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Abstract: Compared to terrestrial transportation systems, the expansion of urban traffic into airspace
can not only mitigate traffic congestion, but also foster establish eco-friendly transportation networks.
Additionally, unmanned aerial vehicle (UAV) task allocation and trajectory planning are essential
research topics for an Urban Air Mobility (UAM) scenario. However, heterogeneous tasks, temporary
flight restriction zones, physical buildings, and environment prerequisites put forward challenges for
the research. In this paper, multigene and improved anti-collision RRT* (IAC-RRT*) algorithms are
proposed to address the challenge of task allocation and path planning problems in UAM scenarios by
tailoring the chance of crossover and mutation. It is proved that multigene and IAC-RRT* algorithms
can effectively minimize energy consumption and tasks’ completion duration of UAVs. Simulation
results demonstrate that the strategy of this work surpasses traditional optimization algorithms,
i.e., RRT algorithm and gene algorithm, in terms of numerical stability and convergence speed.

Keywords: UAVs; UAM scenario; task allocation; path planning; multigene algorithm; RRT*
algorithm

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, have attracted lots of atten-
tion from the industry and academia, owing to their versatility, flexibility, and coordinated
swarming capabilities [1]. UAVs are primarily categorized into two fixed-wing and rotary-
wing UAVs [2]. Unlike fixed-wing UAVs, the latter can hover at fixed sites and vertically
takeoff or land without runways or launchers. Therefore, the deployment and collabo-
ration of rotary-wing UAVs offers a practical solution to alleviate congestion in ground
transportation and delivery backlogs in urban environments [3]. In this context, Urban
Air Mobility (UAM) scenario, demonstrated by Uber in [4], uses a type of rechargeable
rotary-wing UAV called electric Verticals Take-Off and Landing (eVTOL) to balance the
delivery of goods and passenger transport.

The industrial landscape of applying UAVs in the logistics and transportation sectors
is also in progress. For instance, Walmart employed automated UAVs to deliver goods
to customers in rural areas. DHL, one of Europe’s biggest mailing companies, tested
a new automation UAV-based platform for providing services. Regarding aeronautical
manufacturing enterprises, e.g., NASA, Uber, and Hyundai Motor have focused their
attention on the architectural and technical challenges of integrating automated UAVs
into UAM transportation systems [2]. A key technique challenge in UAM is the strategic
deployment of UAVs for provision services. The procedures of UAV deployment can be
mainly classified into route planning and task allocation [5].

In terms of task-allocation problems, collaboration among UAVs is crucial to reduce
conflicts and enhance efficiency. Hao-Xiang et al. put forward a modified organism
search algorithm to solve task assignment problems with multiple UAVs [6]. The work [7]
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proposed an adaptive genetic algorithm to assign multiple heterogeneous UAVs performing
military tasks within a limited time. Randal et al. studied cooperative target assignments
under enemy threats.

Mathematical models of previous works mainly include Mixed Integer Linear Pro-
gramming (MILP), Multiple Traveling Salesman Programming (MTSP), Multiple Vehicle
Routing Programming (MVRP) and Cooperative Multiple Task Assignment Programming
(CMTAP) [8–11]. The MILP model is widely used in task assignment problems owing
to its extensibility. However, the simple processes of MILP models are more suitable for
small-scale problems. Additionally, the MTSP model does not consider the heterogeneity of
tasks. Additionally, the MVRP model suits well time-constrained tasks, but does not refer
to the flight dynamic performance of UAVs [12–14]. On the contrary, the CMTAP model is
suitable for heterogeneous task assignments with multiple UAVs. Therefore, the CMTAP
model of this work is built and studied for task assignment problems with multiple UAVs
in a UAM scenario.

As for addressing the CMTAP model of task assignment problems, genetic algorithms
are commonly used for their scalability, simplicity, and extensibility. However, the failure
of a single UAV can cause deadlock in the genetic algorithm. Moreover, different task
constraints for heterogeneous tasks can lead to the local existence of the solution. In this re-
gard, the work improves and proposes the efficient and innovative multigene algorithm by
designing customized selection and multipoint crossover for heterogeneous tasks. Specific
details will be expanded in the following sections [15,16].

The main goal of the trajectory design of multiple UAVs is to improve energy efficiency
and enhance the timeliness of the system. Huimin et al. optimized UAVs’ trajectory to
minimize time-related performance [17]. They presented a novel framework to solve the
realistic non-convex problem. The work [18] adopted the genetic algorithm and the particle
swarm algorithm in optimizing the trajectories of UAVs. The simulation proves that the
genetic algorithm performs better than the particle swarm algorithm [19].

According to route planning problems of multiple UAVs in previous works, an efficient
path planning algorithm can improve the execution efficiency and robustness of the system.
Therefore, reducing the obstacle avoidance system’s discovery time and path length is
worthy of research. Hassan et al. proposed a novel hybrid form of the Dubins-simulated an-
nealing (HDSA) optimization framework for emergency landing, which can plan the most
suitable and admissible trajectory to the landing site in emergency flight conditions [20].
Dolgov et al. proposed the A* algorithm, a graph traversal algorithm, to find the optimal
path in an obstacle avoidance system [21]. However, the computation load of each step
increases fast with the growth of the complexity of the environment [22,23]. The rapidly
exploring random tree (RRT) algorithm has the integrity of spatial search ability to fast and
randomly sample in the map without pre-modeling [24]. However, the convergence speed
of the RRT algorithm is low, and the smoothness of the generated path is poor due to the
randomness of the search direction [25–29].

Previous works have improved and optimized the RRT algorithm to address its short-
comings in the efficiency of path planning. The RRT* algorithm proposed by Karaman et al.
adopts two strategies, reselecting parent nodes and rewiring, to plan a near-optimal path,
which may increase time cost [30]. Luo et al. proposed an informed RRT* algorithm based
on Karaman’s work. The informed RRT* algorithm limits the sampling area to an ellipse to
improve the speed of obtaining the asymptotic optimal path [31]. Kuffner et al. proposed
the RRT Connect algorithm, which adds one more random tree with the target point as
the root node [32,33]. Two random trees of the RRT Connect algorithm grow towards each
other simultaneously [34].

Although scholars have performed a lot of previous work on improving the RRT*
algorithm to solve route planning problems, there still exists poor adaptability to the
UAM scenario, slow convergence speed in finding the target, and poor planning path
quality [35,36]. To address the above shortcomings, this work proposes an improved
anti-collision RRT* (IAC-RRT*) algorithm. First, the IAC-RRT* algorithm offers the map
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complexity evaluation strategy to calculate the corresponding map’s suitable step size
and bias probability. The time switching factor is also used to adapt the UAM scenario.
Moreover, the normal line between the source and the goal is introduced to ensure the
random tree explores positively to the target point. Simulation results have demonstrated
the IAC-RRT* algorithm can improve the effectiveness and quality of sampling points,
leading to better planning path quality.

Overall, the main contributions of this paper are listed as follows:

• To the best of our knowledge, we first study to minimize energy consumption in the
context of heterogeneous task assignments for multiple UAVs in urban environments.
This research not only tackles the task assignment problem but also considers charging
requirements and diverse task types. Consequently, the task assignment problem
constitutes a CMTAP model. To address this model, we propose a multigene algorithm
by designing customized selection and multipoint crossover mechanisms to handle
the heterogeneity of tasks.

• This paper also proposes the IAC-RRT* algorithm to compute the route planning
problems in the UAM scenario. A time-switching factor is proposed to adapt the
airspace management regulations of the UAM scenario. Moreover, the normal line
between the source and the goal is introduced to ensure the random tree explores
positively to the target point. Compared to the RRT* algorithm, the novel route
planning method works well in urban environments.

• Simulation results indicate that the strategy of this work exhibits superior adaptabil-
ity and efficiency than the traditional optimization algorithm, i.e., RRT* algorithm,
and gene algorithm. This advancement marks a significant stride in optimizing UAV
schedules within UAM scenarios.

2. Models and Methods
2.1. System Model

We consider a UAV-enabled task scheduling system in UAM scenarios with UAVs,
u ∈ U = {1, 2, . . . , Nu}, and tasks, s ∈ S = {1, 2, . . . , Ns}, as shown in Figure 1, where U
and S are sets of UAVs and tasks, respectively. Additionally, the number of UAVs and tasks
are denoted as Nu and Ns. Each UAV has communication and navigation devices, allowing
persistent real-time communication with the ground control center. Heterogeneous tasks,
randomly generated and distributed in urban space, are divided into different classes
according to the traffic demand, which will be discussed in the following subsection. Nu
UAVs cooperatively visit Ns known task sites in clusters, and the IAC-RRT* algorithm is
employed to optimize the trajectory of each UAV, thereby guaranteeing the minimization
of flight paths while adhering to safety protocols.

The location of the s-th task point is denoted by coordinates (xs, ys, hs), where s ∈ S .
Similarly, the position of the u-th UAV at a given time t is denoted by (xt

u, yt
u, ht

u). Al-
though tasks are heterogeneous, the mechanical energy consumption of UAVs during
the task execution is not incorporated in the total energy consumption in subsequent
problem formulations.

2.1.1. Heterogeneous Task Execution Model

As for UAV tasks, the k-th task generated at time t is denoted as

st
l(k) = {Fl(k), Dl(k), (x(k), y(k), h(k))}, (1)

where l ∈ 1, 2, 3 represents different task types, and Fl(k) denotes the total number of UAVs
are required to finish the k-th task, which is defined as

Fl(k) =

{
1, single − UAV mission,
{n| n ≥ 2, n ∈ N+}, multi − UAVs mission,

(2)
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where Dl(k) represents the duration of completing the task, which remains consistent for
tasks of identical type. And (x(k), y(k), h(k)) is the position of a specific task st

l(k). In this
paper, UAV missions are divided into three typical types, each tailored to meet the demands
of the UAM scenario.
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Figure 1. System model of UAV-enabled task scheduling system in UAM scenario.

Air taxi task I: This task type is denoted by l = 1. As shown in Figure 1, there
are Na air taxi tasks in the UAM scenario, e.g., UAV i transports loads in demand from
one designated site TA2 to another TG2. The subscripts of TA and TG are numbered
sequentially. Additionally, this is the single-UAV mission type and Fl = 1. The air taxi task
is marked in blue from the timeline of the left part of Figure 1.

Hover and monitor task II: This task type is denoted by l = 2. Multi-cooperated UAVs
can be used as effective tools to hover at fixed locations and monitor some specific applica-
tions in UAM scenarios, i.e., precision agriculture, smart traffic monitor. To mathematically
measure the problem of this type, we define a general task type with multi-cooperated
UAVs performing tasks, and thus Fl ≥ 2. Moreover, assigned UAVs cooperate and hover at
task sites for a given length of time under unified control. Additionally, there are Nh hover
and monitor tasks in the task set T .

Recharge task III: This task type is denoted by l = 3, and Fl = 1. Considering the
battery capacity and the flight endurance of rotary-wing UAVs, charging stations are
established in specific urban areas. Drones with low battery status can autonomously
navigate to these stations for recharging. It is worth noting that each UAV’s battery capacity
is defined as C, with three operational modes to ensure drone safety.

The battery level restricts task types that UAVs can accept. Firstly, the i-th UAV can
not take air taxi task I if its current battery level Ci(t) is less than 0.4C. Then, if the i-th UAV
is in the middle of some task and its current battery level is less than 0.3C, it will flee back
to the charge station once it finishes the task. Lastly, the i-th UAV is forced to fly back to
the charge station when its battery level is less than 0.2C, regardless of whether it is in the
middle of the task. However, if the UAV leaves its current task, this task will be judged
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as a failure. Therefore, task types taken by the i-th UAV with different battery levels are
given as 

s1(k), s2(k), 0.4C ≤ Ci(t) ≤ C,
s2(k), 0.3C ≤ Ci(t) ≤ 0.4C,
s2(k), s3(k), 0.2C ≤ Ci(t) ≤ 0.3C,
s3(k) Ci(t) ≤ 0.2C.

(3)

In (3), s1(k), s2(k), s3(k) are used to represent air taxi task I, hover and monitor task II and
recharge task III.

2.1.2. Energy Consumption Model

This subsection illustrates the energy model for a UAV during a cruise. Within the
specific scenario as shown in Figure 2, the analysis of energy consumption during UAV
movements is divided into four distinct phases, contingent upon the UAV’s state of motion.
We assume GV as the standard gravity of the UAV. The rotary-UAV’s thrust can be calcu-

lated as FV =
√
(GV − (a1(Vhor cos(α))2 + a2FV)2 + (a3V2

hor)
2. Vhor and Vhor are horizontal

speed and vertical speed, respectively. α is the directional angle between the next target
location and its orientation to the next waypoint. Although the flight dynamics of UAVs
are intricate, any flight maneuver executed by a UAV can be decomposed into horizontal
and vertical components. When calculating the energy consumption of complex flight
movements, it can be effectively represented by summing the energy expenditures of both
horizontal and vertical flight motions.

Figure 2. Cyclical movement of UAV.

(1) UAV horizontally flying regime: In this state, UAVs horizontally fly during its
transit. Suppose the horizontal flight velocity remains constant at Vt, and the consumption
power PI(Vt) for horizontal flight is expressed as [37]

PI(Vt) =

(
k1

k2
+ a4

)
FV

3/2 + a3V3
t . (4)
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(2) UAV hovering regime: Similarly, the power consumption during UAV hovering
PH is represented as [37]

PH = =

(
k1

k2
+ a4

)
G3/2

v , (5)

where charging stations are located at ground level, necessitating UAVs to ascend or
descend for recharging or task execution.

(3) UAV vertically flying upward regime: By neglecting the acceleration and deceler-
ation process, UAVs ascend or descend at a constant velocity Vu. The ascending related
power denoted by PA is calculated by [37]

PA(Vu) = k1Gv

Vu

2
+

√(
Vu

2

)2
+

Gv

k2
2

+ a4G3/2
v . (6)

(4) UAV vertically flying downward regime: the descending related power denoted
by PD with Vu is formulated as [37]

PD(Vu) = k1GV

−Vu

2
+

√(
Vu

2

)2
+

Gv

k2
2

+ a4G3/2
v . (7)

In (4)–(7), k1, k2, a1, a2, a3, and a4 are technical parameters of vehicles, independent
of the UAV’s motion or environment factors. Therefore, the energy consumption analysis
for the k-th flight of UAV i can be segmented into four components corresponding to the
movement states. The total energy consumption of UAV i’s k-th flight, Wk

i , can be given as

Wk
i =

∫ τk
i

0
Pk

i (t) dt =
Nj+1

∑
k=1

PI(Vt)
dk

j,i

Vt︸ ︷︷ ︸
Horizontal f light

+

Nj

∑
n=1

PHτk,H
i,j︸ ︷︷ ︸

Hover

+ PA(Va)
Hk
Va︸ ︷︷ ︸

Ascent

+ PD(Vd)
Hk
Vd︸ ︷︷ ︸

Descent

, (8)

where Nj is the total tasks that UAV i should finish in its k-th flight. dk
j,i is the distance

between the site of task j and its previous site. τk
i is the k-th total flight duration of UAV

i. τk,H
i,j is the hovering duration at site of task j. Hk is the sum of elevated height in its

k-th flight. Additionally, Va and Vd are the velocities of upward and downward flight,
respectively.

2.2. Problem Formulation
2.2.1. Task Allocation Problems

The goal of task allocation is to achieve the optimal assignment of Ns tasks to Nu
UAVs to maximize the overall reward. Additionally, the task list comprises Na air taxi
tasks, Nh hover and monitor tasks, which satisfies

Ns = Na + Nh, (9)

and each task is exclusively assigned to a specific vehicle during a single flight. Furthermore,
each UAV can be assigned a maximum of Lt tasks, subject to the condition

Ns < Nu · Lt. (10)

The global reward function is the summation of local rewards for each vehicle, which
is determined by a function of the tasks assigned to each UAV. Optimization goals of time
and energy consumption are studied separately. The time-oriented problem focuses on
minimizing the time required to complete all tasks in an urban scenario, which can be
mathematically represented as
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P1 : min
Nu

∑
i=1

ti

s.t.

ti =
Ns

∑
p

Ns

∑
j

Si
jp × ti

jp +
Ns

∑
p

Si
pa × ti

pa︸ ︷︷ ︸
f light time between task points

+
Ns

∑
j=1

Di
j × td

j︸ ︷︷ ︸
duration o f task j

+
Nu

∑
i

REi
a × tc

︸ ︷︷ ︸
charging duration

Di
j =

{
1, if UAV i handles task j,
0, otherwise

Si
ak =

{
1, if UAV i handles tasks a, j,
0, otherwise,

REi
a =

{
1, if UAV i charges at site a,
0, otherwise

(11)

where td
j is the operation time of task j, which is uniform for all UAVs. tc denotes the fixed

charging duration, ti
pa signifies the flight duration between site p and a, and the charging

station a. Constraints indicate that the operation time of a single UAV depends on whether
the task is undertaken and which charging station is chosen.

The minimal power consumption problem is independent of the minimal time prob-
lem, as the power consumption of each vehicle determines the power consumption of
completing all tasks in the system. According to Equations (4)–(8), the power consumption
optimization problem of k-th flight can be represented by

P2 : min
Nu

∑
i=1

Wk
i

s.t.

i ∈ U , i ≤ Nu,

k ∈ N ∗,

(12)

where k belongs to the set of positive integers N ∗, and represents any flight of UAV i.

2.2.2. Route Planning Problems

The goal of route planning in this paper is to find the path with the shortest distance
from the initial task site to the final task site within a limited time while avoiding obstacles
in the UAM Operating Environment (UOE). The UOE, a flexible airspace area, can be
redefined and modified over time. For example, if the traffic patterns at a nearby airport
change, the available UOE may be adjusted to avoid potential traffic conflicts. Changes in
the available UOE are likely to occur several times daily and can be promptly detected by
the ground control center. Taking into account the dynamic nature of the UOE, the cost
function for distance, Clength, can be represented by the node i [38],



Biomimetics 2024, 9, 125 8 of 18

P3 : min
Nu

∑
i=1

Clength

s.t.

Dpoints = {id |id ∈ Discovered Points},

id ∈ Qn + γstQst,

γst =

{
1, if normal traffic of UAM scenario,
0, otherwise,

(13)

where γst represents the time transformation factor, which can be utilized to indicate the
available UOE over time. The depreciation of (13) aims to identify the minimal Clength
encompassing the points id discovered by the proposed algorithm within the available
UOE. Qn, Qst, and Qob are the general area, “flexible” area and obstacle area, respectively,
where the “flexible” area can be controlled to switch by γst.

2.3. Proposed Algorithms
2.3.1. Multigene Algorithm for Task Allocation Problem

The initial step of the multigene algorithm involves the design of an encoding scheme
that establishes connections between task sets, UAV sets, execution sequences, and assign-
ment rules. Therefore, the proposed algorithm encodes the solution for (11) and (12) into a
matrix form, also referred to as a chromosome, as shown in Figure 3. Each “gene” corre-
sponds to a column with the matrix, representing a specific task assignment. In the first
row of Figure 3, there are 10 tasks, comprising seven air taxi tasks labeled as 1–7, and three
hover and monitor tasks labeled as 8–13. Additionally, No.8 and No.9 are associated with
the same multi-vehicle task, necessitating the participation of two distinct vehicles. Rows
two through six represent task type, execution order, UAV order number, execution time,
and energy consumption.

Figure 3. Figure of multigene chromosome coding method.

The second step involves chromosome initialization, randomly generating Nchrom
encoding schemes. These Nchrom initial chromosomes constitute the first generation of task
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allocation schemes. Subsequently, the initial set of chromosomes undergoes the iteration
of crossover, mutation, and reinsertion until either the maximum number of iterations is
reached or the optimal task allocation scheme is found. The processes mentioned above are
outlined as follows.

Phase 1, crossover process: By employing roulette wheel selection, the selected chromo-
some randomly modifies segments of the gene sequence within its vicinity. The crossover
probability Pc varies depending on the task type and is defined as follows:

Pc =

{
Pc(l = 1), l = 1,
Na

2Nh Pc(l = 1), l = 2,
(14)

where Pc(l = 1) is set as a constant according to the simulation needs, Na and Nh represent
the numbers of air taxi tasks and hover and monitor tasks, respectively. Given that the
hover and monitor task requires two different UAVs, the crossover probability Pc matching
with the quantitative proportion of two task types can improve the search efficiency of the
multigene algorithm. Furthermore, a partially matched crossover method ensures that each
gene occurs only once, as shown in Figure 4.

Figure 4. Figure of chromosome crossover.

Phase 2, mutation process: In Figure 5, chromosome variation encompasses single-
point mutation and hybrid mutation. The single-point mutation alters the UAV order
number, while hybrid-point mutation modifies execution order. If the probability of single-
point mutation and hybrid-point mutation set as a constant, Pm, the risk of losing excellent
individuals increases. Therefore, the probabilities of single-point mutation and hybrid-
points mutation are customized for each scheme based on its fitness value, F, in comparison
to the average fitness value, F̄, which are defined as

F =
1

∑Nu
i=1 ti

,

F̄ =
1

∑Nchrom
i=1 F

.
(15)
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Figure 5. Figure of chromosome variation.

To accelerate the retention of superior schemes and the elimination of inferior schemes,
the mutation probability of the current scheme is calculated as

Pm =

{
(Pm1 − Pm2) · ln(A · F + B) + Pm1, F ≥ F̄,
Pm1, F < F̄,

(16)

where Pm, Pm1, and Pm2 represent the current, minimum, and maximum values of mutation
probability. A and B are functions designed to balance the relationship between mutation
probability and fitness function, which are defined as

A =
e − 1

e(F̄ − Fmax)
, (17)

B =
F̄ − eFmax

e(F̄ − Fmax)
, (18)

where F, Fmax, and F̄ are the fitness function’s current, maximum, and average values. e is
Euler constant. Specifically, when calculating the fitness function value F for the current
assignment, if F ≥ F̄, mutation probability should be set as the first case of (16). Otherwise,
the mutation probability of the current scheme should be set to the maximum value of the
mutation probability.

Phase 3, reinsertion process: The reinsertion process selects the chromosome with the
best performance and inserts it into the next iteration. It ensures the subsequent generation
maintains or improves upon the quality of the solution to the problem.

Overall, the process of the multigene algorithm has been organized and shown in
Algorithm 1.
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Algorithm 1 Multigene algorithm for solving task allocation problem

Input:
U = {1, 2, . . . , Nu}, S = {1, 2, . . . , Ns}, Na, Nh;

Output:
task allocation scheme with the highest F;

1: Initialize Nchrom schemes in initial chromosome;
2: Calculate F of each scheme of the initial chromosome;
3: Set Fmax and calculate F̄ of the initial chromosome;
4: Ge = number of iterations;
5: Set Pc, Pm, Pm1, Pm2;
6: while i ≤ Ge do
7: Crossover process in Phase 1;
8: Mutation Process in Phase 2;
9: Reinsertion Process in Phase 3;

10: Select the scheme with the highest F in this generation;
11: i = i + 1;
12: end while
13: Output the scheme with the highest F in the last generation.

2.3.2. Improved Anti-Collision RRT* (IAC-RRT*) Algorithm for Route Planning Problem

In this subsection, we proposed the IAC-RRT* algorithm, a robust and efficient algo-
rithm for route planning designed to address the challenge of identifying feasible pathways
within the UAM operation environment. The principles and concrete steps are as follows.

The first step involves map initialization and updating of task sites. The urban
airspace area Q is divided into available area, Qn, “flexible” area, Qst, obstacle area, Qob
in Section 2.2.2. And the “flexible” area is controlled to switch by γst; the relationship is
given as

Q = Qn + Qst + Qob, (19)

then the start-point, qstart and the end-point, qend are positioned within the domains Qn
or Qst. The task is deemed unsuccessful if these points fall outside the accessible regions,
represented as

qstart, qend ∈ Qn ∪ Qst. (20)

Subsequently, a direct line connecting qstart and qend is established, designated as the
normal line R1, which aids in assessing exploration node efficiency.

The second step entails the construction of the tree structure. The algorithm explores
the surrounding area with the radius Re from the root node qstart and creates the newly
found node qnew. The search and explore principle can be given that the smaller the
included angle, θne(i), between the normal direction and explore direction, the higher the
chance of the node, pne(i) to be chosen.

pne(i) =
1

π/θne(i)
. (21)

The algorithm determines whether the newly generated node qnew belongs to Qn ∪ Qst.
If qnew ∈ Qob, the node will be discarded at once. Otherwise, the time transformation factor
γst will be used to determine whether the “feasible” area Qst would allow flight action.

Then, IAC-RRT* algorithm reselects neighbor node qnear of qnew within the radius of
R, which is defined as

qnear ∈ {dis(qnear, qnew) < R}, (22)
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By comparing the distance from qnear to qstart and qnew, the IAC-RRT* algorithm
decides whether to change the parent node of qnew.

min Dnew = dis(qstart, qnear) + dis(qnear, qnew),

s.t. qnear ∈ {dis(qnear, qnew) < R},
(23)

the optimal reselected neighbor, denoted as q∗near, becomes the new parent node of qnew.
The rewiring process aims to reduce the path length across the global tree nodes, i.e., calcu-
lating the distance Dnear between each neighbor node and qnew, and selecting the minimal
distance to qstart. The mathematical representation of the rewiring process is as follows:

min Dnear = dis(qstart, qnear),

s.t. qnear ∈ {dis(qnear, qnew) < R},

qnew ∈ {parent nodes o f qnear},

(24)

These steps are reiterated until the distance between the newly generated node qnew
and qend is less than R. IAC-RRT* algorithm is described in Algorithm 2.

Algorithm 2 IAC-RRT* algorithm for solving route planning problem

Input:
Qn,Qst,Qob,qstart,qend,n iteration times;

Output:
Route from qstart to qend;

1: Search from qstart;
2: while Iterate n times do
3: while dis(qnew, qend) > R do
4: Generate qnew within the radius R;
5: if qnew ∈ Qob do
6: discard qnew;
7: else qnew ∈ Qn ∪ γstQst do
8: reselect parent node for qnew;
9: min Dnew = dis(qstart, qnear) + dis(qnear, qnew);

10: rewire with qnear as the parent node;
11: min Dnear = dis(qstart, qnear);
12: end if
13: end while
14: Backtrack along qnew from qend to qstart, i.e., find the route;
15: Select the route with minimal distance from each iteration;
16: end while
17: Output the selected route from qstart to qend.

3. Results

To evaluate the performance of the multigene algorithm and IAC-RRT* algorithm, we
conduct simulations and compare the results with a few traditional task allocation and route
planning algorithms. For all simulations without particular illustration, the parameters are
fixed: we set the number of UAVs to 4, the number of tasks to 10, the number of air taxi
tasks to 7, and the number of hover and monitor tasks to 3. The details of the simulations
are presented as follows.

3.1. Simulation Results of Multigene Algorithm

In this subsection, we employ the gene and ant colony algorithms as comparative
benchmarks. To assess the convergence probability, a series of experiments are conducted
to search the most energy-efficient and quickest task allocation schemes.

Figure 6 limits the maximum iterations to 100 to ensure consistent experimental condi-
tions, thereby evaluating the search performance of the multigene algorithm. Figure 6a–c
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demonstrate that our method significantly surpasses the gene and ant colony algorithms
regarding search speed and optimal search outcomes, focusing on energy consumption,
distance, and completion time. This superiority is attributed to the multigene algorithm’s
targeted crossover and mutation, unlike the random approach of the other algorithms.
Thus, we yield that heterogeneity-oriented crossover and mutation enhance the chance of
discovering the optimal solution.

Figure 7a depicts the relationship between the average system search time and the
average number of simulation times. We can yield that with the increase in an average
number of simulation times, the trend of average search time reveals no direct correlation.
Additionally, the ant colony algorithm exhibits marginally inferior performance at lower
simulation times. Figure 7b examines the association between average search time and
the number of schemes of each iteration. A consistent trend is observed from Figure 7b.
Given its superior search capabilities and outcomes, the extra search time invested in the
multigene algorithm is deemed cost-effective.

Figure 8a,b present the system’s total energy consumption by varying tasks and UAV
numbers. As depicted in Figure 8a, the number of UAVs is set to 10. Additionally, we also
set 11 tasks with 7 single-UAV tasks and 2 multi-UAV tasks, 12 tasks with 8 single-UAV
tasks and 2 multi-UAV tasks, 13 tasks with 7 single-UAV tasks and 3 multi-UAV tasks,
and 14 tasks with 8 single-UAV tasks and 3 multi-UAV tasks. We can conclude that total
energy consumption increases with the number of tasks. Compared to the single-UAV
tasks, the multi-UAV tasks will cause more significant growth in energy consumption. It
can be explained by inherent complexity of heterogeneous tasks.
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Figure 6. System performance of multigene compared with iterations. (a) Total energy consumption
with iterations. (b) Average distance with iterations. (c) Average completion time with iterations.
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Figure 8. Energy consumption by varying number of tasks and UAVs. (a) Total energy consumption
by varying number of tasks. (b) Total energy consumption by varying number of UAVs.

Figure 8b shows the system’s energy consumption variation by changing the number
of UAVs. We can see that increasing the number of UAVs can not permanently reduce
energy consumption. Notably, excessive UAVs can lead to inefficiencies and increased
energy use. An inadequate number of UAVs can cause extreme round trips from charging
stations to task sites.

Figure 9 investigates the impact of crossover and mutation probabilities on the iter-
ations required to identify the optimal scheme. We set schemes with system time under
6000s as the optimal schemes. Figure 9a reveals an inverse relationship between crossover
probability and required iterations, as a higher crossover probability enhances the chance
of identifying more suitable task assignments. On the contrary, the iterations to find the
optimal scheme vary with the likelihood of mutation Figure 9b. An increase in mutation
probability risks losing excellent schemes, and an excessively low mutation probability
may fail to generate sufficient options for optimal selection.
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Figure 9. The number of iterations to find the optimal scheme by varying probabilities of crossover
and mutation. (a) The number of iterations to find the optimal scheme by varying probability of
crossover. (b) The number of iterations to find the optimal scheme by varying probability of mutation.

Figure 10 displays the UAV task schedule for an optimal task assignment. There are
seven single-UAV tasks s1(k) and three multi-UAV tasks, color-coded for differentiation,
s2(1), s2(2), s2(3). It can be observed that the optimal scheme balances fairness and
effectiveness. Each UAV is assigned a similar number of tasks. However, the UAV to finish
particularly challenging or isolated tasks, i.e., UAV4, may undertake fewer additional tasks.
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Figure 10. Task time schedule of four UAVs.

3.2. Simulation Results of IAC-RRT* Algorithm

This subsection explores the performance of the IAC-RRT* algorithm. We simulated
4 UAV-assisted route planning scenarios in an urban environment. The environmental
map is modeled as a 2000 × 2000 × 100 m3 cube, which is divided into available areas,
Qn, “flexible” areas, Qst, obstacle areas, Qob. Flexible areas Qst, modeled as green box
regions, are controlled by a time-switching factor γst. Obstacles Qob are modeled as
randomly located hemispherical regions. All UAVs start and end at (0, 0, 5). Task sites
which have seven single-UAV tasks and three multi-UAV tasks are randomly distributed
in Qn. The radius of exploration sets as 5 m. The RRT algorithm serves as a benchmark
for comparison.

Figure 11 represents the searching time performance of three algorithms over different
building densities. To test the obstacle avoidance performance of the IAC-RRT* algorithm,
RRT and RRT* algorithms work as comparison groups [25]. Accordingly, the gap is not
distinct at low building density because random search methods may not easily bump into
obstacles. However, searching methods along the normal direction have better effects at
high building densities. Additionally, simulation results prove that the IAC-RRT* algorithm
performs better than the RRT algorithm and RRT* algorithm in a complex obstacle environ-
ment. Figure 12 portrays the IAC-RRT* algorithm’s route search process. Figure 12a depicts
the initial single route of the IAC-RRT* algorithm by finishing three tasks. Consequently,
Figure 12b defines the search process of the IAC-RRT* algorithm. It can be obtained that ex-
ploration detection of the search process prioritizes the normal line R1 to increase the target
discovery chance. Figure 12c depicts the final planned route for all vehicles of the IAC-RRT*
algorithm. We can affirm the IAC-RRT* algorithm’s proficiency in task completion.

Figure 13 compares the system performance of the IAC-RRT* algorithm and RRT
algorithm. Figure 13a shows the IAC-RRT* algorithm’s faster convergence time by 13%
compared to the RRT algorithm. Then, Figure 13b depicts the search distance performance
of the IAC-RRT* algorithm. The variation in the number of average simulations between
5 and 15 owes to too few experiments. It can also be obtained that converge speed of the
IAC-RRT* algorithm is quicker 12% than the RRT algorithm. Figure 13c demonstrates times
passing through Qst of the IAC-RRT* algorithm and RRT algorithm. The time-switching
factor γst reduces 85% per cent passengers through Qst. Remaining points occurs in Qst of
IAC-RRT* algorithm when γst = 1.
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Figure 12. Routing planning map of IAC-RRT* algorithm in urban environment. (a) Single route
found by IAC-RRT* algorithm. (b) Search process of IAC-RRT* algorithm. (c) Final planning route
for all vehicles of IAC-RRT* algorithm.
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Figure 13. System performance of IAC-RRT* algorithm compared with RRT algorithm. (a) Searching
time performance of IAC-RRT* algorithm compared with RRT algorithm. (b) The optimal feasible
distance of IAC-RRT* algorithm compared with RRT algorithm. (c) Times passing through Qst of
IAC-RRT* algorithm compared with RRT algorithm.
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4. Conclusions

In this paper, we propose the multigene algorithm and IAC-RRT* algorithm to solve
UAV task allocation and route planning problems in the UAM scenario. Also, we studied
the UAV power model and task model, and derived expressions of task allocation problems.
Simulation results indicate that our algorithms have better numerical stability, which results
in better solutions to the problem. The convergence speed of the proposed multigene
algorithm is 20 percent faster than the traditional gene algorithm. Additionally, the IAC-
RRT* algorithm can handle airspace control issues with robust performance. It can converge
quicker 12% than the RRT algorithm.
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