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Abstract: A method for the approximate merging of disk Wang–Ball (DWB) curves based on the
modified snake optimizer (BEESO) is proposed in this paper to address the problem of difficulties in
the merging of DWB curves. By extending the approximate merging problem for traditional curves to
disk curves and viewing it as an optimization problem, an approximate merging model is established
to minimize the merging error through an error formulation. Considering the complexity of the
model built, a BEESO with better convergence accuracy and convergence speed is introduced, which
combines the snake optimizer (SO) and three strategies including bi-directional search, evolutionary
population dynamics, and elite opposition-based learning. The merging results and merging errors of
numerical examples demonstrate that BEESO is effective in solving approximate merging models, and
it provides a new method for the compression and transfer of product shape data in Computer-Aided
Geometric Design.

Keywords: disk Wang–Ball curves; approximate merger; error minimization; modified snake optimizer

1. Introduction

Computer-Aided Geometric Design (CAGD for short) [1] takes the representation,
drawing, display, analysis, and processing of product geometric shape information as the
core research content, and it occupies an important position in manufacturing, medical
diagnosis, artificial intelligence, computer vision, and other fields. Product geometry design
is the focus of CAGD research, and free-form curves and surfaces are an important tool for
describing product geometry. From the Ferguson method [2] to Bézier [3,4], B-spline [5,6],
NURBS [7–9], and other methods, the representation of free-form curves and surfaces has
gone through different stages of development driven by industrial software technology.
The Ball method is also one of the current commonly used representations. It was proposed
in 1974 as the mathematical basis for the former British Airways CONSURF fuselage
surface modeling system [10–12]. Subsequent research by several scholars has led to the
emergence of a variety of generalized forms such as the Said–Ball curve [13–15], the Wang–
Ball curve [16], the generalized Ball curves of the Wang–Said type, and the generalized Ball
curves of the Said–Bézier type [17]. The Wang–Ball curve not only has good properties
such as stability, symmetry, endpoint interpolation, and geometric invariance but also
significantly outperforms the Said–Ball and Bézier curves in terms of degree elevation,
degree reduction, and recursive evaluation [15].

With the rapid development of the geometric modeling industry, the requirements for
accuracy standards, surface quality, and overall smoothness of free curves and surfaces
are becoming increasingly stringent. The inaccuracies and limited accuracy caused by the
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floating-point environment in the modeling of curves and surfaces are major causes for
the lack of robustness in solid modeling. Interval analysis [18], which is a tool to enhance
the stability of algorithms by dealing with errors, has been gradually introduced into the
fields of geometric modeling, computer graphics, and Computer-Aided Design/Computer-
Aided Manufacturing (CAD/CAM) since the 1980s [19–21]. Subsequently, the concepts
of interval Bézier curves, interval Ball curves, and interval B-spline curves have been
proposed. Unlike conventional curves, interval curves are constructed with rectangles
instead of control vertices represented by real numbers. However, the interval method
also has the disadvantage of an expanding error domain under rotational transformation.
To this end, Lin et al. [22] put forward disk Bézier curves in combination with the disk
algorithm. A disk curve uses disks to represent the control vertices. Compared with interval
curves, disk curves have the following advantages: (1) the shape of disk curves remains
unchanged under affine transformation; (2) in terms of data storage volume, the interval
method requires eight data records in contrast to only two data records for the disk, which
reduces the amount of data. Since then, research related to disk curves has been carried
out rapidly. Chen [23] studied the order reduction problem of disk Bézier curves using
both linear programming and optimization methods. In 2018, Ao et al. [24] proposed a
high-precision intersection algorithm for disk B-spline curves and made this curve flexible
for stroke representation. Seah et al. [25] applied disk B-spline curves to artistic brush
strokes and 2D animation, and Hu et al. [26] constructed the disk Wang–Ball (DWB) curve
and investigated its degree reduction problem.

The rapid development of the graphics industry and the manufacturing sector is
accompanied by the constant updating of geometric modeling systems, which has led to
an increase in the exchange, integration, and sharing of data between different systems
for geometric descriptions. Approximate merging [27] is an approximate transformation
technique proposed by Hoschek in 1987, which involves approximating a curve consisting
of multiple lower-order curve segments with a single higher-order curve. Approximate
merging reduces the amount of data transfer during product design and development,
thus enabling efficient data transfer and exchange between different systems. In 2001, Hu
et al. [28] presented a methodology to merge two adjacent Bézier curves using controlled
vertex perturbations and least squares and showed that the merger error could be reduced
if the original curves were first raised to higher degrees before approximating the merger.
This method is simple, intuitive, and operational, so Tai et al. [29] used a similar method
to solve the exact merging of B-spline curves and suggested a node adjustment technique
for tuning the end nodes of the kth-order curve without varying the shape of the curve.
Subsequently, Cheng et al. [30] gave a uniform matrix representation for exact merging by
minimizing the curve distance. Zhu and Wang [31] used the L2 parametrization to measure
the approximation error of the curves before and after the merger and achieved the optimal
merger problem for Bézier curves with G2 continuity. Lu et al. [32] also minimized the L2
distance and obtained the merger curve for two Bézier curves with G3 continuity in an
explicit manner.

It is clear from the above research that most of the approximate merging problems are
confined to conventional curves and do not involve interval and disk curves. Therefore,
the questions of how to extend the approximate merging method to interval as well as disk
curves, how to estimate the merging error of interval and circular curves, and whether
it is possible to directly extend the approximate merging method of traditional curves to
interval curves all need to be addressed. The main objective of this paper is to investigate
an approximation method to merge disk Wang–Ball curves with improved robustness
and accuracy. The merging error is one of the criteria for judging the effectiveness of
curve merging, so we take into account the objective of minimizing the merging error to
establish an approximate merging model for circular domain curves. In the problem of
how to obtain the optimal coordinates of the merged curves, we invoke meta-heuristic
optimization algorithms.
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Meta-heuristics algorithms have the advantages of fast convergence, high search
power, and high solution accuracy, and they play an increasingly important role in op-
timization problems. Particle swarm optimization (PSO) [33] has appeared in various
improved versions since its introduction in 1995, such as multi-objective particle swarm
optimization [34] and adaptive particle swarm optimization algorithms [35], and it has been
successfully applied in many fields such as image classification [36], path planning [37]
and biomedicine [38]. The marine predators algorithm (MPA) [39] is inspired by ocean
predator and prey movements, and its combination with problems such as the shape opti-
mization [40], image segmentation [41], wind power prediction [42], and the 0–1 knapsack
problem [43] have achieved high-quality optimization results. There are also a variety of
algorithms and enhanced variants developed based on different inspirations, such as the
chimp optimization algorithm [44], the nutcracker optimizer [45], enhanced black widow
optimization (QIWBWO) [46], the snow ablation optimizer (SAO) [47], the multi-strategy
enhanced chameleon swarm algorithm (MCSA) [48], and the multi-objective artificial
hummingbird algorithm (MOAHA) [49].

The snake optimizer (SO) [50] is inferred from the unique lifestyle of snakes and
has been successfully applied to Hammerstein adaptive filters [51] and power-aware
task schedulers for wearable biomedical systems [52]. As SO is prone to falling into local
optimality and inadequate optimization capabilities when faced with different optimization
problems, enhanced versions of it have been proposed successively to achieve better
results. A multi-strategy fused snake optimizer (MFISO) was developed by Fu et al. for
deep-learning prediction models of gas prominence in underground mines [53]. Rawa
investigated a hybrid form of SO and sine cosine algorithm (SCA) called SO-SCA using
both parallel and tandem mechanism runs and used it to solve transmission expansion
planning models [54]. Khurma et al. not only generated a binary version called BSO based
on the S-shaped transformation function but also integrated the new evolutionary greedy
crossover operator with SO to propose a BSO-CV algorithm for medical classification
problems [55]. The multi-strategy enhanced snake optimizer (BEESO) [56] is an improved
algorithm proposed by Hu et al. for the optimization problem introducing bi-directional
search, modified evolutionary population dynamics, and elite opposition-based learning
strategy in SO. The experimental results in the literature demonstrate that it possesses
a highly competitive search capability and convergence speed compared to a variety of
sophisticated algorithms. Therefore, BEESO will be used to solve the approximate merging
problem for DWB curves, and the main contributions are summarized as follows:

(1) We discuss the approximate merging problem of DWB curves and establish an ap-
proximate merging optimization model with the merging error as the objective;

(2) We propose an approximate merging method of DWB curves based on BEESO and
demonstrate the optimization capability of BEESO with numerical examples.

The remainder of this text is structured as follows: The definition of DWB curves is
presented in Section 2, along with a discussion of the approximate merging of adjacent DWB
curves and a specific optimization model; Section 3 introduces the BEESO and proposes an
approximate merging method of DWB curves based on BEESO and gives three numerical
examples; Section 4 concludes the paper.

2. Approximate Merging of DWB Curves
2.1. Definition of the DWB Curves

Definition 1. In R2, given n+1 control disks, then the DWB curve of degree n is defined as

(W)(t) =
n

∑
i=0

Wi,n(t)(Pi) =
n

∑
i=0

Wi,n(t)(pi, ri), (0 ≤ t ≤ 1), (1)
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where pi = (xi, yi) and ri represent the center coordinates and radius of the control disk, and
{Wi,n(t)}n

i=0 indicates Wang–Ball basis functions, in which

Wi,n(t) =


(2t)i(1 − t)i+2, 0 ≤ i ≤ ⌊n/2⌋ − 1,

(2t)⌊n/2⌋(1 − t)⌈n/2⌉, i = ⌊n/2⌋,

(2(1 − t))⌊n/2⌋t⌈n/2⌉, i = ⌈n/2⌉,
Wn

n−i(1 − t), ⌈n/2⌉+ 1 ≤ i ≤ n.

(2)

According to Equation (1), the DWB curve can be written in the following form:

(W)(t) = (C(t), R(t)) = (
n

∑
i=0

Wn
i (t)pi,

n

∑
i=0

Wn
i (t)ri), (0 ≤ t ≤ 1), (3)

where C(t) and R(t) are the center curve and radius function, respectively.

2.2. Approximate Merging of Adjacent DWB Curves
2.2.1. Problem Description

It is given that (W)1(t) and (W)2(t) are two adjacent DWB curves, and their control
disks are (P1,i)(i = 0, 1, · · · , n1) and (P2,j)(j = 0, 1, · · · , n2), respectively. The approximate
merging of these two neighboring DWB curves means seeking another nth DWB curve
(D)(t), such that the metric distance between (D)(t) and (D)(t) is minimized on the
interval [0, 1]. Here, the expression is

(D)(t) =


n1
∑

i=0
Wi,n1(

t
λ )(P1,i), (0 ≤ t ≤ λ),

n2
∑

j=0
Wj,n2(

t−λ
1−λ )(P2,j), (λ ≤ t ≤ 1),

(4)

where λ is the subdivision parameter. Wi,n1(
t
λ ) and Wj,n2(

t−λ
1−λ ) are the Wang–Ball basis

functions of the order n1 and n2 defined by Equation (2). d((D)(t), (D)(t)) can be selected
to the appropriate value as required.

2.2.2. Construction of the Approximate Merger Model

1. Approximate merging without endpoint preservation

According to Equation (3), the two adjacent DWB curves (W)1(t), (W)2(t) are denoted
as (C1(t), R1(t)) and (C2(t), R2(t)), and the DWB curve (D)(t) in Equation (4) is expressed
as (C(t), R(t)). Referring to the nth DWB curve (D)(t) to be found as the third curve,
that is,

(D)(t) = (C(t), R(t)) =
n

∑
k=0

Wk,n(t)(Qk), n ≥ max(n1, n2). (5)

Take the subdivision parameter λ to be any constant in the open interval (0, 1). Then,
divide (D)(t) into two DWB curves of degree n1 on the left and n2 on the right, which are
recorded as (D)le f t(t) = (Cle f t(t), Rle f t(t)) and (D)right(t) = (Cright(t), Rright(t)),{

(D)le f t(t) = (D)(λt),
(D)right(t) = (D)(λ + (1 − λ)t),

t ∈ [0, 1]. (6)
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For the three curves above, we measure their metric distances in terms of two
components, the center curve and the radius function. Let the subdivision parameter

λ =
∫ 1

0 |C′
1(t)|dt∫ 1

0

∣∣∣C′
1(t)

∣∣∣dt+
∫ 1

0 |C′
2(t)|dt

, the distance between the center curves, which is defined as

dC(C(t), C(t)) =
∫ 1

0

∣∣∣C1(t)− Cle f t(t)
∣∣∣2dt +

∫ 1

0

∣∣∣C2(t)− Cright(t)
∣∣∣2dt . (7)

Based on the above description of curve merging, there should be

dC(C(t), C(t)) = min. (8)

For the same between the radius functions R(t) and R(t), there is

min dR(R(t), R(t)) =
∫ 1

0

∣∣∣R1(t)− Rle f t(t)
∣∣∣2dt +

∫ 1

0

∣∣∣R2(t)− Rright(t)
∣∣∣2dt . (9)

In order to verify the optimized effect, the merging error formula is a common criterion
for judging. In summary, this paper will use the merging error between the merging curve
(W)1(t) and (W)2(t) as the curve to be merged and as an objective function to build an
optimization model, defined as

min ε =
∫ 1

0
(
∣∣∣C1(t)− Cle f t(t)

∣∣∣2+∣∣∣C2(t)− Cright(t)
∣∣∣2)dt +

∫ 1

0
(
∣∣∣R1(t)− Rle f t(t)

∣∣∣2+∣∣∣R2(t)− Rright(t)
∣∣∣2)dt. (10)

2. Approximate merging with endpoint preservation

The resulting merged curve does not guarantee that (D)(t) is interpolated at the left
endpoint of the curve (W)1(t) and the right endpoint of the curve (W)2(t), so this part will
build an approximate merge optimization model with endpoint-preserving interpolation
between the merged curve and the curve to be merged. Endpoint-preserving interpolation
means that the third curve (D)(t) found must not only approximate the merge of the two
given DWB curves, but also the interpolation at the left endpoint of (W)1(t) as well as the
right endpoint of (W)2(t) to be merged.

In accordance with the above definition of endpoint-preserving interpolation approx-
imation merging and the endpoint properties of DWB curves, the endpoint-preserving
interpolation approximation merging optimization model is expressed as

min ε =
∫ 1

0
(
∣∣∣C1(t)− Cle f t(t)

∣∣∣2+∣∣∣C2(t)− Cright(t)
∣∣∣2)dt +

∫ 1

0
(
∣∣∣R1(t)− Rle f t(t)

∣∣∣2+∣∣∣R2(t)− Rright(t)
∣∣∣2)dt. (11)

The constraints are as follows:{
(Q0) = (q0, r0) = (p1,0, r1,0) = (P1,0),
(Qn) = (qn, rn) = (p2,n2

, r2,n2) = (P2,n2).
(12)

3. DWB Curves Merging Based on BEESO
3.1. BEESO

BEESO [56] is an improved algorithm proposed to address the shortcomings of SO,
which integrates three strategies into SO to improve its optimization capabilities. The
update phase of BEESO includes exploration, exploitation, and mutation operations. The
initial population is calculated using Equation (13), in which yi = [yi,1, yi,2, · · · , yi,D](i =
1, 2, · · · , N) represents the ith individual in a population.

yi = LB + r × (UB − LB), (13)
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where r is randomly selected at [0, 1], LB stands for the lower bound, and UB stands for
the upper bound.

The population is composed of 50% females and 50% males, and the population is
randomly split into two sub-groups before the start of the iteration, as follows:

Nm ≈ N/2, N f = N − Nm (14)

where Nm and Nf represent male and female subgroups.
The food mass P and temperature Temp that control the algorithmic process are calcu-

lated with the following formula:

Temp = exp(
−k
K

), (15)

P = s1 × exp(
k − K

K
), (16)

where k and K, respectively, represent the current and maximum number of iterations, and
s1 = 0.5.

3.1.1. Exploration Phase

If the food quality P < Threshold means that it is of low quality, the population needs to
search for better-quality food in the feasible range, which indicates that BEESO enters the
exploration phase. The exploration phase consists of a random search and a bi-directional
search; BEESO will use these two search methods to update the position of individuals and
select the better ones for the next stage by comparing their fitness values. For the random
search, the random update position of each individual is formulated as follows:

yi,m(k + 1) = yr,m(k)± s2 × AM × ((UB − LB)× r + LB), (17)

yi, f (k + 1) = yr, f (k)± s2 × AF × ((UB − LB)× r + LB), (18)

where yr,m and yr, f represent male and female individuals, respectively. AM and AF are the
snake’s ability to find food, r is a random number, and s2 = 0.5.

yi,m(k + 1) = yr,m(k)± s2 × AM × ((UB − LB)× r + LB), (19)

yi, f (k + 1) = yr, f (k)± s2 × AF × ((UB − LB)× r + LB), (20)

where Fit• represents the fitness value.
Bi-directional search makes use of the best and worst individuals to guide BEESO

toward the optimal value while maximizing the search area, which effectively improves
the disadvantages of the random search such as lower randomness, higher uncertainty, and
a narrow search range. The mathematical approach is formulated as

yi,m(k + 1) = yi,m(k) + r1 × (ybest,m − yi,m(k))− r2 × (yworst,m − yi,m(k)) (21)

yi, f (k + 1) = yi, f (k) + r1 × (ybest, f − yi, f (k))− r2 × (yworst, f − yi, f (k)) (22)

where ybest and yworst are the best and worst individuals, respectively, and r1 and r2 are
evenly generated random numbers.

3.1.2. Exploitation Phase

A higher quality of food represents BEESO entering the exploitation phase. When the
temperature Temp > 0.6 represents a higher temperature in the environment, the snake will
move toward the food, as described by the mathematical equation

yi,j(k + 1) = y f ood ± c3 × Temp × r × (y f ood − xi,j(k)) (23)
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Mating behavior occurs when the temperature is right, and there is a fighting mode
and a mating mode. Fighting mode means that each female engages in mating with the
best male, and the males will get the best females by fighting, as in the following equation:

yi,m(k + 1) = yi,m(k)± s3 × FM × r × (ybest, f − yi,m(k)) (24)

yi, f (k + 1) = yi, f (k)± s3 × FF × r × (ybest,m − yi, f (k)) (25)

where FM and FF are the combat abilities and are calculated using the following formula:

FM = exp(
−Fitbest, f

Fiti
) (26)

FF = exp(
−Fitbest,m

Fiti
) (27)

Mating patterns in which mating between each pair of individuals occurs is mathe-
matically modeled as

yi,m(k + 1) = yi,m(k)± s3 × MM × r × (P × yi, f (k)− yi,m(k)) (28)

yi, f (k + 1) = yi, f (k)± s3 × MF × r × (P × yi,m(k)− yi, f (k)) (29)

where MM and MF stand for the mating ability:

MM = exp(
−Fiti, f

Fiti,m
) (30)

MF = exp(
−Fiti,m

Fiti, f
) (31)

There is a potential for egg production after mating. If the snake eggs hatch, mod-
ified evolutionary population dynamics (MEPD) is implemented on the current parent
to improve population quality by eliminating the poorer individuals and mutating the
better ones. New offspring are first generated for the bottom 50% of individuals using
Equations (32) and (33):

Offspringi(k + 1) =
{

ybest(k) + sign(r − 0.5)× (UB − LB × r + LB), if r < 0.5
yi(k) + sign(r − 0.5)× (UB − LB × r + LB), else

(32)

yi(k + 1) =
{

Offspringi(k + 1), if Fit(Offspringi(k + 1)) < Fit(yi(k + 1))
UB − LB × r + LB, else

(33)

where i = 1, 2, ..., N/2.
The mutation operation is applied to the top 50% of individuals, as follows:

Myi(k) = yp1
(k) + F · (yp2

(k) − yp3
(k)) (34)

yi(k + 1) =
{

Myi(k), if Fit(Myi(k)) < Fit(yi(k + 1))
yi(k + 1), else

(35)

where p1, p2, p3 are random integers between [1, N], and p1 ̸= p2 ̸= p3 ̸= i. F is the
scaling factor:

F =
1
2
(sin(2π × f req × k)× (k + K) + 1) (36)

where freq is the frequency of vibration of the sine function.
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3.1.3. Elite Opposition-Based Learning Strategy

The tendency to fall into local optima is a common problem with optimization al-
gorithms. The elite opposition-based learning strategy is meant to optimize the better-
performing individuals in the population, so that the algorithm approximates the global
optimum with a higher probability. Eyn = [eyn,1, eyn,2, · · · , eyn,D], (n = 1, 2, · · · , EN)
stands for elite individuals, who rank in the top EN of the population. The elite opposite
solution of the current individual is calculated below:

eyi,j(k) = S · (EAj(k) + EBj(k))− yi,j(k) (37)

EBj(k) = max(eyn,j(k)) (38)

eyi,j(k) = rand · (EBj(k)− EAj(k)) + EAj(k), i f eyi,j < LBj

∣∣∣∣∣∣eyi,j > UBj (39)

where EN = 0.1 × N, and EA(k) and EB(k) are the minimum and maximum values of
elite individuals.

3.2. Steps for Solving the Approximate Merger Models by BEESO

In Section 2, two optimization models, endpoint-preserving merging and non-endpoint-
preserving merging, are established with the merging error of the curves before and after
merging as the objective function. In this section, the BEESO will be used to solve the
approximate merged optimized model for DWB curves, and the implementation steps are
as follows:

Step one: Setting the parameters of the algorithm;
Step two: Enter the coordinates and radius of the DWB curves to be merged, and

calculate the subdivision parameters;
Step three: Initialization. Calculate the initial population according to Equation (13),

and divide it into female and male populations. Use the approximate merging model
Equation (9) (or Equation (10)) as the objective function;

Step four: Judging food quality. If P < 0.25, execute Equations (17)–(20) and the
bi-directional search Equations (21) and (22) of the exploration phase to generate new
individuals. Calculate the fitness value of the individuals, and select the better individuals
to proceed to the next phase; otherwise, proceed to the exploitation phase;

Step five: The exploitation phase starts by calculating the temperature Temp. If
Temp > 0.6, the individual moves closer to the food as in Equation (23). Otherwise, it
enters the fight mode or the mating mode. When r > 0.6, the individual is in fight mode
and performs Equations (24)–(27); otherwise, it operates in mating mode;

Step six: The mating pattern performs Equations (28)–(31) on individuals, followed by
consideration of whether the eggs hatch after mating. If the eggs hatch, MEPD
(Equations (32)–(36)) is used to produce individuals that move on to the next stage;

Step seven: Find the elite individuals, and update the population again by
Equations (37)–(39);

Step eight: Calculate the fitness value, and determine the optimal individual;
Step nine: Determine the termination condition of the algorithm. Let k = k + 1. If k < K,

return to step four; otherwise, output the minimum merging error and the coordinates of
the control disks of the merging curve.

A detailed flowchart for the approximate merged model is shown in Figure 1.
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Figure 1. Flowchart of BEESO solving the approximate merged model.

3.3. Optimization Examples

To verify the feasibility of the algorithm, three specific numerical examples are given
in this section. Each numerical example is optimized in terms of both endpoint-preserving
interpolation and endpoint-unperceiving interpolation. The population size and iter-
ations in all experiments are 50 and 500. In addition to BEESO, several advanced al-
gorithms are selected for comparison purposes, such as CSA [48], SCA [57], grey wolf
optimizer (GWO) [58], white shark optimizer (WSO) [59], the Coot optimization algo-
rithm (COOT) [60], the sooty tern optimization algorithm (STOA) [61], and Harris hawks
optimization (HHO) [62].

Example 1. It is given that two adjacent DWB curves and their control vertex coordinates as well
as the control radius are shown in Table 1, and this constructs the shape of the DWB curve shown in
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Figure 2. In this example, these two curves of 3 and 4 degrees will be combined into a single 6-degree
DWB curve according to the model built in Section 2.2.2.

Table 1. Coordinates of the two adjacent DWB curves in Example 1.

Curves Variables
Values

i = 0 i = 1 i = 2 i = 3 i = 4

(W)1(t)
p1,i (0.3, 0.3) (0.8, 1.6) (1.6, 1.8) (2.5, 1.7) /
r1,i 0.13 0.15 0.19 0.17 /

(W)2(t)
p2,i (2.5, 1.7) (3.4, 1.8) (3.8, 1.3) (3.4, 0.7) (2.2, 0.3)
r2,i 0.17 0.12 0.13 0.1 0.16
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Figure 2. Adjacent 3-degree and 4-degree DWB curves in Example 1.

Tables 2 and 3 show the optimum results obtained by the eight intelligent algorithms
including BEESO and SCA for the two cases of no endpoint preservation and endpoint
preservation, respectively, which include the control disk coordinates of the merged curves
and the merging error. The comparative results of the before and after merging curves are
shown in Figures 3 and 4, where the merged DWB curve is shown in green. The change
in the shape of the curves before and after the merger can be observed in the figures. For
example, the shape of the left segment of the curve obtained by CSA shows a large error. In
addition, the convergence in the optimization process is shown in Figures 3i and 4i.

Table 2. Optimization results of merging into 6-degree DWB curves without endpoint preservation.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

BEESO
xj 0.32061 0.64240 5.77004 1.14708 5.71427 5.46150 2.16106

7.256 × 10−4yj 0.26396 3.21220 1.23437 3.87470 7.90834 0.93425 0.30057
rj 0.12286 0.14662 0.59951 0.06383 0.19417 0.19542 0.13245

SCA
xj 0.10000 1.95487 4.71265 0.50000 6.16513 5.45862 2

2.884 × 10−2yj 0.32289 2.79650 0.17982 5.16130 4.69827 1.69757 0.40675
rj 0.05000 0.01920 0.07688 0.48184 0.00154 0.60000 0.06559

GWO
xj 0.24801 1.67657 2.40646 2.88812 2.41048 6.34649 2.12232

1.450 × 10−3yj 0.25249 3.38514 0.73713 3.98825 8.35052 0.67943 0.32403
rj 0.17159 0.01329 0.01217 0.58550 0.02833 0.01154 0.17778

CSA
xj 0.19345 2.33305 1.02304 3.01595 1.85392 6.61869 2.09672

2.713 × 10−3yj 0.36494 2.07844 3.39108 4.04875 6.32216 1.55162 0.26369
rj 0.07595 0.49882 0.02186 0.15704 0.03753 0.23745 0.13200
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Table 2. Cont.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

SO
xj 0.29201 1.10659 4.26885 1.84796 4.38502 5.84374 2.13823

1.009 × 10−3yj 0.29032 2.95108 1.44851 4.31903 6.39291 1.45585 0.26852
rj 0.13274 0.08649 0.39728 0.39219 0.04970 0.09040 0.15708

COOT
xj 0.26103 1.51427 3.24220 2.07129 4.64899 5.61018 2.16634

9.550 × 10−4yj 0.30621 2.66449 2.57976 3.60219 7.88557 1.01002 0.29692
rj 0.13240 0.21687 0.11664 0.27394 0.01746 0.22524 0.13620

WSO
xj 0.30302 0.99589 4.34925 2.04026 4.08624 5.85888 2.14905

8.701 × 10−4yj 0.33993 2.15657 4.13252 2.94350 9.02235 0.70568 0.31241
rj 0.12336 0.14994 0.56790 0.02366 0.55272 0.02905 0.15067

STOA
xj 0.29616 0.97048 5.28889 0.87130 8.45277 4.23581 2.27127

5.721 × 10−3yj 0.31909 2.91011 0.60983 5.06904 5.36542 1.73980 0.25750
rj 0.10937 0.42115 0.01206 0.00742 0.57521 0.00319 0.06925

Table 3. Optimization results of merging into 6-degree DWB curves in the endpoint-preserving case.

Methods Variables
Optimal Results

Errors
j = 1 j = 2 j = 3 j = 4 j = 5

BEESO
xj 0.71364 6.03125 0.74095 6.90557 5.00301

5.777 × 10−4yj 2.49972 3.72707 2.64980 9.64966 0.6
rj 0.19303 0.06100 0.48497 0.14903 0.01804

SCA
xj 1.23993 1.42726 5.46332 2.16787 5.65829

1.682 × 10−2yj 3.53095 0.36503 3.70241 8.47249 1.11223
rj 0.36242 0.49446 0.00100 0.00208 0.00223

GWO
xj 1.73337 1.13356 3.80688 2.03884 6.01318

2.569 × 10−3yj 3.27833 0.18116 4.62612 6.98556 1.09384
rj 0.34868 0.06189 0.10914 0.22476 0.06069

CSA
xj 1.20266 3.68944 2.18905 4.66729 5.46518

1.108 × 10−3yj 3.16217 0.66512 4.41674 7.22810 1.04698
rj 0.18345 0.22954 0.30863 0.32153 0.00197

SO
xj 0.97965 4.85955 1.39269 5.93192 5.20424

6.454 × 10−4yj 2.44741 3.73946 2.83659 9.20922 0.70607
rj 0.14520 0.33054 0.28144 0.34953 0.00432

COOT
xj 1.28107 3.44674 2.22999 4.73317 5.43497

8.813 × 10−4yj 2.72768 2.56811 3.39643 8.63109 0.78280
rj 0.16509 0.19456 0.41458 0.00402 0.09005

WSO
xj 0.85459 5.26886 1.27613 6.15639 5.14336

6.644 × 10−4yj 2.81100 2.12723 3.72400 7.77702 0.99677
rj 0.20048 0.06864 0.47351 0.00116 0.08057

STOA
xj 1.01642 3.68255 2.93057 2.85610 5.88747

6.704 × 10−3yj 3.31514 0.14579 4.50559 6.96590 1.15675
rj 0.06486 0.18653 0.00451 0.01124 0.00424
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Figure 4. Graphs and convergence curves for merging into 6-degree curves in the endpoint-
preserving case.

The overall result shows that the optimization of the “C” curve fits the original curve
better. For the non-endpoint-preserving case, SCA and STOA obtain curves that differ
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significantly from the width of the original curve, and their errors are accordingly two of
the larger of all the algorithms. In the endpoint-preserving case, STOA also has a larger
difference in results and a slower convergence rate in the optimization process. Although
the remaining algorithms have similar results, BEESO has better results when looking at
the fit and width of the two curves before and after merging. BEESO achieves the best
results among the eight algorithms, both in terms of error results and convergence speed.

Example 2. The purpose of this example is to approximate the merging of two adjacent 4-degree
DWB curves into one 5-degree curve. The control disks of the two curves before merging are shown
in Table 4, and the shape of the curve obtained by visualizing it is shown in Figure 5.

Table 4. Coordinates of the two adjacent DWB curves in Example 2.

Curves Variables
Values

i = 0 i = 1 i = 2 i = 3 i = 4

(W)1(t)
p1,i (0.3, 0.3) (0.8, 1.6) (1.6, 1.8) (2.5, 1.7) /
r1,i 0.13 0.15 0.19 0.17 /

(W)2(t)
p2,i (2.5, 1.7) (3.4, 1.8) (3.8, 1.3) (3.4, 0.7) (2.2, 0.3)
r2,i 0.17 0.12 0.13 0.1 0.16
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Figure 5. Two adjacent 4-degree DWB curves in Example 2.

Tables 5 and 6, respectively, give the optimization results of the eight algorithms for
the two cases of no endpoint preservation and endpoint preservation, which include the
optimal control vertices and the merging error. Figures 6 and 7 show the optimization
results for two adjacent 4-degree DWB curves merged into one 5-degree DWB curve under
different constraints, respectively.

Table 5. Optimization results of merging into 5-degree DWB curves without endpoint preservation.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

BEESO
xj 4.14407 −13.63569 49.35647 −27.28675 27.29917 13.75634

7.936 × 10−2yj 11.01504 2.49772 −28.09682 50.41259 15.34664 6.33120
rj 0.31182 0.25410 0.58469 0.07399 0.00208 0.38995

HHO
xj 1.95800 3.58062 32.85162 −33.19215 34.00852 13.21403

1.896 × 100yj 13.22078 −32.08853 48.85257 −15.32603 36.52032 6.02862
rj 0.28222 0.49638 1.09575 0.09179 0.67192 0.03881

GWO
xj 2.96220 −0.14555 24.40576 −8.19088 20.28811 14.18703

6.706 × 10−1yj 12.35794 −16.21483 16.68298 −0.38029 39.69358 4.48880
rj 0.02199 0.17890 1.87352 0.09694 0.44597 0.01420
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Table 5. Cont.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

CSA
xj 2.86664 −2.35508 34.38615 −25.52135 30.70782 13.21770

9.830× 10−1yj 13.43952 −27.95697 35.67889 −10.03823 41.66521 4.46278
rj 0.22263 0.93622 0.14821 0.32336 0.58220 0.12940

SO
xj 3.95336 −10.73586 42.78311 −21.33005 25.50833 13.72622

1.259 × 10−1yj 11.51607 −2.07501 −19.33357 41.54719 19.30209 6.09531
rj 0.01003 0.37421 1.91634 0.00117 0.00131 0.33275

COOT
xj 2.78067 3.58024 13.05992 6.89678 12.87292 14.74629

2.991 × 10−1yj 11.71382 −4.26839 −16.28066 41.79826 18.29245 6.19255
rj 0.28702 0.34258 0.67924 0.33386 0.05145 0.35011

WSO
xj 4.20564 −13.24443 46.90530 −23.03463 24.78209 14.00221

1.081 × 10−1yj 11.29270 −1.16410 −19.59455 40.83427 20.10784 5.89122
rj 0.31442 0.01275 0.71721 0.08365 0.66488 0.15256

STOA
xj 3.83290 −11.98145 46.50427 −23.51064 24.94221 13.94746

7.952 × 10−1yj 12.24440 −15.57719 18.53611 −8.39220 45.53216 4.00000
rj 0.01679 0.89726 1.59033 0.00101 0.91595 0.42818

Table 6. Optimization results of merging into 5-degree DWB curves in the endpoint-preserving case.

Methods Variables
Optimal Results

Errors
j = 1 j = 2 j = 3 j = 4

BEESO
xj −8.20131 39.56450 −19.65931 24.34362

9.035 × 10−2yj 3.24733 −29.29145 49.90985 16.90465
rj 0.53727 0.00100 0.00100 0.56893

HHO
xj 0.87732 13.14280 4.75472 16.71168

5.343 × 10−1yj −3.53821 −7.58933 25.52112 25.73455
rj 0.31537 0.00101 0.84676 0.31721

GWO
xj 0.47294 16.11563 2.13234 17.18804

3.160 × 10−1yj 2.97535 −28.24119 48.46377 17.45618
rj 0.02652 0.24920 0.17385 0.00476

CSA
xj −4.68901 29.32213 −9.49996 20.92611

1.310 × 10−1yj 3.30309 −29.24612 49.42552 17.16853
rj 0.39449 0.22791 0.02520 0.56299

SO
xj −7.39375 37.00421 −16.71285 23.27150

9.260 × 10−2yj 2.65403 −27.59176 48.18303 17.49296
rj 0.42663 0.16535 0.00100 0.53631

COOT
xj −8.55553 40.40914 −20.04365 24.39021

1.656 × 10−1yj −1.89241 −14.78308 36.14274 21.37543
rj 0.01005 1.27617 0.47971 0.41079

WSO
xj −8.35262 40.14078 −20.35664 24.58088

9.188 × 10−2yj 2.59905 −27.38672 48.11605 17.48977
rj 0.13278 0.65601 0.43303 0.06355

STOA
xj 0.40560 16.82436 0.36679 17.99242

3.627 × 10−1yj −1.91517 −15.74742 38.24499 20.50645
rj 0.18871 0.00133 0.04571 0.00142
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In the case where endpoints are not preserved, there is a large difference in the
optimization results between the eight algorithms. For example, the visual difference
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between the merged curves obtained by HHO, GWO, and CSA and the original curve is
significant, which is also evident from the error for each algorithm in Table 5. Whereas
for the endpoint-preserving case, BEESO, CSA, SO, WSO, and COOT obtain similar effect
plots, the optimized curve from GWO has a large difference in width from the pre-merged
curve. However, by combining the error data in the table, BEESO obtains the minimum
error under each of the two constraints.

Example 3. A 3-degree curve and 4-degree curve are given, respectively, as shown in Table 7, and
the two curves are constructed as shown in Figure 8. This example will discuss the problem of
merging 3- and 4-degree curves based on intelligent algorithms in both the non-endpoint-preserving
and endpoint-preserving cases.

Table 7. Coordinates of the two adjacent DWB curves in Example 3.

Curves Variables
Values

i = 0 i = 1 i = 2 i = 3 i = 4

(W)1(t)
p1,i (2, 7.2) (−1, 1) (2.5, 0.1) (5, 1.5) /
r1,i 0.1 0.3 0.4 0.2 /

(W)2(t)
p2,i (5, 1.5) (7.5, 3) (7.3, 7.8) (3, 7) (2.5, 2.5)
r2,i 0.2 0.4 0.3 0.2 0.2
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The results obtained for this example using the eight algorithms including BEESO and
CSA are shown in Tables 8 and 9. In addition, the graphs of the merging effect obtained by
visualizing the control disks are shown in Figures 9 and 10.

Table 8. Optimization results of merging into 4-degree DWB curves without endpoint preservation.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4

BEESO
xj 2.33358 −7.16306 11.94368 11.57288 1.92318

8.957 × 10−2yj 6.87698 0.49849 −13.06687 18.74353 2.21263
rj 0.08517 0.70571 0.12370 0.46669 0.18610

HHO
xj 0.41095 7.43913 −0.72978 21.80887 1.33647

1.242 × 100yj 6.81754 −4.44108 −2.78939 4.60870 4.11749
rj 0.00100 0.90287 0.00100 1.21484 0.14700

GWO
xj 1.23982 0.87643 6.23859 16.36787 1.47955

2.491 × 10−1yj 7.17040 −1.71070 −11.53857 17.46736 2.32996
rj 0.00320 0.20739 0.14215 0.83420 0.05256
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Table 8. Cont.

Methods Variables
Optimal Results

Errors
j = 0 j = 1 j = 2 j = 3 j = 4

CSA
xj 1.83074 −2.98093 8.27760 15.37562 1.49060

1.754 × 10−1yj 7.34904 −3.57450 −9.40825 14.95596 2.64042
rj 0.00995 0.85501 0.22883 0.54432 0.15462

SO
xj 2.23359 −6.68287 11.81961 11.63043 1.85129

1.082 × 10−1yj 7.17724 −1.95063 −10.98384 16.47034 2.50440
rj 0.16209 0.15410 0.45796 0.27153 0.21107

COOT
xj 1.88280 −3.70309 8.92993 14.75841 1.56662

1.214 × 10−1yj 6.90014 0.24457 −12.88773 18.62515 2.23042
rj 0.20332 0.03849 0.51155 0.21145 0.19090

WSO
xj 2.38130 −6.98332 11.44939 12.27388 1.81599

9.278 × 10−2yj 6.80409 0.83965 −13.17581 18.78726 2.21304
rj 0.11398 0.21875 0.54759 0.09084 0.21260

STOA
xj 1.59611 −2.29075 9.36872 13.10693 1.81932

1.821 × 10−1yj 6.76207 1.85716 −14.39966 20.78648 1.78510
rj 0.00199 1.04260 0.02212 0.00139 0.12128

Table 9. Optimization results of merging into 4-degree DWB curves in the endpoint-preserving case.

Methods Variables
Optimal Results

Errors
j = 1 j = 2 j = 3

BEESO
xj −6.39142 12.63184 9.15882

1.467 × 10−1yj −1.40489 −11.68342 16.97125
rj 0.61966 0.18928 0.38233

HHO
xj −6.96989 13.26127 8.72426

1.588 × 10−1yj −1.97471 −10.73305 16.21491
rj 0.00164 0.64359 0.35071

GWO
xj −6.41252 12.65043 9.15650

1.574 × 10−1yj −1.52899 −11.55796 16.89344
rj 0.03853 0.08682 0.67139

CSA
xj −6.41280 12.65905 9.13950

1.310 × 10−1yj −1.42554 −11.65713 16.95251
rj 0.67248 0.11643 0.43568

SO
xj −6.39179 12.63240 9.15842

1.467 × 10−1yj −1.40506 −11.68327 16.97116
rj 0.61948 0.18948 0.38217

COOT
xj −6.40350 12.64754 9.14612

1.468 × 101yj −1.42201 −11.66099 16.95623
rj 0.54193 0.28413 0.31917

WSO
xj −6.38955 12.62835 9.16185

1.467 × 10−1yj −1.40627 −11.68131 16.96950
rj 0.62091 0.18820 0.38252

STOA
xj −6.34216 12.53565 9.25998

1.618 × 10−1yj −1.69692 −11.50584 16.83058
rj 0.00544 0.00163 0.80658
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For the case of non-endpoint preservation, the approximate merging results of the
three algorithms BEESO, COOT, and SO in Figure 9 are relatively good, with BEESO having
the smallest merging error of all the algorithms. The other algorithms, on the other hand,
all have much room for improvement in their overall results, especially GWO, HHO, and
STOA, which have large errors in the position of the curve and the width of the curve
before merging. Due to the low dimensionality of the optimizing variables in the endpoint-
preserving case, the results for all seven algorithms apart from STOA are approximate and
have a small gap in terms of the combined errors given. For BEESO, SO, and WSO, there
is no significant gap when the errors are kept to three decimal places. The experimental
outcome by keeping the valid data to more than one decimal place is 0.14669880, 0.14669887,
and 0.14669885 for BEESO, SO, and WSO respectively; the error for BEESO is the smallest
of the three algorithms.

4. Conclusions

Based on the basic theory of the disk Wang–Ball curve, an approximate merging
method based on a meta-heuristics algorithm is proposed for the problem that this curve is
difficult to merge. This paper first discusses the approximate merging of DWB curves and
establishes two optimization models from the perspectives of non-endpoint-preserving
merging and endpoint-preserving merging, with the merging error as the objective function.
In addition, BEESO is introduced to solve the constructed optimization models, and the
steps of the algorithm for solving the approximate merging problem of DWB curves are
specified. The method can directly obtain the control disks of the merging curve while
calculating the merging error, which is characterized by simple and practical calculation.
Finally, some advanced algorithms are selected for comparison in Section 3.3, and the
effectiveness of the method in curve design is also demonstrated by the fact that BEESO
achieves DWB curves with good merging results in all three numerical examples.

The approximate merging model developed in this paper achieves a good merging
effect and a small error, but the integral form leads to a more complex model, and the
algorithm runs slower during the solution process. The question of how to simplify or
build the mathematical model in a simple way so that it can be applied to the approximate
merging of disk curves is a problem to be solved in the future. In addition, BEESO
can be used to solve optimization problems in areas such as cryptosystem design [63],
path planning, geometry optimization [40,64], engineering design [65,66], and feature
selection [67].
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