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Abstract: Proteins in the crowded environment of human cells have often been studied regarding
nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and
disease. Specifically, proteins with high abundance are more susceptible to these issues due to
the law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins
directly exposed to the environment can exhibit specific physicochemical, structural, and geometrical
characteristics that reduce nonspecific interactions and adapt to the environment. However, the
quantitative relationships between the overall surface descriptors still need clarification. Here, we
used machine learning to identify HAC proteins using hydrophobicity, charge, roughness, secondary
structures, and B-factor from the protein surfaces and quantified the contribution of each descriptor.
First, several supervised learning algorithms were compared to solve binary classification problems
for the surfaces of HAC and extracellular proteins. Then, logistic regression was used for the feature
importance analysis of descriptors considering model performance (80.2% accuracy and 87.6% AUC)
and interpretability. The HAC proteins showed positive correlations with negatively and positively
charged areas but negative correlations with hydrophobicity, the B-factor, the proportion of beta
structures, roughness, and the proportion of disordered regions. Finally, the details of each descriptor
could be explained concerning adaptative surface strategies of HAC proteins to regulate nonspecific
interactions, protein folding, flexibility, stability, and adsorption. This study presented a novel
approach using various surface descriptors to identify HAC proteins and provided quantitative
design rules for the surfaces well-suited to human cellular crowded environments.

Keywords: bioinformatics; machine learning; protein surfaces; surface engineering

1. Introduction

The intracellular space of living organisms is highly crowded with macromolecules,
which can occupy up to nearly one-third of the entire cellular volume [1]. The resulting
highly crowded environment poses challenges of nonspecific interactions, critically influ-
encing issues such as protein folding, stability, and adsorption [2–4]. In human cells, these
issues are especially crucial since the intracellular proteins that fail to fold correctly into
their native shapes tend to aggregate and cause cellular malfunction and death, resulting
in detrimental pathological consequences [5]. In particular, cytoplasmic proteins with high
abundance, i.e., highly expressed proteins, are more likely to encounter nonspecific interac-
tions due to the law of mass action [6]. Thus, highly abundant cytoplasmic (HAC) proteins
must exhibit certain physicochemical, structural, and geometrical characteristics to adapt
to the environment and mitigate the issues. Eventually, intracellular proteins, especially
highly abundant ones, are expected to share particular characteristics differentiated from
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extracellular proteins, which often experience less crowded environments [4,7], to ensure
proper cellular function in such a highly crowded environment.

Previously, computational approaches aided in the characterization of intracellular
proteomes, with various techniques targeting different regions of proteins, including global
regions (where proteins’ characteristics are investigated across their entire amino acid
lengths) [8], surface regions [9,10], or both regions [11]. Notably, the surface regions of pro-
teins are essential for studying protein characteristics since the regions are directly exposed
to the external environment and potential partners and thus reflect various properties [4,10].
While there have been several works on using the frequency of surface residues [9,10], there
is a lack of research revealing quantitative relationships among specific physicochemical,
structural, and geometrical descriptors, which can have different scales for characterizing
the surfaces of the HAC protein.

To address this issue, we use interpretable machine learning (ML)-based approach to
characterize the surfaces of HAC proteins by quantifying the contribution of the surface
descriptors. Over the past few decades, ML techniques have been increasingly applied to
predict protein–protein interactions [12], protein–ligand molecular docking [13], protein
subcellular localization [14], and the 3D structure of proteins [15]. Despite significant
advances in these areas, identifying protein surface characteristics using only a few rep-
resentative physicochemical, structural, and geometrical descriptors remains challenging.
This is the first study focusing on this specific task, thus revealing quantitative relationships
among surface descriptors. By understanding the surface rules of HAC proteins in human
cells through interpretable ML, this study will enable the development of efficient drug
delivery systems by deepening our knowledge of the interactions between therapeutic
nanoparticles and proteins [16].

In this study, we aimed to distinguish the surfaces of HAC proteins from those of
extracellular proteins using binary classification algorithms. We extracted surface physico-
chemical, structural, and geometrical descriptors from protein surfaces to build a database
and apply ML (Figure 1). As a first step of the database construction, we collected around
330 3D protein structures each for human HAC and extracellular proteins. Then, various
descriptors of the protein surfaces, such as hydrophobicity, charged area, roughness, the
B-factor, and the proportions of protein structures, were calculated for the collected 3D
protein structures. Then, several supervised ML algorithms including K-Nearest Neighbor
(KNN), Random Forest (RF), logistic regression (LR), and Support Vector Machine (SVM)
were used to solve the binary classification of extracellular and HAC proteins. Based on
excellent performance and high model interpretability, we selected the LR algorithm to
explain the importance of each descriptor quantitatively. Namely, this study answers the
following questions: (1) Can surface characteristics of HAC proteins be identified with
several physicochemical, structural, and geometrical descriptors? and (2) Which descriptor
contributes to the crowded environment-adaptive surface in human cells and to what
extent? The LR model used in our study enabled the identification of HAC proteins, and
coefficients from the LR represented the importance of each descriptor.
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Figure 1. Schematic representation of key processes in the functional prediction and quantitative
analysis of surface physicochemical, structural, and geometrical descriptors on protein surfaces.
HAC: highly abundant cytoplasmic; SES: solvent-excluded surface; SAS: solvent accessible surface.

2. Methodology
2.1. Protein Sample Collection

The datasets consist of two types of human proteins: human cytoplasmic proteins with
high abundance and extracellular proteins. First, we collected cytoplasmic proteins with
the highest abundance level from the PaxDb database, which is a collection of experimental
data on protein abundance [17]. The cytoplasmic proteins that were also tagged with
extracellular keywords (e.g., secreted, extracellular matrix, and extracellular space) in
Uniprot were eliminated. Then, proteins in extracellular environments determined with
experimental assay were collected (GO ID: 5615) [18]. Finally, 331 human extracellular
proteins and 337 HAC proteins within the sequence length range of 100 to 700 were collected
for analysis (see Table S1 for the list of collected proteins).

The 3D structures of a total of 668 proteins were collected through the Alphafold
ver2.0 (Alphafold2) (https://alphafold.ebi.ac.uk/, accessed on 13 December 2023) protein
structure prediction model [15,19]. Alphafold2 3D models provide entire protein structures,
allowing for comprehensive surface analysis, in contrast to the partial structures often found
in experimental Protein Data Bank (PDB) files from X-ray crystallography. Alphafold2 is
known to be the top-ranked prediction model with a median global distance test score
of 92.4 across all targets and 87.0 on the challenging free modeling category in the 14th
CASP assessment (https://predictioncenter.org/casp14/zscores_final.cgi, accessed on 13
December 2023). Additionally, in most cases, Alphafold2′s structural prediction accuracy
has reached experimental accuracy [15].

Even though the overall predictability of Alphafold2 is exceptional, not all predicted
structures are suitable for analysis. Every residue from the Alphafold2 3D protein structure
is given a per-residue metric, which reflects the structural model confidence called the
predicted local distance difference test (pLDDT), scaling from 0 to 100. The pLDDT evalu-
ates how well the predicted model agrees with experimental data using the local distance
difference test Cα [20]. pLDDT > 90 is considered a high-accuracy cut-off, and pLDDT > 70
is regarded as a generally correct backbone prediction [21]. When the pLDDT is lower than
50, the predicted region is expected to be intrinsically disordered [22]. However, a low
pLDDT score in Alphafold2 results from high residue flexibility and dynamic structure
rather than “low confidence” [23]. Also, since disordered regions of proteins are involved
in molecular recognition and hydrophobic interactions, it is essential to include the regions

https://alphafold.ebi.ac.uk/
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for the analysis [24]. Considering the potential interpretability difficulty from intrinsically
disordered proteins, we set our cut-off value as an average pLDDT > 50 for the whole
protein structure. Finally, we ensured that over 80% of extracellular and HAC proteins had
average pLDDT values of over 70 (Figure 2).
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2.2. Calculation of Surface Descriptors

Previous studies have introduced several definitions of protein surfaces, each with
different characteristics. Among them, we adopted solvent-accessible surface (SAS) and
solvent-excluded surface (SES) for calculating the other descriptors (Figure 1) [25]. The SAS
was calculated by rolling probe spheres that had an equivalent size to water molecules. We
used SAS for the residue-based analysis: we assumed that a specific residue in a protein
could have a maximum SAS when its neighboring amino acids were Glycines (i.e., having
a Gly–residue–Gly structure). When the proportion of an actual SAS for a residue to the
maximum SAS was higher than or equal to 30%, the residue was defined as a surface
residue. Another protein surface used in the analysis was SES, also called the Connolly
surface [26]. The surface moves inward from the SAS by a distance identical to the probe
sphere radius (Figure 1). Lewis et al. discovered that this continuous and functional
surface is particularly useful in calculating protein surface roughness. Then, protein surface
descriptors representing various physicochemical, structural, and geometrical descriptors
were calculated (Table 1) based on the two surface types. All the descriptors were computed
using Python 3.9.12.

Table 1. Descriptors used in this work to explain protein surface characteristics.

Category Variables (Descriptors) Definition Analyzed Surface

Hydrophobicity s_phobic_avg Average surface hydrophobicity

Solvent-accessible surface

Charge

s_pos_area Fraction of positively charged surface area

s_neg_area Fraction of negatively charged surface area

s_charge_avg Fraction of total charged surface area

Protein structure

s_ah Proportion of surface alpha-helices

s_bs Proportion of surface beta structures

s_do Proportion of surface-disordered regions

s_sf Structure surface exposure degree

Flexibility norm_s_b Average normalized surface B-factors

Geometry FD Average protein surface roughness Solvent-excluded surface
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The surface hydrophobicity, charge, secondary structures, and overall morphology of
proteins are critical parameters for protein structures. The normalized consensus hydropho-
bicity scale was used to quantitatively measure the average protein surface hydrophobic-
ity [27]. Surface charge-related descriptors were collected by calculating the fraction of
the SAS of negatively charged and positively charged amino acids under physiological
conditions (pH = 7). Each surface amino acid contributing to the secondary structure was
directly extracted by Pymol (http://www.pymol.org, accessed on 13 December 2023) to
calculate the surface proportion of each secondary structure. The surface exposure degree
was defined by the SAS divided by the volume of protein.

The B-factor, which is also called the Debye–Waller factor, indicates the thermal motion-
induced attenuation of X-ray scattering or coherent neutron scattering [28,29]. Equation (1)
defines the B-factor:

B = 8π2 < u2 > (1)

where u (Å) denotes the mean displacement of a scattering center. The B-factor is used to
interpret properties such as the thermostability, flexibility, internal motion, and binding
of proteins [30–34]. In Alphafold2 models, the B-factor columns are replaced by pLDDT
values, which can provide insights into structural flexibility [23]. We converted pLDDT
values into pseudo-B-factors since pLDDT values and original B-factors show a reverse
relationship. The pLDDT values were first converted into root mean square deviation
(RMSD) using the following empirical formula (Equation (2)):

∆ = 1.5exp[4(0.5 − pLDDT)], (2)

where ∆ denotes error estimates. pLDDT values were transformed into the scale of 0–1 from
the scale of 0–100 [35–37]. Then, the converted pseudo-B-factor is expressed as Equation (3)
after substituting the converted error estimates into Equation (1), considering the root mean
square positional variation in three dimensions.

B =
8π2∆2

3
(3)

The converted pseudo-B-factors were calculated for each residue in the proteins.
However, in the case of X-ray analysis, low resolution leads to high B-factors around
100–200, and such high values of B-factors are not recommended for making specific
conclusions [38]. Therefore, only surface residues with an RMSD smaller than or equal
to 1.5 (almost equivalent to B ≤ 60) were included in the analysis of surface B-factors.
Finally, B-factors were normalized using Equation (4) since a non-normalized B-factor
does not represent an absolute quantity and thus cannot be used to compare different
protein structures [39]:

Bnorm =
B− < B >

σ
(4)

where <B> denotes the average B-factor in the whole protein structure and σ indicates the
standard deviation. Then, the mean value of the normalized surface B-factors in a protein
was used to characterize the protein surface.

Surface roughness, which can be quantitatively characterized by the fractal dimension
(FD), was calculated to identify the surface structural irregularity (Equation (5)) [26]:

FD = 2 − dlog(As)

dlog(R)
(5)

where As and R represent the molecular surface area and rolling probe radius, respectively.
FD falls within the range of 2 to 3, having the smoothest surface at 2 and having the roughest
surface at 3. For the calculation of As, we calculated the SES using the 3V calculator

http://www.pymol.org
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(http://3vee.molmovdb.org, accessed on 13 December 2023) [40]. Then, Equation (5) was
transformed into Equation (6) for the convenience of calculation.

Di = 2 −
(
log Ases)i − (log Ases) i−1
(log R) i − (log R) i−1

, FD =
1
N

N

∑
n=1

Dn (6)

where i refers to a probe radius starting from 1.2, in the range of 1.0 to 3.6, with the interval
of 0.2 (1.0, 1.2, 1.4, 1.6, . . ., 3.6, N (number of sets) = 13). i−1 refers to the previous step of i
(i−1 starts from 1.0). (log Ases)i indicates the log value of the solvent-excluded surface area
under the probe radius i. The range of the probe radius is suitable for the analysis since
the probe sizes are sensitive to specific interactions between residues, reflecting the size
of water molecules and side chains [26]. Finally, the mean value of all the calculated Di
represents the FD.

2.3. Application of Machine Learning

The logistic regression (LR) model, a regression model for binary classification prob-
lems, shows its chief advantage by providing high model interpretability. An odds ratio
of each independent variable enables a quantitative evaluation its contribution to depen-
dent variables. Surface descriptors were given as independent continuous variables, and
<HAC:1, Extracellular:0 > tags were provided as dependent dichotomous variables in the
models. Then, Equation (7) was used to represent the probability of being an HAC protein
under the given independent variables [41]:

P(y = 1|x1, x2, . . . , xi) =
exp[ f (Xi, βi)]

1 + exp[ f (Xi, βi)]
=

eβ0+β1X1+β2X2+...+βiXi

1 + eβ0+β1X1+β2X2+...+βiXi
(7)

where P, xi, and βi denote the probability of being an HAC protein, a surface descriptor, and
an accompanying beta coefficient. LR uses the maximum likelihood method to estimate
βi, and the odds ratio corresponds to exp[βi]. Then, a logistic transformation, which
converts the non-linear relationship into the original linear regression equation, is applied
as Equation (8).

ln P = ln
exp[ f (Xi, βi)]

1 + exp[ f (Xi, βi)]
= ln

P
1 − P

= β0 + ∑ βiXi = β0 + β1X1 + β2X2 + . . . + βiXi (8)

A positive βi indicates that an increase in xi leads to a stochastic increase in the
probability of being an HAC protein. Conversely, a negative βi means that an increase in xi
results in a stochastic decrease in the probability of being an HAC protein.

As a parametric model, LR requires several statistical assumptions to perform well [41].
Thus, several data preprocessing steps were conducted, including checking the multi-
collinearity of surface descriptors, deleting strongly influential outliers, and data scaling
to meet the assumptions and enhance the model performance. Pearson correlation (PC)
analysis, a statistical test that measures the linear association between two variables, was
conducted to limit the multicollinearity problem. Also, Cook’s distance from the statsmod-
els module in Python was calculated for leverage and residual values analysis. Conclusively,
1.03% of the proteins turned out to be highly influential and outliers simultaneously and
were thus eliminated from the dataset. Finally, the surface descriptors were standardized
with the StandardScaler function in the Python sci-kit learn library for data scaling.

Upon constructing the LR model, several popular supervised learning algorithms for
classifications, including K-Nearest Neighbor (KNN), Random Forest (RF), and Support
Vector Machine (SVM), were used to compare the performance of different models. All
the algorithms were performed using the Scikit-learn Package in Python 3.9.12. The hy-
perparameters for each algorithm were optimized using GridSearch cross-validation (CV),
where every parameter combination was tested to evaluate the ML models. Five-fold cross-
validation was used to avoid overfitting to the test set. Before constructing the machine

http://3vee.molmovdb.org
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learning models, the datasets were randomly divided into a training set (80%) and a test set
(20%), maintaining the original ratio of the target class. Then, the performance of different
models was assessed by predictive indicators including the classification accuracy and the
area under the curve of receiver operating characteristic (AUC-ROC) curve. We randomly
split the training and test sets five times to avoid sampling bias and overfitting and then
reported the mean accuracy of each model. We selected the final ML model, LR, for the fea-
ture importance analysis considering its high accuracy and model interpretability. Finally,
each descriptor’s significance and importance were explained with statistical analysis.

3. Results and Discussion
3.1. Pearson Correlation (PC) Analysis

First, PC analysis for all the descriptors in the training set was conducted before
applying machine learning. Table 2 shows the PC coefficients among the independent
variables, i.e., surface descriptors and dependent variables (where HAC is tagged as 1 and
extracellular as 0). A PC coefficient ranges from −1 to 1, showing a perfectly negative
correlation at −1 and a perfectly positive correlation at 1. A PC coefficient of 0 represents
the absence of a linear correlation. As a result, all the relationships between each surface
descriptor and dependent variable were significant at 0.05 (p < 0.05) except for the structure
surface exposure degree (s_sf ) (Table 2).

Table 2. Pearson Correlation (PC) Coefficients between independent and dependent variables from a
train set.

Surface Descriptors PC Coefficient

Hydrophobicity s_phobic_avg −0.472 **

Charge

s_pos_area 0.401 **

s_neg_area 0.239 **

s_charge_avg 0.142 **

Protein structures

s_ah 0.206 **

s_bs −0.228 **

s_do −0.102 *

s_sf −0.023

Flexbility norm_s_b −0.225 **

Geometry FD −0.106 *
** p-value < 0.01, * p-value < 0.05.

As shown in Figure 3, two descriptors, including the proportion of surface alpha-
helices (s_ah) and the proportion of total charged surface area (s_charge_avg), were highly
linearly correlated with the descriptors in their categories including protein structures
and charge, respectively. Therefore, the descriptors were eliminated from the descriptor
pool, considering that they showed the highest linear correlation with other descriptors
in their category. According to the above results, we excluded three descriptors using PC
analysis including s_sf, s_ah, and s_charge_avg from the initial pool of ten surface descriptors,
thus only applying seven descriptors (s_phobic_avg, s_pos_area_avg, s_neg_area_avg,
norm_s_b, s_bs, s_do, and FD) for machine learning.

3.2. Comparison of Supervised Machine Learning Algorithms for Binary Classification Problem

The performance of different machine learning algorithms for the binary classification
problem (KNN, LR, RF, and SVM) was compared using identical training and test data sets.
The performance of each model was evaluated using accuracy and AUC-ROC graphs. The
models were compared by randomly splitting the training and test sets five times to avoid
the effect of fluctuation in the results (Figure 4a). As a result, all the algorithms showed
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excellent and similar performance, exhibiting 79.7%, 80.2%, 79.3%, and 80.2% accuracy
for KNN, LR, RF, and SVM, respectively. The ROC curves for the algorithms were also
in nearly identical and impartial shapes (Figure 4b). The algorithms also demonstrated
comparable AUC scores, with the LR exhibiting the highest AUC score (87.6%), albeit not
significantly outperforming the other algorithms (87.5%, 87.3%, and 87.1% for KNN, RF,
and SVM, respectively). After comprehensively considering prediction performance and
interpretability, we chose LR for the feature importance analysis of the surface descriptors.
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Figure 4. (a) Comparison of the performance of different ML algorithms. KNN: K-Nearest Neighbor;
RF: Random Forest; LR: logistic regression; and SVM: Support Vector Machine. (b) ROC curves for
the four machine learning algorithms from a single-shot trial. The hyperparameters used to tune each
model in a single-shot trial are described in Table S2.
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3.3. Results of the Logistic Regression Analysis

Table 3 and Figure 5 show the influence of each surface descriptor on the logistic
regression analysis. The coefficients and standard errors of the descriptors were calculated
based on the mean values from five randomly split training sets. Table 3 shows that
all the surface descriptors are statistically significant at 0.05 (p < 0.05). The sign of the
coefficient for each descriptor determines its influence on the probability of the protein
being classified as an HAC protein: a positive coefficient suggests that an increase in the
descriptor value increases the likelihood of the protein being classified as an HAC protein.
In contrast, a negative coefficient indicates that an increase in the descriptor value decreases
the probability of the protein being classified as an HAC protein. Two descriptors related
to surface charge had positive coefficients in the model including the negatively charged
surface area (s_neg_area) and the positively charged surface area (s_pos_area).

Table 3. Results of the logistic regression analysis for each surface descriptor.

Logistic Regression Analysis

Descriptor β S.E. z-Value Significance Level Odds Ratio
Exp(β) 95% C.I.

Min Min

s_phobic_avg −0.807 0.045 −17.913 <0.001 0.446 0.408 0.487

s_pos_area_avg 0.617 0.051 12.016 <0.001 1.853 1.675 2.049

s_neg_area_avg 0.622 0.047 13.112 <0.001 1.862 1.697 2.043

norm_s_b −0.408 0.029 −13.972 <0.001 0.665 0.628 0.704

s_bs −0.286 0.036 −7.992 <0.001 0.751 0.700 0.806

s_do −0.138 0.050 −2.738 <0.05 0.872 0.790 0.962

FD −0.265 0.024 −11.211 <0.001 0.767 0.733 0.804
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On the other hand, the other descriptors including surface hydrophobicity (s_phobic_avg),
the normalized surface B-factor (norm_s_b), the proportion of surface beta structures (s_bs),
surface roughness (FD), and the proportion of surface disordered regions (s_do) exhibited
negative coefficients. Moreover, the odds ratio, which is the exponentiated coefficient of
a descriptor, along with its 95% confidence interval (C.I.), can aid in interpreting each
coefficient by providing information on the probability of being an HAC protein [41]. All
the statistical summaries of each descriptor are provided in Table S3. The following sections
will provide further statistical details for each descriptor, including their relationships with
several issues related to crowded cellular environments and nonspecific interactions.

3.4. Proper Folding of HAC Proteins Can Be Achieved with Low Surface Hydrophobicity and
Secondary Structure Compositions

Our findings corroborate that HAC proteins adopt a protein folding strategy, limit-
ing nonspecific interactions in crowded environments. A protein entropically prefers a
compactly folded state over an unfolded or expanded state in macromolecular crowded
environments [42–44]. In particular, hydrophobic interactions play a central role in protein
folding, clustering non-polar residues in the protein core to form globular structures [45].
On the other hand, polar residues are often exposed to the protein surface, restricting
hydrophobic interactions involved in molecular recognition. We observed that the sur-
faces of HAC proteins exhibited lower hydrophobicity and well-folded states with a lower
proportion of disordered regions (Figure 6a,b).
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Figure 6. (a) Boxplots of the average surface hydrophobicity of extracellular and HAC proteins.
(b) Boxplots of the proportion of secondary structures of the extracellular and HAC proteins (AH:
alpha-helix; BS: beta structure; and DO: disordered region) in the surface and buried regions. (c) Hy-
drophobicity scale of 20 kinds of amino acids. (d) Proportion of amino acids in the surface and buried
regions of proteins.
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Surface hydrophobicity, as quantitatively measured using the normalized consensus
hydrophobicity scale proposed by Eisenberg et al. (Figure 6c) [27], had the highest influence
(s_phobic_avg = −0.807) among all the surface descriptors (Figure 5). With the considerably
high population of highly hydrophilic aspartic acid (D) and arginine (R), we assume that
the significantly high surface hydrophilicity on HAC proteins mainly derives from the
remarkable scarcity of leucine (L) and notably abundant lysine (K) and glutamic acid (E)
(Figure 6d). Our observations of the high population of K and E on the HAC protein
surfaces are consistent with the findings of White et al. [9]. Their study demonstrated that
molecular chaperones, which require non-adhesive surfaces for reversible interactions with
multiple proteins, have a higher abundance of E and K, which possess strong water-binding
properties and weak associations with surrounding amino acids. Here, we suggest that
highly hydrophobic L also plays a vital role in forming hydrophilic surfaces. While the
proportion of L is similar in buried regions of both protein types, there is a significant
contrast on the surface region, where HAC proteins are strikingly lacking L compared with
extracellular proteins (Figure 6d). Hence, HAC proteins can have a stable hydrophobic
core and exhibit higher surface hydrophilicity.

The negative coefficients (s_bs = −0.286 and s_do = −0.138) shown in Figure 5 indi-
cate that the HAC proteins generally exhibited higher proportions of alpha-helices and
lower proportions of beta structures and disordered regions than those of extracellular
proteins in both the surface and buried regions (Figure 6b). This trend in surface secondary
structures aligns with the global secondary structures of cytoplasmic proteins proposed
by Loos et al., which revealed that cytoplasmic proteins are globally more enriched in
alpha-helices and show a lower frequency of beta structures and disordered regions [8].
Furthermore, the surface trend in the two well-folded structures, i.e., the alpha-helices
and beta structures, can be supported by the previous study by Bhattacharjee and Biswas,
which suggested that beta sheets are highly hydrophobic and buried in the core of proteins.
In contrast, long polar residues contribute to the formation of alpha-helices [46]. The
lower proportions of the disordered regions of the HAC proteins can be explained by the
nonspecific interaction propensity of its innate flexibility. The study by Nishizawa et al.
highlighted the engagement of disordered regions in nonspecific interaction, observing
the nonspecific ATP–protein interactions in intrinsically disordered proteins and flexible
regions [47]. Their study used NMR spectroscopy and molecular dynamics simulations
to capture concentration-dependent noncovalent interactions between ATP and disparate
proteins. As a result, the interaction was notably distinct in the intrinsically disordered
proteins (α-synuclein) and flexible regions (loops or termini). Our findings regarding the
hydrophobicity and secondary structures on the surfaces of HAC proteins support the
protein folding strategy for environmental adaptation in crowded environments.

3.5. HAC Proteins Are Emphasized with Surface Rigidity and an Extreme Range of Net
Surface Charge

HAC proteins should have different structural surface characteristics to function
correctly in a crowded environment. For instance, proteins in cellular environments are
expected to have better thermostability with higher melting temperatures due to the
crowding effect [3]. Previous studies have shown that increased thermostability is often
accompanied by a decreased overall flexibility of proteins [30,31]. Also, protein solubility,
which indicates the characteristic of a protein to maintain its intact state, is an essential issue
for protein stability to avoid aggregation, which refers to protein binding accompanying
irreversible conformation change [48]. Here, we plotted the distributions of surface pseudo-
B-factors and the distributions of surface charges to understand the surface flexibility and
stability of HAC proteins (Figure 7).
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A pseudo-B-factor increases as protein structures show more considerable flexibil-
ity [23]. We obtained two insights from Figure 7a: (1) the surfaces of HAC proteins tend to
have lower flexibility than extracellular proteins and (2) the lower flexibility on the surfaces
of HAC proteins is emphasized as the analyzed domain is shifted from buried regions
to surface regions. The lower flexibility on the surfaces of an HAC may be supported by
recent findings on the direct relationship between protein intracellular abundance and
thermal stability, which is often observed with reduced flexibility [49,50]. The findings
showed that the protein interface stability was positively correlated with the protein abun-
dance, enabling the prevention of misinteractions. At the same time, abundant intracellular
proteins with high thermostability were less prone to aggregation or local unfolding. Thus,
we suggest that the surfaces of HAC proteins reflect reduced flexibility to be adaptive in
crowded environments.

Two charge-related descriptors with positive coefficients contributed to the model with
nearly equivalent scales (s_neg_area = 0.622, s_pos_area = 0.617) (Figure 5). Our findings show
that the richness of both negatively charged and positively charged areas is significant
on the surfaces of HAC proteins compared with extracellular proteins (Figure 7b). To
further understand the charge distribution on protein surfaces, we plotted the net surface
charge distribution of extracellular and HAC proteins using the rearranged Henderson–
Hasselbalch equation (for more details, see Table S4) (Figure 7c) [51,52]. In nature, it is
known that zwitterionic surfaces with evenly distributed positively and negatively charged
residues help resist nonspecific interactions with stronger hydrostatic repulsion fields [4].
Our data showed the more extreme range of net surface charge in HAC proteins. We
assume that the results come from the complex considerations of aggregation and solubility.
For instance, Ryan et al. elucidated that increased protein solubility is strongly correlated
with negative surface charge, explained by the water-binding properties of E and D [53].
Also, positively charged amino acids like K and R have effectively inhibited aggregation
by weakening protein–protein interactions [54]. To sum up, our results showed a higher
charged surface and extreme net charge range on the surfaces of HAC proteins, and we
assume that this was the result of complex behaviors of HAC proteins for adaptation in a
crowded environment.
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3.6. The Smoother Surface of HAC Proteins May Modulate Molecular Adsorption

As mentioned, molecular crowding and protein abundance are crucial for studying
nonspecific interactions. We hypothesized that the surface geometry of HAC proteins
should have strategies for minimizing molecular adsorption and nonspecific interactions.
Surface roughness is a critical parameter used to describe surface geometry. Indeed, nano-
scale surface roughness was found to have a significant influence on protein–protein
interactions [55,56]. Also, surface homogeneity and low surface roughness were found on
the surface of streptavidin, which is known to have exceptionally strong specific binding
with biotin and exhibits low nonspecific binding [57]. Here, we calculated the surface
roughness of proteins using FD, which can represent the degree of surface irregularity [26].
FD shows the lowest value for a completely smooth surface (FD = 2). In contrast, it has the
highest value for the roughest protein surface (FD = 3). With FD of all proteins ranging from
2.044 to 2.372, we observed subtle but discernable distinctions between the extracellular
and HAC proteins (Figure 8).
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The HAC proteins exhibited smoother surfaces in general, which can be inferred by the
large population of Alanine, which has the shortest residue chain length among 20 amino
acids (Figure 6d). In addition, among four types of aromatic amino acids (Tryptophan,
Phenylalanine, Tyrosine, and Histidine) that can have higher van der Waals volumes,
three of them (Tryptophan, Phenylalanine, and Histidine) were more abundant on the
surfaces of extracellular proteins. Considering that protein surface roughness is necessary
upon binding with small molecules [58], we suggest that the smoother surface of an HAC
protein can be a strategy for minimizing small molecules-induced nonspecific interactions.
However, further investigation will be necessary to substantiate our assumptions.
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4. Summary and Conclusions

In this study, we utilized surface physicochemical, structural, and geometrical de-
scriptors to identify HAC proteins with ML and quantitatively analyzed the surface char-
acteristics. We first solved binary classification for HAC and extracellular proteins using
several supervised ML algorithms (KNN, LR, RF, and SVM). Then, LR was chosen for the
descriptors’ final feature importance analysis, considering both excellent model perfor-
mance (80.2% accuracy, 87.6% AUC) and high model interpretability. The charge-related
descriptors showed positive correlations, while hydrophobicity, the B-factor, the proportion
of beta structures, roughness, and the proportion of disordered regions exhibited negative
correlations with the HAC proteins in the importance analysis of descriptors.

We also found that the E, K, and L populations and well-folded secondary structures
on the HAC protein surfaces played vital roles in their hydrophilicity and compactly folded
structures. Also, we observed limited protein flexibility and extreme net charge from the
surfaces of HAC proteins, which previous studies on the adaptation of cytoplasmic proteins
in crowded environments can explain. Finally, we suggested that smoother surfaces of
proteins can be critical in minimizing the nonspecific adsorption of small molecules. Our
results indicate that several surface descriptors can be employed to identify, quantify, and
explain protein surface characteristics in a crowded cellular environment.

To summarize, our study primarily shows the combinatorial impact of surface descrip-
tors with disparate properties in characterizing HAC proteins and distinguishing them
from extracellular proteins with ML-based approaches. At the same time, it is important to
note that our findings are subject to certain limitations, such as determining an optimal
threshold for pLDDT values and incorporating multimeric protein structures.

Our findings on the quantitative analysis of the descriptors could facilitate the design
of surfaces that are well-adapted to crowded environments, such as nonspecific interaction-
resistant surfaces with selectivity to target materials [59–64]. One example of the application
is the design of immunosensors, where the nonspecific adsorption of various biomolecules
causes background noise and critically impairs sensitivity [65]. Another field highlighting
the importance of nonspecific interaction-resistant surfaces is reducing protein corona on
nanoparticles [66]. When nanoparticles first come into contact with biological fluid, proteins
attach to their surfaces and form a protein layer, i.e., protein corona. Since protein corona
causes direct impacts on the performance of nanoparticles, the new strategy—applying a
nonspecific interaction-resistant surface—for nanoparticles should aim to reduce or slow
protein corona formation.
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