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Abstract: This work highlights the relevant contribution of conformational stereoisomers to the
complexity and functions of any molecular compound. Conformers have the same molecular and
structural formulas but different orientations of the atoms in the three-dimensional space. Moving
from one conformer to another is possible without breaking covalent bonds. The interconversion is
usually feasible through the thermal energy available in ordinary conditions. The behavior of most
biopolymers, such as enzymes, antibodies, RNA, and DNA, is understandable if we consider that
each exists as an ensemble of conformers. Each conformational collection confers multi-functionality
and adaptability to the single biopolymers. The conformational distribution of any biopolymer has
the features of a fuzzy set. Hence, every compound that exists as an ensemble of conformers allows
the molecular implementation of a fuzzy set. Since proteins, DNA, and RNA work as fuzzy sets, it is
fair to say that life’s logic is fuzzy. The power of processing fuzzy logic makes living beings capable of
swift decisions in environments dominated by uncertainty and vagueness. These performances can
be implemented in chemical robots, which are confined molecular assemblies mimicking unicellular
organisms: they are supposed to help humans “colonise” the molecular world to defeat diseases in
living beings and fight pollution in the environment.

Keywords: chemistry; conformational stereoisomers; entropy; proteins; antibodies; intrinsically
disordered proteins; DNA; RNA; fuzzy logic; chemical robotics

1. Introduction

Molecular Complexity is a highly debated topic that interests many fields, such
as synthetic organic chemistry [1–4] and drug discovery [5–8], the origin of life and
biology [9–11], astrochemistry [12,13], Chemical Artificial Intelligence [14–16], and confor-
mational statistics [17–19]. Unfortunately, a unique and universally accepted definition of
Molecular Complexity does not exist. Indeed, it is fair to state that it refers to the structures
of the molecules, and it is well-established that the molecular structures rule the behavior
of molecules.

Several algorithms have been proposed to quantify Molecular Complexity [20]. Most
of these algorithms are based on representing molecules as two-dimensional graphs and
use Shannon’s entropy formula (see Equation (1)) [21]. Any molecular structure constitutes
a message carrying a certain amount of information or entropy, the more significant the
amount of this information, the larger the Complexity of the structure.

H(X) = −∑i p(xi)·log2 p(xi) (1)

In Equation (1), p(xi) represents the frequency of a particular structural feature (xi)
such as single atoms (for instance, C, N, O, and so on) or atomic groups (for instance,
the carbonyl C=O or the imine C=N groups). When a molecule is described through the
laws of quantum physics, each electron will be represented by a wavefunction ψj

(→
r
)

,
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and a density ρj

(→
r
)
=
∣∣∣ψj

(→
r
)∣∣∣2. The value of the density ρj

(→
r
)

is proportional to the

probability of finding the j-th electron in a particular point,
→
r , of the three-dimensional

space. If ρ
(→

r
)

represents the density of all the electrons, the integral
∫

ρ
(→

r
)

d
→
r represents

the total number of electrons (N). If ρ
(→

r
)
= ρ

(→
r
)

/N is the molecular electron density
normalized to unity (i.e., the so-called shape function) [22], it is a probability of finding
electrons in the different spatial points. Therefore, it can be used in the definition of
Shannon’s Entropy:

H(X) = −
∫

ρ
(→

r
)
·log

(
ρ
(→

r
))
·d→r (2)

Other algorithms exploit simple topological or physicochemical descriptors (for in-
stance, the number of chiral centers, the molecular weight value, the number of rings, the
number of topological torsions, and so on) to determine Molecular Complexity [1,2,4,23,24].
However, they need parametrization that can only be performed within specific classes
of molecules.

Recently, two new approaches, which are based on molecular fragmentation, have
been proposed. One is purely theoretical and involves fractal geometry [25]. A fractal
dimension, d, of any molecule is calculated through the equation below:

d = lim
1/γ→0

(
log(N)

log(γ)

)
(3)

In Equation (3), γ is the number of bonds and N is the number of distinct subgraphs
obtained as fragments of the original graph. The fractal dimension becomes a quantitative
estimation of Molecular Complexity in analogy to other research fields [26,27]. The other
approach evaluates the minimum number of steps to reconstruct a molecule, starting from
its irreducible parts made of bonds and atoms [11]. This latter approach is supported by
experimental data collected by tandem mass spectrometry.

As far as we know, in all the approaches and algorithms proposed so far for estimating
Molecular Complexity, no one considers the contribution of the conformations, although
they often play relevant roles in chemical reactivity. This work aims to highlight and quan-
titatively characterize the contribution of conformations and has the following structure:

Paragraph 2 presents the types of information required to specify the structure of
a molecule.

Paragraph 3 introduces Conformational Entropy.
Paragraph 4 explains that any conformational distribution works as a fuzzy set, and

introduces Fuzzy Entropy.
Paragraph 5 reports some examples of the relevant roles played by conformations

in biopolymers.
Paragraph 6 highlights that the logic of life is intrinsically fuzzy.
Paragraph 7 proposes a promising strategy to implement fuzzy logic in Chemical

Artificial Intelligence and Robotics.

2. Hierarchical Description of a Molecular Structure

It is well-known that the behavior of any molecular compound depends on its structure.
The definition of a molecular structure requires three types of information.

Firstly, the “Molecular Formula” (see Figure 1a) specifies the types and numbers
of each chemical element within the molecule. The Molecular Formula includes infor-
mation regarding the types and number of subatomic particles (electrons, protons, and
neutrons) associated with every chemical element if the isotopes for each element are
explicitly indicated.
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Figure 1. Examples of Structural Isomers that have the same molecular formulas but distinct structural
formulas in (a). Difference between configurational and conformational isomers of Tryptophan in (b).
Examples of other configurational stereoisomers in (c).

Then, it is required to describe the order and how the atoms are bound. This infor-
mation is included in the “Structural Formula” (see Figure 1a) that defines the molecular
skeleton. Molecules with the same Molecular Formulas but different Structural Formulas
are called structural isomers. If each molecule is viewed as a network or a graph [28], hav-
ing the atoms as nodes and the covalent bonds as edges, the information contained in its
Structural Formula can be translated into a peculiar adjacency matrix ASF (see Equation (4)).
The rank of the matrix equals the number of the atoms NA, and each entry of the matrix,
ai,j, will be 0 if the atoms i and j are not bound, and it will be different from 0 otherwise.

ASF =


a1,1 · · · a1,NA

... ai,j
...

...
. . .

...
aNA ,1 · · · aNA ,NA

 (4)

ASF will be particularly informative if every term ai,j 6= 0 reports the absolute strength
of the covalent bond linking the pair of i and j atoms. Alternatively, it might be the
bond’s length.

Finally, it is essential to know the relative orientation of the atoms in the three-
dimensional (3-D) space. Atoms and atomic groups that are not covalently bound but are
spatially close, will interplay through electrostatic forces (such as the dipole-dipole and
dipole-quadrupole interactions). The new adjacency matrix G3D (see Equation (5)) will
have two types of non-null terms, gi,j 6= 0: one type relative to covalent bonds and already
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included in ASF, and another type relative to the electrostatic interactions established
through the 3D space. Each gi,j can be the bond’s strength or the bond’s distance.

G3D =


g1,1 · · · g1,NA

... gi,j
...

...
. . .

...
gNA ,1 · · · gNA ,NA

 (5)

Molecules with identical Molecular and Structural Formula (and hence identical
adjacency matrices ASF), but different orientations of the atoms in 3-D space (and hence
distinct adjacency matrices G3D

)
are called stereoisomers. Stereoisomers can be either

configurational or conformational. They are configurational if the transformation from one
stereoisomer to the other requires the breakage of at least one covalent bond, hence a few eV.
They are conformational if the transition from one stereoisomer to another does not require
the breakage of any covalent bond. Instead, it is required to overcome energetic barriers
that are usually as high as or ten times higher than the thermal energy available at room
temperature (i.e., kT ≈ 0.02 eV). Figure 1b shows that the chiral amino-acid Tryptophan
exists as two configurational stereoisomers: L- and D-Tryptophan. They are specular but not
overlapping structures and are called enantiomers. Both L- and D-Tryptophan exist as two
collections of conformational isomers. Three staggered conformers for both enantiomers
are depicted in Figure 1b. These staggered structures are among the most stable conformers
because the steric hindrances are minimized (i.e., the repulsive electrostatic interactions
between the negative electronic charges are minimized). The transformation rate of one
conformer to another depends on the energetic barrier height that must be overcome: the
higher the barrier, the slower the transformation rate. At the limit, when these barriers
are as high as the thermal energy available, the transformation is ultrafast. It occurs in
the time scale of single vibrations (i.e., 10−13s). Intramolecular steric hindrances due to
bulky molecular groups, intramolecular hydrogen bonds, or viscous micro-environments
might hinder and reduce conformational dynamicity, which refers to the degree of freedom
to move from one conformer to another using the available thermal energy. Also, low
temperatures slow down the conformational dynamicity.

Finally, Figure 1c reports another example of configurational stereoisomers: the cis-
and trans-2-Butene. They are called geometrical isomers, and it is possible to transform one
stereoisomer into the other only after breaking the π bond of the C=C group.

Any compound that exists as a collection of NC conformational stereoisomers must
be represented by an ensemble Γ of NC adjacency matrices of the type

(
G3D

)
k, with

k = 1, 2, . . . , NC, each multiplied by a weight coefficient wk, which represents the relative
abundance of the k-th conformer:

Γ =
(

w1
(
G3D

)
1, w2

(
G3D

)
2, . . . wk

(
G3D

)
k, . . . , wNC

(
G3D

)
NC

)
(6)

with

(
G3D

)
k =


(g1,1)k · · ·

(
g1,NA

)
k

...
(

gi,j
)

k

...
...

. . .
...(

gNA ,1
)

k · · ·
(

gNA ,NA

)
k

 (7)

The sum of all the weight coefficients wk is equal to 1:

∑NC
k=1 wk = 1 (8)

The physicochemical properties of any compound, and particularly its chemical re-
activity, depend on Γ, i.e., its conformational distribution. Furthermore, Γ is context-
dependent. In other words, the conformational distribution of any compound is strongly
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affected by the physicochemical features of the surrounding micro-environment. The
physicochemical context (pcc) is usually described by specifying the values of macroscopic
parameters such as temperature (T), pressure (P), volume (V), surface area extension (A),
and chemical composition (C):

pcc = f (T, P, V, A, C) (9)

The chemical composition C affects other relevant features of the medium, such as
its polarity and viscosity. pcc is a multivariable vector-valued function. If the variables
T, P and C (appearing in Equation (9)) assumes just one uniform value in space, the micro-
environment is homogeneous. In this case, there is just one context and hence just one Γ

(see Equation (6)). On the other hand, when at least one of the three parameters T, P and C
are not uniform in space, the micro-environment is heterogeneous. In this case, there will
be more than one context, i.e., pcc1, pcc2, . . ., and hence more than one Γ:

(
Γ
)

pcc1
,
(
Γ
)

pcc2
,

and so on, with as many Γ as are the number of distinct contexts. It is worthwhile noticing
that the conformational distribution might depend on how a physicochemical context is
reached, i.e., the path and how fast the path is traced.

3. Conformational Entropy

The knowledge of Γ (see Equation (6)) requires the determination of the NC adjacency
matrices

(
G3D

)
k, and their relative weights wk, with k = 1, 2, . . . , NC. Such determination

can be accomplished either computationally or experimentally.
Computationally, the structures of the most stable conformers for a particular com-

pound can be determined by solving the Schrödinger equations. If the NC conformers’
collection is at the thermodynamic equilibrium and abides by the Maxwell and Boltzmann
statistics, and Ek is the potential energy of the k-th conformer, the probability of the k-th
conformer will be:

pk =
e−(

Ek
kT )

∑NC
k=1 e−(

Ek
kT )

(10)

Based on the quantum-mechanical simulations and Equation (10), it is possible to
define Conformational Entropy using Information (Shannon) Entropy [21]:

SCC = −∑NC
k=1 pklog(pk) (11)

For computational reasons, the simulations of the conformational distributions are usu-
ally carried out by assuming that the compound is in a vacuum or within a homogeneous
medium. When high-performance computational machines are available, it is possible to
exploit more sophisticated methods to consider micro-heterogeneous systems [29].

Conformational Entropy can also be determined experimentally. The first requirement
is to pinpoint a variable V that is a function of the conformational distribution for a
particular compound. In the case of a homogeneous microscopic system embedding that
specific compound, like a dilute solution in a pure solvent, the intermolecular interactions
among the conformers can be considered negligible. Therefore, the value of the variable V
can be expressed as the weighted sum of the contributions Vk of the NC conformers:

V = ∑NC
k=1 vkVk (12)

If Equation (12) holds, then the experimentally determined Conformational Entropy
SEC will be:

SEC = −∑NC
k=1 vklog(vk) (13)

The vk values appearing in Equation (12) often differ from the pk values appearing in
Equation (10). The vk values depend not only on the relative abundance of the conformers
but also on conformational contribution to the value of the variable V. For instance, if V
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represents the luminescence intensity, vk will be a function of both the relative amount of
the k-th conformer and its photoluminescence quantum yield.

In the case of micro-heterogeneous environments, if NE is the number of distinct
physicochemical contexts (pcc) wherein each of the NC conformers can reside, then
Equation (12) transforms into Equation (14):

V = ∑NC
k=1 ∑NE

j=1 vkjVkj (14)

wherein the subscript k = 1, . . . , NC represents the number of conformers, whereas the
subscript j = 1, . . . , NE represents the number of distinct micro-environments. In this latter
case, the experimentally determined Conformational Entropy SEC will be:

SEC = −∑NC
k=1 ∑NE

j=1 vkjlog
(

vkj

)
(15)

It is worthwhile noticing that Equations (11) and (13) are relative to the specific case
wherein there is just one micro-environment, i.e., NE = 1.

4. Fuzzy Entropy

Any conformational distribution Γ has the features of a fuzzy set [30,31]. A fuzzy set
is a peculiar kind of set that is completely different from a classical Boolean set [32]. For
any Boolean set, an element either belong or not to the set. The degree of membership of an
element to a Boolean set can be either 1 or 0. On the other hand, for a fuzzy set, an element
can belong to it with a degree of membership, which can be any real number included
between 0 and 1.

Boolean sets are the foundations of the crisp binary logic, which allows the manipula-
tion of statements that are either completely true or completely false. On the other hand,
fuzzy sets are at the foundations of fuzzy logic. Fuzzy logic represents a good model of
human capability to “compute”, i.e., make decisions, using syllogistic statements of the
type IF. . ., THEN. . .., and words of natural language [33]. Any nonlinear input-output
relationship can be modelled by building a Fuzzy Logic System (FLS). The construction
of a FLS requires three fundamental steps [34], which are (1) the granulation of the input
and output variables, (2) their graduation, and finally (3) the formulation of the fuzzy rules
(see Figure 2). The granulation of the variables is operated by partitioning the numerical
values of both the input and output variables in fuzzy sets: the number, position, and
shape of the fuzzy sets are context-dependent (in Figure 2, each of the two input and
one output variables has been partitioned into four fuzzy sets). The graduation of the
variables is carried out by labeling each fuzzy sets through an adjective (in Figure 2, the
adjectives “Low”, “Medium”, “High”, and “Very High” have been used for labeling the
fuzzy sets). Finally, the fuzzy rules are formulated as syllogistic statements of the type
IF. . ., THEN. . ., wherein the antecedents (i.e., the IF part) will involve the linguistic labels
chosen for the input fuzzy sets, whereas the consequent (i.e., the THEN part) will contain
the words chosen for labeling the output fuzzy sets. In case of multiple input variables,
the antecedents are connected through the AND, OR, NOT operators, which correspond to
the operations of intersection, union, and complement of fuzzy sets, respectively. Since the
construction and functioning of any FLS rely on a rigorous mathematical procedure that
allows the manipulation of not only wholly true and false but also partially true statements,
Fuzzy logic has been defined as a rigorous logic of vague reasoning [35].
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Any compound that exists as a conformational distribution Γ can contribute to the
granulation of the physicochemical variables, such as temperature, pressure, chemical
composition (see Equation (9)), electric and magnetic fields which affect the properties
of Γ. The weight coefficients wk (with k = 1, 2, . . . , NC) appearing in the definition of Γ

(Equation (6)) become the degrees of membership of the different NC conformers to the
molecular fuzzy set Γ. Its Shannon entropy becomes the fuzzy entropy, HF [36]:

HF = −∑NC
k=1 wklog(wk) (16)

When the same compound experiences NE distinct micro-environments, i.e., NE
different physicochemical contexts (pcc), then NC × NE weight coefficients (wkj, with
k = 1, . . . , NC and j = 1, . . . , NE) can be defined, and fuzzy entropy becomes:

HF = −∑NC
k=1 ∑NE

j=1 wkjlog
(

wkj

)
(17)

Molecular conformations play relevant roles in biochemistry as shown for biopolymers
in the next paragraph.

5. The Biochemical Relevance of Conformations

Proteins are among the most important biopolymers in living cells as also suggested
by the etymology of the term “protein”, which derives from the Greek “proteios” meaning
“holding the first place” [37]. Over 120 years ago, it was proposed that any protein has
just one well-defined three-dimensional (3D) structure determined by its aminoacidic
sequence. This idea promoted the formulation of the strongly selective lock-and-key
paradigm for the description of protein-and-substrate interplay [38]: one aminoacidic
sequence gives rise to one specific 3D structure and one peculiar function. This assumption,
also known as Anfinsen’s dogma [39], was supported by data mainly collected through
X-ray crystallography.

Data collected through alternative techniques, such as NMR, time-resolved spectro-
scopies, and high-resolution microscopies, have challenged this old-fashioned paradigm [40].
A new view has emerged: proteins are innately flexible and each of them exists as a collec-
tion of many conformers. Such a conformational multiplicity, also called “diversity”, confers
multi-functionality to the proteins: every protein exerts several different functions [41].
In other words, conformational diversity gives rise to functional promiscuity [40,42,43].
These two traits render proteins evolvable macromolecules. The structure and function of a
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protein can evolve depending on the features of the chemical context because the physico-
chemical properties of the microenvironment affect the conformational distribution. It is
now well-established that proteins can moonlight. Moonlighting proteins are proteins in
which one polypeptide chain performs more than one physiologically relevant biochemical
or biophysical function. So far, hundreds of moonlighting proteins are known [44]. Most of
them perform different functions in distinct cellular localizations. Sometimes changes in
the cellular concentration of substrates or other ligands can serve as a trigger for changing
protein functions. In general, moonlighting proteins undergo structural changes, which
can be small movements of surface loops or more drastic modifications of their tertiary or
quaternary structures. The latter changes are especially observed in Intrinsically Disordered
Proteins (IDPs). It is now recognized that a large portion of the proteome in all domains of
life and all viral proteomes examined comprise the so-called IDPs [39,45–50], also named as
Intrinsically Unfolded Proteins (IUPs), and proteins made up of combinations of structured
and Intrinsically Disordered Regions (IDRs) [51]. These proteins are characterized by the
lack of a well-defined 3D structure under physiological conditions. They are conformation-
ally heterogeneous. Their conformational heterogeneity enables context-specific functions
to emerge in response to environmental conditions and allows a single structural motif
to be used in multiple settings [52]. Undoubtedly, the structural flexibility and plasticity
represent a functional advantage conferring a wide range of biological functions to IDPs.
For instance, they participate in the regulation of cell division, transcription and translation,
signal transduction, circadian rhythmicity, phenotypic plasticity, et cetera [39,46,53]. IDPs
tend to be multitaskers. They can bind and release multiple targets. They can play as
signaling hubs that orchestrate complex cellular events. They also fulfil a relevant role in
forming biomolecular condensates [54] that are transient, membrane-less structures that
form within cells as reaction chambers.

Between the cases of proteins having a well-defined 3D structure, the so-called Folded
Proteins (FPs), and the IDPs (or IUPs), there are two other categories, as shown in Figure 3.
One is that of metamorphic proteins (graph B in Figure 3) that have two or more folded
structures as their native states [55]. They are in thermodynamic equilibrium due to the
low activation barrier of refolding [56]. The different structures usually have different
functions (Metamorphic proteins that have two or a few more folded structures as their
native states can be exploited to process discrete logics). The other category is known
as that of Marginally Stable Proteins (MSPs) (see graph C of Figure 3). MSPs exist as an
equilibrium mixture of folded and unfolded states [52]. When the folded state (labelled
as “F” in Figure 3A) is much more stable than the unfolded states (labelled as “U”), and
the free energy difference is larger than 2 Kcal/mol (∆GF−U > 2 Kcal/mol ≈ 0.09 eV) [57],
then the protein behaves as a FP (see graph A in Figure 3 where the free energy landscape
is depicted as a rugged funnel with the folded state as the most stable conformation or
graph B where the free energy landscape has two minima representing the F1 and F2 states
separated by a low barrier). When the free energy difference between the F and U states
is less than 2 Kcal/mol, then the protein behaves as an MSP (see graph C in Figure 3).
Two or more states (folded and unfolded) coexist in thermodynamic equilibrium. Even
small energetic inputs can alter the equilibrium. Therefore, MSPs are powerful sensors
both in vitro and in vivo. Finally, graph D represents the case of an IDP or IUP: its free
energy landscape is almost flat and rugged with small energetic barriers, permitting mutual
interconversion of multiple conformations. IDPs can adopt a continuum of structural states.
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Figure 3. The four graphs present four types of proteins based on the free energies for their confor-
mational structures. The x-axes represent the atomic coordinates involved in the conformational
distributions of the proteins. Graph (A) represents a Folded Protein (FP) when the folded (F) state has
a much lower free energy than the unfolded (U) states. Graph (B) refers to a metamorphic protein
that has two distinct folded structures (F1 and F2) with close energies. Graph (C) refers to Marginally
Stable Proteins (MSPs) for which the free energy difference (∆GF−U) is less than 2 Kcal/mol. Graph
(D) represents the generic case of an IDP wherein abundant conformers have similar free energies
and coexist at ordinary temperatures.

IDPs can remain partially disordered even in the bound state in the presence of a
partner. This behavior has been named as “fuzziness” [58]. The fuzziness of IDPs may
refer to static structural promiscuity, when the IDP has more than one stable bound state,
or to dynamic disordered parts of the bound IDP. Fuzziness confers IDPs some functional
advantages: interactions with alternative partners and simultaneous interactions with
different partners. Due to its intrinsic evolvability, it seems plausible that IDPs may have
contributed to the development of early life forms [59,60]. The theories of how life emerged
can be grouped into two principal visions [61,62]. One hypothesis highlights the relevance
of metabolism, in which small molecules formed an evolving network of reactions driven
by an energy source [63]. The other vision contemplates the necessity of a replicator, i.e., a
large molecule, such as RNA, formed by chance and capable of replicating [64]. According
to the RNA-world hypothesis, life emerged from self-replicating RNA molecules that
could catalyze chemical reactions. Isolated RNA is not stably folded. It can be frozen to a
stable structure after interacting with a scaffold that might have been made of IDPs. This
hypothesis is supported by the evidence that ribosomes are made of RNA interacting with
proteins [65].

Protein conformations play relevant roles also in the immune system. A limited
repertoire of antibodies and T-cell receptors can recognize and bind to an almost infinite
number of antigens [66,67]. This conundrum of “infinite ligands for finite receptors” cannot
be solved by the lock-and-key paradigm. The alternative model of pre-existing equilibrium
among distinct conformations was envisaged by Pauling in the 1940s [68]. According to this
model, an antibody subsists as an ensemble of conformations that coexist in equilibrium,
each providing a peculiar binding site and binding specificity (see Figure 4 wherein the
Relative Binding Strength of a generic antibody toward the chemical space of ligands is
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graphed). An antigen binds more strongly to one or a few more conformations of an
antibody, thereby biasing the equilibrium towards it or them. This behavior can satisfy
the antipodal demands of plasticity in recognition and fidelity during the response [69]. A
single antibody can bind to multiple antigens: it cross-reacts. The multiplicity of antibodies’
conformations allows functional diversity without depending on the aminoacidic sequence
diversity. The multi-specificity or cross-reactivity (also called promiscuity or degeneracy)
of antibodies, T-cell receptors, and other immune system receptors (such as the natural
killer cell receptors) confers adaptability to the immune system, but also the pathological
capability of turning against the organism is meant to protect [67,70].
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Figure 4. Multi-specificity or cross-reactivity of the immune system’s receptors. Any antibody exists
as an ensemble of conformations: each conformer provides a peculiar binding strength towards
different ligands. RSB stands for Relative Binding Strength of the antibody’s conformations to the
different ligands. The antibody’s conformations and the chemical space of ligands are represented
along the binding reaction coordinate.

Conformations are relevant not only for proteins but also for the two other major
biopolymers of living cells, i.e., RNA and DNA.

RNA is a highly flexible and dynamic molecule: it has the intrinsic capability of
adopting many interconverting conformations [71]. This ensemble of conformations confers
to RNA regulatory roles in many cellular processes, such as transcription, translation,
splicing, and nuclear export [72–74]. RNA misfolding or aberrant RNA structures caused
by mutations or abnormal interactions with other biomolecules can lead to diseases [71].

DNA is a very long polymer that folds hierarchically, through specific proteins (called
histones), into several layers of higher-order structures, constituting the genome [75]. The
three-dimensional conformational organization of the genome plays an essential role in
all the fundamental cellular processes involving DNA, i.e., gene transcription, regulation,
and DNA replication [76,77]. Only a small fraction of the genome encodes proteins. Most
of the genome exerts regulatory functions. These regulatory functions depend on the
three-dimensional conformational organization of the genome. Other striking cellular
events strongly depend on the genome’s conformations: they are the physical separation of
chromosomes in bacteria, and chromatid demixing and compaction in eukaryotes. Two
chromosomes or two chromatids have more conformational degrees of freedom when they
are physically separated than when intermingled. The Conformational Entropy of the
genome is maximized by chromosome (or chromatid) segregation [78].
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6. The Logic of Life

The biochemical examples presented in the previous paragraph demonstrate that
living cells hinge on molecular conformations. Since conformational distributions are
molecular fuzzy sets, it can be inferred that the logic of life is fuzzy, i.e., vague [79–82].
Although we lack a universally accepted definition of life, the myriad of known life forms
shares some features [83–92].

Firstly, their chemistry: every living organism is made of at least one cell, which is
an open system, confined by a membrane, and made of a plethora of interacting chemi-
cal compounds, among which the previously mentioned biopolymers, DNA, RNA, and
proteins are the basic ingredients.

Secondly, their cycle: every living being starts its existence after its birth from other
living matter and ends with its death, becoming inanimate. In between, it develops because
it is capable of self-maintaining, self-reproducing [93] and self-protecting against some
intruders and harmful elements.

Thirdly, their computing power: every living being exploits matter and energy to
encode, collect, store, process, and send information to pursue its goals [94,95]. The basic
aims common to every living being are those of surviving and reproducing [96]. Their
achievement induces living beings to adapt by adjusting their metabolic processes, to
acclimate by turning on and off peculiar genes, and to evolve by changing their genome
under an ever-changing environment [97].

The homeostasis and purposefulness of living organisms depend upon a network of
regulatory mechanisms, i.e., negative feedback loops [98,99]. Such loops involve proteins,
RNA, and DNA molecules. Therefore, these regulatory networks are intrinsically fuzzy.
Their fuzziness guarantees adaptability and the capability of making decisions in environ-
ments dominated by uncertainty and vagueness, when truth is partial and relative to the
context [100]. After all, the most striking successes of fuzzy logic implemented in electronic
devices have been achieved in fuzzy controller hardware systems devised to stabilize an
inverted pendulum [101], control a space booster rocket and satellite, an automatic aircraft
landing system, in pattern recognition, and many other applications which need a swift
approximate reasoning [102]. Furthermore, fuzzy logic systems have been built to model
and control chaotic systems [103–108].

7. Mimicking the Logic of Life

The logic of life is fuzzy. The fuzziness of the biochemical circuits derives from
the conformational distributions of biopolymers, such as proteins, DNA, and RNA as
demonstrated in the previous paragraphs. The multiplicity and diversity of conformers
give rise to functional promiscuity: context-specific functions can emerge. Macromolecules
and the circuits they generate are evolvable. These features of biochemical networks
inspire the research line of Chemical Artificial Intelligence (CAI) [14–16,109]. In CAI,
the parallelism of chemical reactions is exploited [110–112]. The inputs and outputs are
physicochemical variables. Particularly valuable is light that bridges the macroscopic and
molecular worlds [113–115].

The purpose of CAI is to exploit molecular, supramolecular, and systems chemistry to
design and implement chemical systems in wetware (i.e., in fluid solutions) to mimic some
performances of human and biochemical intelligence. The ultimate and ambitious goal of
CAI is the development of chemical robots [16,116–118]. Chemical robots are supposed to
be autonomous molecular assemblies, confined within a membrane, having micrometric
dimensions and being provided with four modules: (1) a sensory, (2) a neural network-type,
(3) an effector, and (4) a metabolic module, respectively. The sensory module collects
physicochemical data about the surrounding micro-environment and the internal state of
the robot. The neural network-type module processes the sensory data and make decisions,
triggering the action of the effector module that can act upon the embedding environ-
ment. The intelligent activities of the chemical robots must be energetically sustained by
the metabolic module. Unicellular micro-organisms are prototypes of chemical robots.
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Therefore, the implementation of chemical robots can reside within the broad realm of
synthetic biology. More specifically, chemical robots are supposed to be fabricated through
the bottom-up approach by assembling all the necessary modules required to ensure the
expected performances, as if they were synthetic (or artificial) cells [119–121]. Chemical
robots will be capable of processing fuzzy logic if their modules will rely on molecular
fuzzy sets [30,31], which are conformational distributions, especially those associated with
macromolecules. Mixing conformational distributions belonging to distinct compounds,
which are sensitive to the same kind of physicochemical variables, allows the granula-
tion and graduation of the physicochemical variables, in analogy to the human sensory
system [122–124]. When the molecular fuzzy sets are nodes of network-type chemical
circuits, they allow the implementation of chemical fuzzy neural networks [125]. If these
networks are recurrent because they include feedback actions, they become the chemical
implementation of neuro-fuzzy algorithms, which allow to adapt, learn and make swift
and reasonable decisions in uncertain and vague conditions. The cognitive functions of the
chemical fuzzy neural networks can be increased by assembling distinct chemical robots
and generating a sort of swarm or collective intelligence [126,127]. Such webs or swarm
of chemical robots might establish chemical links with unicellular organisms or more in
general living cells, and originate the so-called Internet of Bio-Nano Things (IoBNTs) [128].

Chemical robots and the hybrid IoBNTs, capable of processing fuzzy logic, promise
to colonize the microscopic world and be helpful in many fields, such as in diagnosis and
therapies for human health, in safeguarding and cleaning natural ecosystems and urban
areas [16,129–131].

8. Conclusions

Fuzzy logic is not only a good model of human capability to compute (i.e., make
decisions) with words [33,123,125], but based on the results presented in this work, it is
also appropriate for interpreting decision making even at the level of single cells. The
conformational distributions’ fuzziness allows the implementation of functional promiscu-
ity and adaptability at the molecular level. When conformational distributions of distinct
compounds are organized in networks, they give rise to higher cognitive functions, such as
the capability of making reasonable decisions in environments dominated by uncertainty
and vagueness. This awareness will be exploited in the design and implementation of
chemical artificial intelligent systems and chemical robots that will help humans to colo-
nize the molecular world [132] and fight against diseases in living beings and pollution
in ecosystems.
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