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Abstract: The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial
problem that increases morbidity and mortality, representing one of the major complications of such
medical interventions. The emergence of novel technologies, especially 3D printing, represents a
promising avenue of development for reducing the risk of such eventualities. There are already a
host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when
they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with
antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others.
The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP),
biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone
(PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While
the recent research results are promising, further development is required to address the increasing
antibiotic resistance exhibited by several common pathogens, the potential for fungal infections,
and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of
phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development
of certain orthopedic implants and the potential use of AI against bacterial infections might represent
viable solutions to these problems. Finally, there are some legal considerations associated with the
use of biomaterials and the widespread use of 3D printing, which must be taken into account.

Keywords: biomaterials; 3D printing; antimicrobial; pathophysiology; orthopedics; bone reconstruction;
implants; imaging
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1. Introduction

The emergence of additive manufacturing, most commonly known as 3D printing,
has opened new possibilities in different scientific fields (e.g., [1–6]), including medicine
(e.g., [7–12]). The 3D printing approach enables the building of a three-dimensional geo-
metrical object layer-by-layer, guided by computer-aided design (CAD)/computer-aided
manufacturing (CAM) software [13–18]. Improvements established in CAD/CAM soft-
ware allow the producer to include the usual post-processing steps, such as milling, in
the initial design, reducing manual post-processing stages that often increase errors in the
final build [19]; the medical applications of 3D printing are ever-expanding, opening new
frontiers in personalized medicine [20–23].

There are currently several 3D printing technologies available, classified under the
ISO/ASTM52900-21 standard [24]. Amongst the many different applications of such
techniques in medicine, a prominent one, perhaps the most prominent, is the development
of prostheses for a variety of surgical procedures; such prostheses improve both the outcome
and quality of life of the patients [25–28] by solving or at least mitigating some of the
problems associated with surgical interventions.

Specifically in orthopedic surgeries, a notable problem involving the use of prostheses
is the associated bacterial infections [29–31]. The use of artificial implants is already complex
enough, given that they must have proper mechanical and structural properties, along
with physicochemical compatibility with the natural bone tissue; different materials may
be used for different applications, alone or combined [32–35]. However, regardless of all
other considerations, the emergence of a microbial infection can lead to implant failure
and even result in amputations and increases in mortality [36,37]. Such infections are most
commonly the result of microbial biofilm formation on the surface of the implants [38–40].
Such bacterial biofilms oftentimes prove excessively resistant both to the host’s immune
system and even to antibiotics [41,42]. Ideally, materials used in surgical prostheses must
be both habitable by bone-forming cells and also have suitable anti-adhesive properties, so
as to prevent biofilm formation [43]. Moreover, these materials must present an optimal
rate of biodegradation, to create space for new bone formation and to exhibit osteogenic,
osteoconductive, and osteoinductive properties for proper integration into the body, as
a balance between the pore sizes of the build and the rate of biodegradation needs to be
found [44–49].

In the context of this review, we will present the current consensus on the problem of
orthopedic prostheses-associated bacterial infections and the current developments in the
antimicrobial properties of biomaterials used in 3D printing to produce orthopedic materials.

2. Microbial Infections in Orthopedic Prostheses

The risk of microbial-related complications during orthopedic surgery is a major concern
oftentimes necessitating pre-emptive systemic use of wide-spectrum antibiotics and proper
debridement [50]. Despite this vast array of protective measures, the prevalence of surgical
site infections remains significant, making up 12–16% of all nosocomial infections [51], and it
has been suggested that absolute prevention might just not be feasible [52]. It was shown that
the occurrence of surgical site infections, particularly for those patients who undergo multiple
operations, and especially deep site infections, are more common in orthopedic surgery when
compared with the traumatological department of the same clinic [53].

As such, surgeons go to great lengths to ensure the safety of established methods and
to find new ones that pose less of a risk to patients. Indicatively, antibiotic bone cement
is widely used to minimize the risk and recent findings indicate that antimicrobial tapes
can be similarly effective [54]. Moreover, the implants used in oral and orthopedic surgery
are made of alloys like stainless steel and titanium in order to prevent biofilm-associated
infections [55,56]. This composition is essential in avoiding prosthetic infections which
can necessitate long-term administration of antimicrobial regimens and even removal
of the prosthetic, burdening both the patient and the healthcare system with additional
hospitalizations [57]. Moreover, it was observed that different surfaces of titanium can
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induce anti-inflammatory responses mediated by the activation of M2-like macrophages
that increase the level of interleukins 4 and 10 (different for smooth or rough titanium),
creating a microenvironment with immunological properties, optimal for the healing
response in patients with 3D-printed prostheses coated with titanium [58]. Although
metal prostheses come with many advantages, from manufacturing to in-body responses,
disadvantages can occur in the case of patients allergic to metals [59]. Research has likewise
been conducted in regard to the efficacy of the incorporation of capsular traction sutures
and it was concluded that they carry a low risk of colonization and thus can be used
quite safely in hip arthroscopic surgery [60]. Other researchers have found out that the
application of a cyanoacrylate-based skin sealant, called InteguSeal, seems to be beneficial
during trauma surgery albeit without the results being conclusive [61]. At any rate, the
standard operating room cleaning practices are most likely efficient in dealing with both
infectious as well as non-infectious cases, as demonstrated by Balkissoon et al. [62] whose
results suggest that conducting surgery on the former type of patient does not compromise
a subsequent surgery on the latter that is conducted in the same room.

At the same time, other aspects of orthopedic surgery, such as the utilization of certain
tourniquets [63] or sterile stockinettes [64], have been identified as possible sources of
contamination. Similarly, a systematic review that examined implant contamination in
spinal surgery by going over thirty-five studies deduced that even though intraoperative
contamination can be reduced by taking certain safety measures, preoperative contami-
nation through the utilization of single-use implants has not been shown to yield notable
positive results [65]. Conversely, current intraoperative implant prophylaxis practices seem
to not be as thorough as they could be, and thus new recommendations are being made [66].

The main risk stems from Staphylococcus epidermidis, Staphylococcus aureus, Staphylococ-
cus pettenkoferi, and Micrococcus luteus bacteria [66] while Proteus mirabilis and Citrobacter
koseri have also been implicated [60]. Staphylococcus aureus in particular may be responsible
for septic arthritis and osteomyelitis, two severe conditions [29]. Corynebacterium spp.
were also found to be present in a notable percentage of orthopedic patients belonging
to a certain cohort, particularly C. striatum and C. tuberculostearicum [67]. The presence
of Corynebacterium in an orthopedic setting has also been confirmed by the research of
Walsh et al. [68] who traced it on tourniquets alongside coagulase-negative staphylococci,
Aerococcus viridans, and even Bacillus spp. B. anthracis and B. cereus, which are pathogens
that can cause lethal infections [69]. Their ability to form spores, thus protecting themselves
from adverse environmental conditions and becoming impervious to the action of disin-
fectants, is a major factor contributing to the burden of disease [70,71]. In regard to the
aforementioned M. luteus, infections caused by this germ are infrequent and occur mainly
in immunocompromised patients, in the form of bloodstream infections [72]. Moreover, it
has a notable presence on the mobile phones of medical personnel, ranking second after
coagulase-negative staphylococci, with Bacillus spp. coming in at third place. This is an
important finding as these devices can serve as a source of infection in orthopedic surgeries,
potentially leading to surgical site infections [73].

Among the microorganisms mentioned, Staphylococcus aureus remains by far the most
commonly encountered causative agent [74,75], accounting for two-thirds of all pathogens
in orthopedic implant infections [29] and originating both from exogenous sources and
due to the patient being a carrier of S. aureus when the surgery takes place, which actually
constitutes a risk factor for infection [76]. It should be mentioned however that the diversity
of microbes encountered is variable depending on the wound’s localization, with E. coli
being responsible mainly for infections following visceral surgery [75]. Alarmingly, the
research of Wolcott et al. [77] indicates that a plethora of other microorganisms can be
involved as they identified anaerobic bacilli and most notably two previously unchar-
acterized Bacteroidales. A similar microorganism, B. fragilis, despite having a beneficial
role for the host while in the gut [78,79], can cause infections when it finds its way out
of the gastrointestinal tract [79], oftentimes resulting in notable bacteremia and abscess
formation [78]; it is also commonly associated with polymicrobial infections [80]. Both its
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drug resistance [78,81] and its virulence, attributed in large part to its encapsulation, are
notable; it therefore poses a significant threat [80].

The problem is exacerbated by the fact that several microbes, such as the extended-
spectrum beta-lactamase Enterobacteriaceae, including the already mentioned E. coli and
K. pneumoniae, account for many of these prosthetic infections and expose the patients to
the risks of extensive antibiotic therapy and prosthesis removal, as discussed above, due
to them being particularly resilient in the face of any attempts to eliminate them [82]. The
latter is an opportunistic pathogen that is so widespread around the world that it makes
up one-third of all Gram-negative bacterial infections [83]. Not only can it be the etiologic
agent of severe nosocomial infections [84], but several strains have developed resistance to
even last-line antibiotics [84,85].

However, there is great concern regarding S. aureus which is notorious for its MRSA
strains that are characterized by significant morbidity and mortality and are very prevalent
in the community as well as the nosocomial setting, wherein orthopedic patients find
themselves; at the same time, these infections are very hard to treat [86]. Unfortunately,
the same can be said about C. striatum which is becoming an important determinant of
potentially lethal infections in the nosocomial setting, owing in large part to its biofilm
formation capacity, with a number of MDR (multi-drug resistance) strains having been
identified [87]. Other bacteria, like A. viridans, show a variable level of resistance, with sev-
eral strains being impervious to the action of erythromycin, tetracycline, and minocycline,
while resistance to other antibiotics like chloramphenicol and streptomycin was noted only
in a single strain [88].

3. Biomaterials Compatible with Antibiotic Infusion

We can classify biomaterials as organic or inorganic, based on their nature; this is
purely a classification scheme however, as it does not affect their suitability for 3D printing
or their range of applications. While the chemical processing of organic materials is
rather more complex, requiring polymerization of the organic compound to reach the final,
3D printable, synthetic form, the selection of the optimal biomaterial for 3D printing is
performed in regard to its properties and the specific requirements of the application [24].
In this review, the inorganic materials discussed are β-tricalcium phosphate (β-TCP),
biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate, and zirconia; the
organic materials are polyetheretherketone (PEEK), poly(propylenefumarate) (PPF), and
poly(trimethylene carbonate) (PTMC). Their current uses as biomaterials are summarized in
Table 1. The printing processes and the ways in which they are combined with antimicrobial
substances are represented in the figure below (Figure 1).

Table 1. Current principal functions of biomaterials for 3D printing discussed in this paper.

Biomaterial Current Uses References

Beta-tricalcium phosphate (β-TCP) Bone defect filling and repairing, bone tissue engineering
and bone scaffold manufacturing, bone grafts [89–96]

Biphasic calcium phosphate (BCP) Bone scaffold manufacturing, bone grafts manufacturing,
tissue engineering [47,48,97–99]

Hydroxyapatite Bone tissue engineering and bone scaffold manufacturing,
joint replacement surgeries [100–104]

Lithium disilicate glass Bone scaffold manufacturing, dental applications [105,106]

Polyetheretherketone (PEEK)
Spinal cages, skull/maxillofacial defect and dental implants,

joint replacements, fracture healing support plates,
spinal fusions

[107–115]

Poly(propylene fumarate) (PPF) Bone tissue engineering, biocompatible scaffolds [116–119]

Poly(trimethylene carbonate) (PTMC) Bone tissue engineering, bone tissue implants [120–122]

Zirconia Hip head prostheses, orthopedic implants, dental implants [123,124]
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(1) or inoculated directly into the initial mix (2). The figure also presents a summary of the properties
of the models resulting from this method. The 3D printing technique given as an example in this
figure is based on the principles of vat-photopolymerization (DLP, SLA).

3.1. Beta-Tricalcium Phosphate (β-TCP)

Of the four different forms of tricalcium phosphate, its beta form is of interest in 3D
printing applications as it is both heat-stable and printable [125]. It is currently regarded as
being of prime importance in bone graft construction [126]. Bone grafts made of β-TCP
using 3D printing are suitably porous and strong [47]. Its potent bioactive properties
comprise osteoconduction [47] and osteoinductivity [126], gradual biodegradation [48],
and reasonably low cytotoxicity [127]. A few studies showed that compared with other
biocompatible, 3D-printable materials, β-TCP presents rapid degradation in vivo, which
may produce undesirable mechanical features, but these could be overcome with different
combinations or metal loads [128].

This compound has already been successfully combined with antibiotics, namely
gatifloxacin [129], ciprofloxacin [130], tetracycline [131], vancomycin [132–134], and gen-
tamycin [135]. It also displays antimicrobial properties when combined with metals, namely
zinc [136], boron nitrite nanotubes [137], iron [138], and silver alone [139,140] or as a hy-
drogel component [141]; notable antimicrobial properties were also observed when it was
combined with chitosan [142,143]. Other combinations with glass [144–146] or other artifi-
cial compounds [147] have also been successfully tested for their antimicrobial capacity
(Table 2).

Table 2. Modifications of β-TCP with antimicrobial properties.

Modification Dosage and Compounds Setting Tested
Microorganism Year Reference

Antibiotic coating
and combinations

Gentamycin In vitro, in vivo n/a 1996 [135]

260 ± 48 µg of gatifloxacine
hydrate per ceramic disk In vitro, in vivo S. milleri, B. fragilis 2008 [129]

1 wt.% vancomycin
hydrochloride In vitro S. aureus (MRSA) 2013 [132]

5 mg/mL concentration of
vancomycin solution In vitro, in vivo S. aureus 2018 [134]

1–5 wt.% ciprofloxacin In vitro S. aureus 2021 [130]

300 mg vancomycin
hydrochloride per 1 mL water In vitro, in vivo S. aureus 2022 [133]

1 wt.% tetracycline In vitro P. gingivalis 2024 [131]
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Table 2. Cont.

Modification Dosage and Compounds Setting Tested
Microorganism Year Reference

Metal coatings and
combinations

0.49 and 1.09 wt.% Fe In vitro E. coli, S. enteritidis,
P. aeruginosa, S. aureus 2019 [138]

1 wt.% B nitrate microtubules In vitro S. aureus 2020 [137]

Ag nanoparticles as part of
β-TCP hydrogel In vitro S. aureus, B. subtilis,

P. aeruginosa, E. coli 2020 [141]

5 and 10 wt.% nanosized Ag In vitro, in vivo S. aureus, E. coli 2020 [139]

1.4 wt.% Zn In vitro E. faecium, E. coli,
P. aeruginosa 2021 [136]

0.1, 1, 10 wt.% Ag In vitro S. aureus (MRSA) 2022 [140]

Combination
with chitosan

2 wt.% chitosan solution
(3.0 g TCP based on

10.0 g chitosan)
In vitro n/a–theorized

antibacterial use 2012 [142]

3 g of chitosan per membrane In vitro n/a–theorized
antibacterial use 2019 [143]

Combinations
with glass or

other materials

2.5 wt.% β-TCP added into a
PP (core layer) solution In vitro S. aureus, S. mutans 2018 [147]

Ceramic suspensions with
solids content of 30% wt.% In vitro S. aureus, E. coli,

C. albicans 2021 [144]

Transparent bioglass sol used
to impregnate the
β-TCP scaffolds

In vitro, in vivo C. albicans,
P. aeruginosa, S. aureus 2023 [145]

Bioactive glass S53P4 In vitro S. aureus 2023 [146]

n/a—not available.

3.2. Biphasic Calcium Phosphate (BCP)

This is a bioceramic, comprising hydroxyapatite and β-TCP; their ratio, which can
vary depending on the needs, determines the properties of the final product [98]. The
particulars of the bioactive properties of this material are a reflection of those of its
constituents [44,148,149]. BCP exhibits good cytocompatibility and low cytotoxicity and is
currently regarded as a prime choice for bone scaffold production [45,46,150]. The mor-
phology of the builds and their influence on their bioactive properties is also a notable
aspect, along with the dimension of the pores inside the construct [44,151].

An experimental BCP formulation has been proven capable of reliably eluting an-
tibiotics [152]; combinations with silver ions [153,154] or chitosan [143,155] have also
demonstrated antimicrobial properties. In the research of Chen et al. [143], even though
no testing was performed on bacterial cells, their compound promoted osteoblast differ-
entiation and activity; this can have important implications given the interplay between
osteoblasts and bacterial infections [156–159] (Table 3).

Table 3. Modifications of BCP with antimicrobial properties.

Modification Dosage and Compounds Setting Tested
Microorganism Year Reference

Antibiotic coating and
combinations

Vancomycin in 90 mg loaded
microparticles In vitro n/a 2001 [152]

Metal coatings and
combinations

1.06 wt.% Ag In vitro S. aureus 2021 [154]

Variable concentration of Ag ions In vitro S. aureus,
S. epidemidis, E. coli 2023 [153]
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Table 3. Cont.

Modification Dosage and Compounds Setting Tested
Microorganism Year Reference

Combination
with chitosan

3 g of chitosan in each membrane In vitro, in vivo n/a 2019 [143]

4 w/v% chitosan In vitro n/a 2022 [155]

n/a—not available.

3.3. Hydroxyapatite (HAP)

Hydroxyapatite, with the chemical formula Ca10(OH)2(PO4)6, is a basic component of
the structure of human bones [160–162]. Apatite also occurs in nature [163–165], sometimes
as inclusions in gems [166] or in association with other minerals [167,168]. As a biomaterial,
it has very good properties [169], and it is hoped that in combination with metal implants, it
will be able to increase the biointegration of the latter [170]. The potential of hydroxyapatite
as a biomaterial is indeed immense [24] and is associated with its capacity to promote
cellular integration and responsiveness [171].

When hydroxyapatite, as a biomaterial, was doped with nickel, tin, and molybdate
ions [172], with zinc [173,174], cobalt [175], copper [176], titanium [177], tellurium [178],
magnesium [179,180], silver nanoparticles [181,182], or a zinc and gallium combination [183],
the results were promising, in that the addition of a small quantity of metals was enough to
render the material active against several microorganisms. Another combination with a
number of metals also proved effective [184] in this role. It has also been proven possible
and successful to combine hydroxyapatite with ciprofloxacin [185] and with ciprofloxacin,
dexamethasone, and metal ions [186] and chitosan [187,188]. Finally, some other combi-
nations have been tested in this role, namely with baicalein [189], a plant flavonoid with
noted antibacterial effects [190], a composite hydrogel–gelatin material with Ag nanoparti-
cles [191], lactoferrin [192], a molecule with recently recognized promising properties [193],
and alginic acid [194] (Table 4).

Table 4. Modifications of hydroxyapatite with antimicrobial properties.

Modification Dosage and Compounds Setting Tested
Microorganism Year References

Antibiotic coating
and combinations

Ciprofloxacin 30 wt.% In vitro S. aureus, E. coli 2019 [185]

Ciprofloxacin In vivo, in vitro Gram negative and
Gram-negative bacteria 2023 [186]

Metal coatings and
combinations

Co replacement at 5%
and 12% In vitro S. aureus, E. coli 2016 [175]

0.04, 0.08, 0.16, 0.24 wt.%
Te content In vitro

B. subtilis, S. aureus,
Micrococcus sp., P. aeruginosa,
Klebsiella sp., S. dysenteriae,

Candida albicans

2017 [178]

Cu addition to specific
molar ratio In vitro S. aureus, E. coli 2017 [176]

Mg addition to specific
molar ratio In vitro S. aureus, E. faecalis, E. coli,

P. aeruginosa, Candida albicans 2019 [179]

Ag nanoparticles in
different concentrations In vitro S. aureus 2021 [181]

Zn doping at 0.25, 0.5 and
1.0 mmol/L In vitro S. aureus, E. coli 2021 [173]

Ag ions in various
concentrations In vitro S. aureus, E. coli 2021 [182]

Doping with Ga and Zn In vitro S. aureus, E. coli 2022 [183]
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Table 4. Cont.

Modification Dosage and Compounds Setting Tested
Microorganism Year References

Metal coatings and
combinations

Various metals In vitro, in vivo Various microbes 2022 [184]

ZnO 5 wt.% In vitro S. aureus, E. coli 2022 [174]

Ni, Sn, and Mo ions in 500,
1000 and 2000 ppm In vitro S. aureus, P. aeruginosa 2023 [172]

Ti doping In vitro, in vivo Various microbes 2023 [177]

Combination
with chitosan

Cellulose–chitosan–
hydroxyapatite

composite material
In vitro S. aureus (MRSA), VRE,

E. coli, P. aeruginosa 2013 [187]

Chitosan and HAP gel at
4:6 mass ratio In vitro, in vivo S. aureus, S. epidermidis,

P. aeruginosa, C. albicans 2016 [188]

Combinations with
other materials and

compounds

Ag nanoparticles at 5% In vitro n/a–theorized
antibacterial use 2012 [191]

10 mL lactoferrin per 50 mg
of hydroxyapatite In vitro n/a–theorized

antibacterial use 2017 [192]

63 mg/g of baicalein In vitro S. epidermidis 2021 [189]

Different combinations of
HAP and algae In vitro Gram-negative,

gram-positive bacteria 2021 [194]

3.4. Polyetheretherketone, Poly(Propylene Fumarate), and Poly(Trimethylene Carbonate)

Polyetheretherketone (PEEK) has many favorable characteristics, which render it a
suitable choice for use in orthopedic prostheses [195]. This material can be used for 3D
printing [196–198] combined with computer-aided design (CAD) surgical planning, which
has recently been gaining favor, especially in craniomaxillofacial reconstruction [199,200].
While it is stable from a chemical standpoint [201], its biological properties are associated
with relatively poor osseointegration [202,203]. The addition of carbon fibers in PEEK
can improve some of its properties [204,205]; nonetheless, it is still associated with some
cytotoxicity [206,207].

There has been some research discussing PEEK implant infections [197,208] but strate-
gies have already been tested on how to improve its antibacterial properties. It has been
found that the surface modification of PEEK with sulfuric acid alone [209,210] or in com-
bination with some metals [211,212] has a noted antibacterial effect in vitro; some such
combinations even demonstrated this effect in vivo [209,212]. The sulfonation of compos-
ite materials containing PEEK exhibited promising antibacterial properties [213–215]; the
coating of PEEK with antibiotic substances has also been applied successfully [216–219]
(Table 5).

Poly(propylene fumarate) (PPF) has a fumaric acid base structure, opening up a
number of potential medical applications [220]. Although it is neither osteoconductive
nor osteoinductive, and therefore does not promote tissue regeneration, it has a number
of other advantageous biological properties, such as great resorption [117,221]. When
combined with various amounts of polyethylene glycol-functionalized graphene oxide
(PEG-GO), it exhibits antibacterial action with no commensurate increase in cytotoxic-
ity [222]. Nonetheless, there remain some considerations and challenges regarding its
adaption as a biomaterial for 3D printers [117,223] (Table 5).

Poly(trimethylene carbonate) (PTMC), which is derived via ring-opening polymeriza-
tion [120,224,225], exhibits increased compatibility with body fluids [225]; it has no intrinsic
bioactivity but it can be suitably modified for medical engineering [122]. When combined
with vinyl pyrrolidone (NVP), carboxymethylcellulose (CMC), and poly(lactic-co-glycolic
acid) (PLGA), it also exhibits antimicrobial activity [226] (Table 5).
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Table 5. Modifications of PEEK, PPF, and PTMC with antimicrobial properties.

Biomaterial Modification Dosage and
Compounds Setting Tested

Microorganism Year Reference

Polyetherether-
ketone (PEEK)

Antibiotic coating
and combinations

Ag nanoparticles and
gentamycin on PEEK surface In vitro S. aureus, E. coli 2018 [216]

Dexamethasone and
minocycline liposomes on

PEEK surface
In vitro, in vivo S. mutans,

P. gingivalis 2019 [217]

Gentamycin sulfate
(5 mg/mL) In vitro, in vivo S. aureus, E. coli 2020 [218]

Dopamine hydrochloride
(2 mg/mL) and gentamycin

sulfate (3 mg/mL)
In vitro, in vivo S. aureus, E. coli 2021 [219]

Composite
material from
sulfonation by
concentrated
sulfuric acid

PEEK sulfonation by
concentrated sulfuric acid In vitro S. aureus, E. coli 2020 [213]

PEEK combination with
nanoporous tantalum

pentoxide and subsequent
treatment by concentrated

sulfuric acid

In vitro, in vivo S. aureus, E. coli 2021 [214]

PEEK combination with
porous Ta nanoparticles

and genistein
In vitro S. aureus, E. coli 2022 [215]

Surface
modification

PEEK sulfonation by
concentrated sulfuric acid In vitro, in vivo S. aureus, E. coli 2016 [209]

Creation of sulfonate
PEEK biofilms In vitro S. mutans,

E. faecalis 2017 [210]

Surface modification with
concentrated sulfuric

acid and Ar
In vitro S. aureus, E. coli 2018 [211]

Surface modification with
concentrated sulfuric acid

and Cu nanoparticles
In vitro, in vivo S. aureus (MRSA) 2019 [212]

Poly(propylene
fumarate) (PPF)

Combinations
with other

materials and
compounds

Polyethylene
glycol-functionalized

graphene oxide (PEG-GO)
In vitro

S. aureus, S.
epidermidis, P.

aeruginosa, E. coli
2016 [222]

Poly(trimethylene
carbonate)
(PTMC)

N-vinyl pyrrolidone (NVP),
carboxymethylcellulose

(CMC) and
poly(lactic-co-glycolic acid)

(PLGA)

In vitro n/a–theorized
antibacterial use 2015 [226]

3.5. Zirconia and Lithium Disilicate

Zircon dioxide, also known as zirconia (ZrO2), occurs naturally as the mineral bad-
deleyite [227,228] and has excellent mechanical properties [229]; it is considered as both
the most durable and aesthetically acceptable prosthesis [230–232]. Its biochemical and
physicochemical properties justify its extensive use [231,233,234] considering its lack of
bioactive properties [124]; nonetheless, there are some drawbacks associated with its 3D
printing uses [231,235–237]. A few of the properties of zirconia, such as its low cytotox-
icity and resistance to colonization of bacteria, and also good 3D printability, make this
material relevant for review [234,238]. Zirconia has been tested for antibacterial action,
when nanomodified [239], with a chitosan-containing surface modification [240], or when
combined with Ag nanoparticles [241]; all such tests have proved successful.
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Lithium disilicate is a glass-ceramic material with the chemical formula Li2Si2O5 and
has a biphasic crystalline structure [242]; it is currently mostly used in dental operations [106].
New 3D printing techniques have increased its usefulness and potential [243–245]. The
combination of lithium with glass nanoparticles has exhibited some positive antibacterial
results [105] (Table 6).

Table 6. Modifications of zirconia and lithium disilicate with antimicrobial properties.

Modification Dosage and Compounds Setting Tested
Microorganism Year Reference

Lithium combination with
glass nanoparticles

Different concentrations of
Li2O were used to replace

Na2O in the glass structure
In vitro n/a–theorized

antibacterial use 2016 [105]

Zirconia with antibacterial
nanomodification

An aqueous solution of a
mixture of 3Y-ZrO2

nanopowder and ammonium
citrate (dispersant)

In vitro, in vivo E. coli, S. aureus 2019 [239]

Zirconia with
Ag nanoparticles 3 g/L silver nanoparticles In vitro E. coli, S. aureus 2021 [241]

Zirconia surface modification
with a chitosan-

containing compound

5 distinct groups, each with a
different mixture In vitro P. gingivalis, A. acti-

nomycetemcomitans 2023 [240]

4. Discussion
4.1. Critical Insight on Available Data Regarding Antimicrobial 3D-Printed Implants

From all the aforementioned studies, it is implied that the biomaterials utilized must
have properties that can both mimic the characteristics of the replaced/reconstructed tissues
and have antimicrobial properties so as to mitigate the risk of failure of the operation. The
proper selection of materials and their most beneficial combination is paramount; such an
endeavor can be undertaken by using a comprehensive approach to develop biomaterials
for 3D printing [24]. Implant-associated infections are ever increasing as the sheer number
of such surgeries [246], the relevant burden of disease [247,248], and the need for revision
surgeries [249] also increases. Therefore, the need to develop new techniques, based on
current technologies, is paramount [250].

Both biomaterials and techniques and methodologies associated with their produc-
tion and application are increasing (e.g., [251–259]). As can be seen from the information
heretofore presented, there exist numerous options, particularly for developing 3D printing-
adapted biomaterials with antimicrobial properties. Many experiments are focused on
the combination of existing biomaterials with metal nanoparticles. Indeed, the antimicro-
bial potential of metal nanoparticles has been studied in detail by numerous researchers
(e.g., [260–269]). Based on recent evidence, metal nanoparticles may also have an im-
portant role to play in the diagnosis and even treatment of cancer [270,271]; this can be
important in cases of bone degeneration and even fracturing due to cancer [272,273]. A
typical example is the case of osteosarcoma, a primary bone malignancy [274,275] where
sometimes the only therapeutical avenues include allografting and autografting along with
metallic prostheses [276]. Despite all these research efforts, it must be noted that there
is still a lack of a complete understanding of the potentially toxic effects of some metal
nanoparticles [277,278].

In contrast to inorganic materials that are more commonly used in 3D printing, recent
studies have focused on organic materials, resulting from polymerization, which have
notable properties, such as poly(methyl methacrylate) (PMMA), PTMC, PEEK, and PPF [24].
PPF, unlike the other materials presented in this review, does not exhibit bioactive prop-
erties, but it compensates through its superior mechanical properties and the possibility
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of creating a structure with unique geometries and the optimal porosity that can later be
coated or loaded with antibiotics [279].

On the other hand, PMMA and PTMC (methacrylate-based polymers) present better
utility in building a 3D model that mimics soft tissues [280,281]. The use of antibiotics
together with these materials has not yet been researched, but adding antimicrobial sub-
stances in the final structures, for example, as a 3D-printed meniscus, could be a possibility
in the future [120].

PEEK scaffolds are known to imitate the mechanical aspects of cancellous bone and also
exhibit angiogenic properties, which can be enhanced with different metal-coatings such
as magnesium [282]. Compared with other materials, there are no significant differences
regarding the mechanical or bioactive properties but depending on the purposes of the
research or the compatibility with 3D printers, a larger array of materials offers more
flexibility for projects.

Quite a number of studies have focused on combinations of biomaterials with chi-
tosan, an abundant biopolymer derived from a number of organisms [283], which has many
positive properties [284–287] in addition to its more important, in the context of this paper,
antimicrobial ones [288,289]. Given that the most recent research regarding the antimicro-
bial potential of chitosan-containing combinations and nanoparticles has demonstrated
encouraging results [290–293], one can only imagine the potential of its incorporation in
the prosthetics and implants field.

Another avenue, which of course has been extensively studied, is the combination of
biomaterials with antibiotics. This is only natural, given that antibiotics still represent the
most potent medical intervention against bacterial infections [294,295]. While the combi-
nation of biomaterials with antibiotics has been steadily gaining traction [296–299], there
are still some problems with such applications. An anticipated problem is the resistance to
antibiotics which is characterized by the ineffectiveness against an infection by resistant
bacteria, or the creation of resistance due to the pre-emptive use of antibiotics.

We have mentioned that the most common pathogens in orthopedic implant infections
are Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae. For S. aureus, over
30% of strains are reportedly resistant to some common antibiotics [300]; indeed, there
are numerous mechanisms reported to be associated with such antibiotic resistance in this
bacterial species [301]. For E. coli, there is likewise a trend of emerging resistance based on
recent studies [302,303] and the same can be said for K. pneumoniae [304,305]. So, a problem
arises regarding the selection of antibiotics to be incorporated into the prostheses. What if
there are resistant bacterial strains? Perhaps a solution would be the pre-emptive use of
very powerful antibiotics such as vancomycin [306]; however, there are already bacterial
strains resistant even to this drug [307–309], and the injudicious use of vancomycin may be
by itself a cause of resistance emergence [310].

Regarding the enterococci, E. faecium and E. faecalis are the most relevant species
from a clinical point of view [311] since they account for a notable part of the infec-
tions encountered in the nosocomial setting [312]. Not only can such cases be potentially
life-threatening [313,314], but our means of curing them are being limited as vancomycin-
resistant enterococci (VRE) strains are emerging [315]. Similarly, bacteria of the Pseudomonas
aeruginosa species are responsible for a considerable number of nosocomial infections [316],
both localized and systemic, which not only can be life-threatening [317], but may also be
difficult to handle as resistant P. aeruginosa strains are becoming more prevalent [318,319].
Streptococcus anginosus, the official name of a group of bacteria commonly referred to as
S. milleri, shows notable variety regarding its hemolytic, physiological, and serological
characteristics, making its identification challenging in the laboratory setting [320]. It is
clinically relevant as it can cause severe infections, particularly purulent ones [320]. Por-
phyromonas is most commonly associated with periodontitis, but it can also cause severe
systemic infections [321,322] and has even been implicated in cognitive impairment [323]
and carcinogenesis [321,324,325].
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Streptococcus mutans is mostly known as an important cause of dental plaque forma-
tion, with its ability to form biofilms playing a critical role in its pathogenicity [326,327].
However, it can cause other serious conditions, such as life-threatening endocarditis [326]
and carcinogenesis [327]. Salmonella is a major etiological agent of foodborne pathologies
that is a cause for concern for global public health [328,329]. It has a characteristic diversity
when it comes to serovariability, having over 2600 serotypes [330], as well as antigenic
variability [331]. Its virulence and mortality rates are not to be underestimated [332], as
many strains exhibit antibiotic resistance [333,334]. S. enteritidis is among the most fre-
quently encountered species, and is mainly found in chicken eggs [335]. Shigella dysenteriae
is a common causative agent of diarrhea, hemorrhagic colitis, and hemolytic uremic syn-
drome [336], with a wide arsenal of virulence factors at its disposal [336,337]. Antibiotic
resistance is a concern in this case as well [338]. Finally, the rarely mentioned Actinobacillus
actinomycetemcomitans is normally a part of the physiological flora of the oral cavity; it is,
however, capable of causing periodontitis as well as systemic pathologies [339–341], such
as coronary artery disease in the case of serotypes b and c [340]. It is also notable for its
ability to evade the immune system [342] and its very potent leukotoxin [339].

Still on the subject of infections, we must note that while bacteria account for the
majority of orthopedic infections, there are other pathogens of concern. For example, a case
report by Soukup et al. [343] mentions the appearance of toxocariasis as a post-surgical
complication after transthoracic spine surgery. But, apart from such rare incidents, other
applications may prove useful; a prominent case might be the surgical removal of cysts
of Echinococcus granulosus from the spine [344]. However, the surgical removal of the
cysts may sometimes present complications [345]; the removal might only be partial [346]
or the resultant spillage may lead to secondary echinococcosis [347,348]. In such cases,
prostheses associated with proper drugs, namely albendazole, mebendazole, and perhaps
praziquantel [349], may be useful. Another incidence of parasitic infection may occur in
patients who are immunosuppressed in the course of rheumatoid arthritis treatment—such
a case has been reported by Trigkidis et al. [350]. Perhaps, in such particular cases, and given
that rheumatoid arthritis frequently necessitates the use of orthopedic prostheses [351], the
incorporation of antimonial drugs, which have a proven anti-leishmanial effect [352], may
prove useful.

A minor consideration, compared to bacterial infections, is fungal infections in ortho-
pedic implants. Still, research has been conducted regarding the role that microorganisms
like Candida spp. and Aspergillus spp. play in hip prosthetic joint infections, a condition
most commonly associated with Staphylococcus spp. [353,354]. Fungi can indeed be the
causative agent of such an infection, mostly owing to Candida spp., and, occasionally, they
even coinfect the patient alongside bacterial pathogens [353,354]. Although this complica-
tion arises infrequently, it causes a severe condition that requires multidisciplinary action to
be properly dealt with [353,354]. The combination of biomaterials with common antifungal
agents, such as triazoles and amphotericin formulations [355,356], should be studied in
the future.

In general, the development of biomaterials suitable for bioprinting can reduce, or
even hopefully eliminate, the need for bone allografts and the management of the asso-
ciated immune response [357,358]. Perhaps the most potent material for this purpose is
hydroxyapatite [359], with BCP and β-TCP being less resilient to mechanical stress, despite
having good properties overall [360]. As there are still other biomaterials better suitable for
soft tissue replacement, and still other biomaterials with untapped potential [361,362], it is
very possible that, in the near future, novel approaches for producing biomaterials with a
potent antimicrobial action will arise.

4.2. Current Challenges in 3D Printing with Mixtures Containing Antimicrobial Substances

Regarding 3D printing models with antimicrobial activity, we can divide the final
construct into two main groups: models with incorporated antimicrobial particles, and
models with antimicrobial substance coatings or loading. In the second group, the first
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step is printing the 3D model separately, and in the post-processing steps, the active
substances are added as a coating or loaded into the micro-pores of the construct. So,
the only challenges that can occur in these cases are strictly structural aspects and later
biocompatibility and bioactivity within the body, as the functionality of the build or the
activity of the antimicrobial substances should not affect each other.

Many of the 3D printing technologies require high-temperature treatment of the
material at the time of the printing [363]; in that case, the initial mix that contains the
antimicrobial particles has to withstand these temperatures, and to still be able to exhibit
antimicrobial activity after printing. Most antibiotics are thermolabile, and after thermic
treatment of the mix, the bioactivity of the substances can decrease dramatically [364]. In
that case, we can conclude that fused deposition modeling (FDM), a popular 3D printing
technique, that uses temperatures over 80 ◦C is not the most efficient method in building
parts with antimicrobial activity. Even if the thermic problem is managed, it is already
known that the mechanical properties of the construct with antibiotics are significantly
decreased compared with the constructs with no antimicrobial substances added [365].

However, metals and nanoparticles with antimicrobial activity, such as zinc, iron,
copper, magnesium, and their oxides are known to maintain their antimicrobial activity
after printing with the standard temperatures of different 3D printing technologies such as
FDM [366]. Even though temperature is not a problem when printing with incorporated
metals or metal oxides, dispersing them homogenously can still be a challenge, which can
alter the final product, inducing filling defects or agglomeration of particles and causing
structural instability [366].

Another method, called inkjet printing, requires high-temperature treatment only in
the post-processing steps, which can be skipped if needed; in this way, the functionality of
the antibiotics can be maintained [367]. With inkjet printing, it was already demonstrated
that adding antibiotics does not alter the mechanical properties of the final build, but there
are not many biocompatible materials that can be used with this technology; shortly, new
materials may be available [368]. Antibiotics or nanoparticles with antimicrobial activity
that are UV sensible cannot be printed by vat photopolymerization; however, positively
charged quaternary ammonium compounds and silver–halloysite in combination with
methacrylate-based polymers such as PTMC and PMMA reported good results in dentistry
applications [367].

From our team’s experience with 3D printing, especially with stereolithography (SLA)
technology, finding the optimal mixture of the biocompatible material and the antibiotic or
antimicrobial particles is the most important goal. Different technologies require different
solubilities, viscosities, and temperatures, and also, different post-processing steps. Find-
ing ways to solubilize the antimicrobial substance in a way that the optimal viscosity is
maintained and the mechanical properties of the final constructs (that usually contain pores
of different sizes) are not altered are the main challenges that should be further studied.

4.3. Legal Considerations for 3D-Printed Antibiotic-Integrated Medical Implants

Even the most promising applications inevitably bring associated challenges. In
this particular situation, aside from the previously discussed considerations, there is a
medico-legal dimension to take into account. In today’s medical practice, legal proceed-
ings regarding medical responsibility and liability have become an integral aspect of the
profession. This intricacy is exacerbated by factors that go beyond the conventional pa-
tient care environment, notably the incorporation of advanced technologies [369], like 3D
printing. Therefore, present-day healthcare professionals need to familiarize themselves
with the applicable regulatory principles and guidelines, especially when engaging with
such technologies in pursuit of innovation. In the European Union (EU), medical liability is
predominantly regulated by national laws; however, specific EU directives and regulations
outline the overarching principles.

The EU Clinical Trials Regulation [370] delineates the regulations for clinical stud-
ies and trials, defined in Article 2(2) as inclusive of “therapeutic strategies that deviate
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from the normal clinical practice of the Member State concerned”. Ensuring transparency
through precise and comprehensive reporting, proportional balancing of risks and benefits,
obtaining informed consent, and adhering to safety standards are pivotal for safeguarding
research participants. The Medical Devices Regulation [371] focuses on the concept of med-
ical devices, defined in Article 2(1), and relevant terms such as an “accessory of medical
device” [Art. 2(2)], “implantable device” [Art. 2(5)], etc. It establishes safety and perfor-
mance requirements through mandatory measures, including risk classification, conformity
assessments by manufacturers, clinical evaluations, and heightened scrutiny. Furthermore,
the EU Patient Rights Directive [372] and the European Charter of Patients’ Rights [373]
establish a framework to protect patients’ rights in the European Union, encompassing the
right to information and informed consent, access to medical records, privacy, and the right
to redress in case of harm. This latter right is particularly significant, empowering patients
to voice complaints and seek redress in instances of medical malpractice or dissatisfaction
with healthcare services.

As for the applicability of the legal or quasi-legal documents above and their pro-
visions in the context of the present article and to provide an extra layer of information
on the connection between what is written in this article and the legal status quo, the
following apply:

(a) Under no circumstance, based on the current data, can the use of antimicrobial ma-
terial in 3D printing in the field of Arthroplasty and Osseous Reconstruction be considered
as “normal clinical practice”, meaning the day-to-day typical medical approach. There-
fore, the definition of the clinical trial as mentioned in the EU Clinical Trials Regulation
seems to encompass the aforementioned notion, providing the necessary framework for
the implementation of the Regulation.

(b) Additionally, the Medical Devices Regulation focusing on medical devices includes
in its provisions the concept of “implanted devices”, a classification which largely, if
not exactly, reflects the essence of this article, meaning both the materials used and the
3D-printed orthopedic implants under discussion.

(c) As for the EU Patient Rights Directive and the European Charter of Patients’ Rights,
once patients are involved in the whole procedure, they are applicable by default, and no
further clarifications are required since the patients’ rights and their protection hold great
significance in the EU legal framework.

4.4. Future Directions and Emerging Trends

The approach of using antibiotic-laden biomaterials in a protective manner is a trend-
ing idea among research groups worldwide. However, such use has been known to be
either ineffective at times, or even to promote biofilm formation and resistant infection
occurrence [374]. Based on the increased capabilities and potential of medical prosthet-
ics [375], prostheses could be outfitted with methods of releasing suitable antibiotics after
the source of infection has been precisely identified and the relevant resistance profile
has been determined. In addition, there exists nowadays the possibility of incorporating
artificial intelligence (AI) in the development of orthopedic implants [375] and given that AI
is also under research for use in combatting antibiotic resistance [376–378], the integration
of relevant AI schemes into orthopedic implants in the future might be a viable solution.

Another avenue that can be explored to enhance the antimicrobial properties of the dis-
cussed biomaterials is phytochemicals [379,380]. Recent research has highlighted the antimi-
crobial potential of numerous phytochemicals (e.g., [381–386]); many purified plant com-
pounds have been found to have antimicrobial properties, such as capsaicin [387] and other
capsaicinoids [388,389], curcumin [390–392], kaempferol and its derivatives [393,394], cate-
chins [395,396], turmeric [397], fucoidan [398], and other plant compounds (e.g., [399,400]).
Phytochemicals have already been used as coatings for a variety of materials and for a vari-
ety of purposes. Importantly, phytochemicals can be incorporated into artificial materials
to lower their potential toxicity [401]. Furthermore, the research on combinations of phyto-
chemicals and nanoparticles has yielded promising results (e.g., [402–404]); nanoparticles
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are already being applied as drug delivery systems [405], and they have also been already
combined successfully with prostheses as outlined in this paper.

Finally, a further potential avenue that warrants further exploration is the combination
of the materials discussed herein with antibiotic pearls for antibiotic applications. This
has been shown to ameliorate the prognosis in prosthetic surgeries by eliminating biofilms
and enabling extended antibiotic action both qualitatively and temporally through the use
of calcium sulphate antibiotic-added beads [406,407]. The usefulness of these beads as
adjuvants had previously been mentioned and can also be corroborated by the findings of
Agarwal and Healy [408]. Joint infections after arthroplasty of the knee are of particular
interest as it is in this context that the debridement, antibiotic bead, and retention of the
implant (DABRI) method was compared to the debridement, antibiotics, and implant
retention (DAIR) method and was found to be similarly effective [409]. We would also
like to note, that, in the context of antibiotic pearls in particular, and of the potential
combinations mentioned in this paper in general, the potential of adverse effects, especially
associated with drug pairing, is a noteworthy constraint; given that such interactions
could affect absorption or toxicity [410–413], caution toward administration is deemed
necessary [414].

5. Conclusions

The antimicrobial properties of materials adapted for 3D printing are a promising
research field, and there are still many compounds and combinations that can be tested. The
current tests mostly revolve around combinations of existing biomaterials with antibiotics,
metal nanoparticles, and chitosan. Future research must be centered around addressing the
relevant problem of antibiotic resistance and the possibility, however small, of fungal or
parasitic infection.

The combination of biomaterials with phytochemicals of known antibacterial potential
also represents a promising avenue of research. Last, but not least, there is a need for
accurate and in-depth information on medical liability frameworks in conjunction with all
the relevant EU legal documents; it is also vital to refer to the individual national rules of
the EU member states.
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