.8%
Lignin 50.3% 36.1%
Hemicellulose 22.4% 5.6%
Cellulose 23.9% 44.8%

It was observed that, for specimen V6 (with lignosulfonate-based plasticizer admixture
+ hemicellulose and lignin additive in the form of walnut shell powder), the pull-out force–
slip curve for the strand embedded in concrete had the allure of the shear stress–strain
curve for cellulose microfibrils wrapped in the hemicellulose and lignin matrix (Figures 20,
S39 and S40). The hydrogel-like mechanical behavior may be due to the walnut shell
powder acting as a glue between strand and concrete. But, to demonstrate this action,
microscopic studies should be carried out to find out exactly how the powder reacts in the
composition of the concrete and the chemical bond at the concrete–strand interface. The
concrete mixture used for the V6 specimens is noted in Table 6.
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Table 6. Concrete ingredients used to obtain 3.3 L of fresh concrete (grade C35/45) to cast specimen V6.

Ingredient Type Amount
CEM I 52.5R Cement 1155 g
Water Water 533 g
Dry aggregates Source: river

Sand 0–2 mm 2767 g
Fine gravel 2–8 mm 1320 g

Medium gravel 8–16 mm 1921 g
Sika Plastiment BV 440 Plasticizer (lignosulfonate based) 13.3 g
Walnut (Juglans regia) shell powder 0.063–0.125 mm 11.5 g

Although specimens V3, V4, and V5 had a maximum pull-out force approximately
40% higher than V6, none of them showed hydrogel behavior up to 10% strand slips in
concrete. The results of the study from [105] indicate the potential of using steel strands as
reinforcement in concrete elements with the addition of lignin and hemicellulose to achieve
a viscoelastic damping. This behavior could be exploited in the direction of increasing the
deformation capacity of prestressed concrete elements (with bonded strands), for example,
for dissipative zones/potential plastic hinge regions of structural concrete members in
structures designed for earthquake resistance.

6. Conclusions

Finally, we can write down the bioinspired means with the greatest potential to im-
prove the structural performance of single-story buildings with long reinforced prestressed
concrete columns [5,103–105,108–114]:

• Reaching viscoelastic damping is assured by using concrete with the addition of
hemicellulose and lignin and/or some longitudinal reinforcements with an integrated
friction mechanism along their length;

• Supplementary damping results from the interaction of the soil foundation, such as
the controlled uplifting of the foundation (solution studied on onshore concrete towers
for wind turbines);
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• The fraction of critical damping in coniferous trees is in the same range of that in
reinforced concrete structures, so ξ = 5% is the conventional value in the design
rules [115,116], which can be increased up to 20% if additional dissipative elements
are introduced;

• Centric longitudinal unbonded post-tensioning of the concrete columns increases
bending stiffness and enables self-centering capacity;

• Designing the structures of neighboring buildings so that the natural frequency of
each is equal (this way the seismic joints will have a minimum width), as revealed by
the on-site measurements of the Norway spruce trees in the Bilbor region.

Further investigations to enhance the similarity between Norway spruce trees and
prestressed reinforced concrete columns will include:

• Additional studies on transversal prestressing of columns to increase the degree of
concrete core confinement and the rotation capacity at the base of the column;

• Experimental tests for evaluating the viscoelastic damping after cyclic loading and
unloading;

• Durability and ageing tests on the special concrete mixture containing biomass (lignin
and hemicelluloses);

• Checking the hydrogel behavior on cracked concrete samples;
• Full scale experiments on concrete columns integrating both mimicked features: self-

centering ability and viscoelastic damping, with bonded and unbonded strands at the
same time.

Supplementary Materials: The following supporting information can be downloaded at: https://
drive.google.com/drive/folders/1wZOINJXlsowtu3uB3NgDgQckPTseIVxY?usp=drive_link,
Figures S1–S29: Picea abies trees blown by the wind in Bilbor; Figure S30: Prepared samples for
compression test; Figure S31: Prepared samples for pull-out test (axonometric view); Figure S32:
Prepared samples for pull-out test (top view); Figure S33: Machine used for the pull-out test; Figure
S34: Anchorage device for the strand in the testing machine; Figure S35: Data acquisition for pull-out
test; Figure S36: Sample 3.2 after pull-out test (global view); Figure S37: Short end of the strand
in Sample 3.2 after pull-out test (global view); Figure S38: Long end of the strand in Sample 3.2
after pull-out test; Figure S39: Concrete cube for strand embedding after splitting (axonometric
view); Figure S40: Concrete cube for strand embedding after splitting (top view); Table S1: The
natural frequency and damping ratio of conifer trees. A literature review; Video S1: Pull-out test for
sample 3.1; Video S2: Pull-out test for sample 4.1.
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