
Citation: Li, Y.; Feng, Q.; Zhang, Y.;

Peng, C.; Zhao, C. Intermittent

Stop-Move Motion Planning for

Dual-Arm Tomato Harvesting Robot

in Greenhouse Based on Deep

Reinforcement Learning. Biomimetics

2024, 9, 105. https://doi.org/

10.3390/biomimetics9020105

Academic Editor: Ming Xie

Received: 24 December 2023

Revised: 7 February 2024

Accepted: 8 February 2024

Published: 10 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Intermittent Stop-Move Motion Planning for Dual-Arm Tomato
Harvesting Robot in Greenhouse Based on Deep
Reinforcement Learning
Yajun Li 1,2 , Qingchun Feng 2,3,* , Yifan Zhang 2, Chuanlang Peng 2 and Chunjiang Zhao 1,3,*

1 College of Mechanical and Electrical Engineering, Hunan Agriculture University, Changsha 410128, China;
lyj20210043@stu.hunau.edu.cn

2 Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China; vishkcc@163.com (Y.Z.); pcl109969@163.com (C.P.)

3 Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
* Correspondence: fengqc@nercita.org.cn (Q.F.); zhaocj@nercita.org.cn (C.Z.)

Abstract: Intermittent stop–move motion planning is essential for optimizing the efficiency of
harvesting robots in greenhouse settings. Addressing issues like frequent stops, missed targets, and
uneven task allocation, this study introduced a novel intermittent motion planning model using deep
reinforcement learning for a dual-arm harvesting robot vehicle. Initially, the model gathered real-time
coordinate data of target fruits on both sides of the robot, and projected these coordinates onto a
two-dimensional map. Subsequently, the DDPG (Deep Deterministic Policy Gradient) algorithm
was employed to generate parking node sequences for the robotic vehicle. A dynamic simulation
environment, designed to mimic industrial greenhouse conditions, was developed to enhance the
DDPG to generalize to real-world scenarios. Simulation results have indicated that the convergence
performance of the DDPG model was improved by 19.82% and 33.66% compared to the SAC and
TD3 models, respectively. In tomato greenhouse experiments, the model reduced vehicle parking
frequency by 46.5% and 36.1% and decreased arm idleness by 42.9% and 33.9%, compared to grid-
based and area division algorithms, without missing any targets. The average time required to
generate planned paths was 6.9 ms. These findings demonstrate that the parking planning method
proposed in this paper can effectively improve the overall harvesting efficiency and allocate tasks for
a dual-arm harvesting robot in a more rational manner.

Keywords: motion planning; task allocation; deep reinforcement learning; dual-arm harvesting robot

1. Introduction

The proliferation and advancement of industrial greenhouse cultivation models have
significantly boosted the mass and continuous production of fruits and vegetables, with
cherry tomatoes yielding 48–57 kg/m2 [1,2]. In such high-yield environments, the robotic
farming equipment has become essential for complex and labor-intensive horticultural
tasks, enhancing efficiency and optimizing production processes [3]. Commercial fruit-
harvesting robots have been developed and deployed using common fresh fruits such as
tomatoes [4], strawberries [5], and cucumbers [6] as targets.

In past years, a growing number of researchers have incorporated multiple operational
units, and adopted multi-arm collaborative task-planning methodologies, to enhance the
operational efficiency of robots [5,7]. This integration has positioned multi-arm robotic sys-
tems as a promising technological solution, with some already commercially available [8].
While these multi-arm robots have offered benefits in workspace utilization and operational
efficiency, they have also faced more complex, higher-dimensional technical challenges.
In traditional robotic harvesting processes, robots stop and perform harvesting at each
encountered target. The parking decision method did not take into account the regional

Biomimetics 2024, 9, 105. https://doi.org/10.3390/biomimetics9020105 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9020105
https://doi.org/10.3390/biomimetics9020105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-8465-8824
https://orcid.org/0000-0001-8469-2582
https://doi.org/10.3390/biomimetics9020105
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9020105?type=check_update&version=4

Biomimetics 2024, 9, 105 2 of 19

growth distribution characteristics of fruits on either one or both sides. Instead, they
focused solely on whether there was a harvestable fruit present to make the decision. Dual-
arm robots required more efficient parking nodes planning and collaborative strategies
compared to traditional single-arm robots and the aforementioned stopping methods [9].
There were two primary reasons for this. Firstly, different targets could result in significant
variations in operation time. For instance, if the distribution of fruits was uneven, one or
several arms might remain idle until the others complete their tasks. Secondly, the robotic
platform experienced time wastage while switching the working areas. A harvesting robot,
moving along crop rows and determining the appropriate parking node for operation, must
consider both the overall operational time and the number of necessary stops. Therefore,
less frequent parking node planning on the part of the multi-arm robot vehicle is crucial for
harvesting collaboration, aiming to maximize overall efficiency and avoid idle periods in
arm operation.

Parking node planning for multi-arm robots can be viewed as a decision-making
problem, akin to the multiple Traveling Salesman Problem (mTSP) or Vehicle Routing
Problem (VRP). This issue has necessitated description and resolution through applications
of operations research and mathematical programming techniques [9]. Barnett et al. [7]
devised a task distribution strategy for multi-arm kiwifruit harvesting robots, considering
both task partitioning and reachability. This strategy aims to ensure uniformity in fruit
distribution while minimizing the time required to complete the task. Wang et al. [10]
introduced an improved ant colony algorithm that focuses on the entire work path, facil-
itating whole-process path planning for multiple agricultural machines. This approach
resulted in a reduction in path cost by 14% to 33%. Furthermore, some scholars have
developed parking node planning algorithms using techniques such as grid maps [11],
spiral-spanning tree coverage (STC) [12], area division [13], etc. These algorithms have the
potential to significantly improve the working efficiency of harvesting robots [9]. However,
vehicle parking node planning for multi-arm robots harvesting in multiple directions have
presented challenges due to additional constraints such as task allocation, workspace, stop
frequency, etc.

Deep Reinforcement Learning (DRL), a type of machine learning algorithm where
agents learn optimal behaviors through trial-and-error interactions with their environment,
have demonstrated exceptional performance in robotics [9,14], path planning [2,15], and
combinatorial optimization problems [16,17]. Kyaw et al. [18] employed DRL based on
grid maps to solve the Traveling Salesman Problem (TSP), achieving path planning for
robots in large, complex environments. Considering the capability of DRL to address
optimization decision-making problems with less prior information, Martini et al. [19]
implemented position-agnostic autonomous navigation in vineyards using DRL, without
the help of GPS and visual odometry technologies. Wang et al. [13] developed a DRL-
based movement planning method for kiwifruit-harvesting robots, converting traditional
grid-based coverage path planning into a TSP problem focused on area traversal order.
This method enhanced navigation efficiency by 35.72% over the boustrophedon algorithm.
These DRL-based methods achieved a robust and efficient performance for various robot
controllers and planners [2]. However, these methods primarily targeted the path planning
of the robot vehicles with a single arm or multiple arms while harvesting on the same
side [9,13]. They were not suitable for multi-arm harvesting robots operating on both sides
simultaneously in a greenhouse environment.

In this paper, we introduced a Deep Reinforcement Learning-based minimal frequency
parking node planning algorithm for a dual-arm harvesting robot, specifically developed
for tomato greenhouses. The algorithm simultaneously optimizes two primary objectives,
minimum parking frequency and fruit distribution on both arms, to maximize the overall
operational efficiency of the robot. Our approach employed a “mapping-then-motion-
planning” strategy. The dual-arm robot began by moving from the starting to the endpoint
of the crop row to construct a projected map of tomato clusters on both sides. This projection
map was then input into a policy model to generate a reverse movement path for the robot

Biomimetics 2024, 9, 105 3 of 19

vehicle. The goal was to enable the agent to take into account the overall distribution
comprehensively, minimize unnecessary parking, and address the issue of uneven fruit
allocation leading to idle in the arms. The main contributions are as follows:

(1) A real-time tomato cluster coordinate projection method was proposed to obtain the
distribution of tomato clusters in a greenhouse environment;

(2) A deep reinforcement learning algorithm, DDPG, was employed to generate the
sequence of parking nodes for the vehicle of a dual-arm harvesting robot. This
replaced the conventional method whereby tomato-harvesting robots would cease
and harvest at each target they encountered. This novel approach ensured that both
arms were actively engaged in harvesting tasks during each parking phase, with each
arm executing multiple harvests;

(3) The trained policy model was implemented on an actual dual-arm robot and com-
pared with a grid-based and area division parking node planning algorithm. The
feasibility of real-time mapping and efficient parking planning was demonstrated.
While ensuring no tomatoes were missed, this approach addressed the main limitation
of existing planning methods, which failed to consider the simultaneous operation
of both arms of the robot. This significantly reduced the frequency of the vehicle’s
stops, thereby enhancing the overall harvesting efficiency and enabling effective task
distribution between the two arms of the robot.

2. Materials and Methods
2.1. Greenhouse Environment

The harvesting experiments were conducted in the Shounong Cuihu Agricultural
Tomato Production Park in Haidian District (116.176242 E, 40.127529 N), Beijing, China,
depicted in Figure 1. This greenhouse adhered to the planting and management practices
typical of the Dutch standard. The layout featured dual crop row arrangements separated by
aisles, facilitating robot movement along the rows. Each row comprised plants suspended
from gutters attached to the roof of the greenhouse [20]. Notably, workers had previously
pruned the leaves in the height range of existing mature fruits, to improve ventilation
and sunlight and reduce pests and diseases [21]. Given the natural variability in plant
growth and ongoing maintenance activities, we conducted measurements and analyses on
10 distinct crop rows. Consequently, the identified harvesting area was characterized by a
ground clearance height ranging from 100 to 148 cm and a width of 20 cm. The spacing of
crop rows measured 91.5 cm on the aisle side and 70 cm on the backside, with a length of
100 m. The practical aisle width was approximately 71.5 cm, considering the encroachment
of plant fruits and leaves, which further limited the available space.

Biomimetics 2024, 9, x FOR PEER REVIEW 4 of 19

were actively engaged in harvesting tasks during each parking phase, with each arm

executing multiple harvests;

(3) The trained policy model was implemented on an actual dual-arm robot and com-

pared with a grid-based and area division parking node planning algorithm. The fea-

sibility of real-time mapping and efficient parking planning was demonstrated.

While ensuring no tomatoes were missed, this approach addressed the main limita-

tion of existing planning methods, which failed to consider the simultaneous opera-

tion of both arms of the robot. This significantly reduced the frequency of the vehi-

cle’s stops, thereby enhancing the overall harvesting efficiency and enabling effective

task distribution between the two arms of the robot.

2. Materials and Methods

2.1. Greenhouse Environment

The harvesting experiments were conducted in the Shounong Cuihu Agricultural To-

mato Production Park in Haidian District (116.176242 E, 40.127529 N), Beijing, China, de-

picted in Figure 1. This greenhouse adhered to the planting and management practices

typical of the Dutch standard. The layout featured dual crop row arrangements separated

by aisles, facilitating robot movement along the rows. Each row comprised plants sus-

pended from gutters attached to the roof of the greenhouse [20]. Notably, workers had

previously pruned the leaves in the height range of existing mature fruits, to improve

ventilation and sunlight and reduce pests and diseases [21]. Given the natural variability

in plant growth and ongoing maintenance activities, we conducted measurements and

analyses on 10 distinct crop rows. Consequently, the identified harvesting area was char-

acterized by a ground clearance height ranging from 100 to 148 cm and a width of 20 cm.

The spacing of crop rows measured 91.5 cm on the aisle side and 70 cm on the backside,

with a length of 100 m. The practical aisle width was approximately 71.5 cm, considering

the encroachment of plant fruits and leaves, which further limited the available space.

Figure 1. Overview of the experimental environment. (a) Greenhouse environment. (b) Schematic

side view of the crop.

2.2. Dual-Arm Harvesting Robot System and Workspace Area

Figure 2 shows our dual-arm robot prototype, which consisted of an orbital-type mo-

bile vehicle equipped with two seven-degrees-of-freedom (7-DOF) arms (xMateER3Pro,

Rokea, Beijing, China). The arms were arranged in a staggered configuration on the vehi-

cle with a longitudinal spacing of 0.9 m. The height of the arm base from the ground was

0.69 m. The end-effector was attached to, and therefore a part, of Link 7. The link coordi-

nation system of the arm is shown in Figure 2c. An Intel Realsense D435i RGB-D camera

Figure 1. Overview of the experimental environment. (a) Greenhouse environment. (b) Schematic
side view of the crop.

Biomimetics 2024, 9, 105 4 of 19

2.2. Dual-Arm Harvesting Robot System and Workspace Area

Figure 2 shows our dual-arm robot prototype, which consisted of an orbital-type
mobile vehicle equipped with two seven-degrees-of-freedom (7-DOF) arms (xMateER3Pro,
Rokea, Beijing, China). The arms were arranged in a staggered configuration on the
vehicle with a longitudinal spacing of 0.9 m. The height of the arm base from the ground
was 0.69 m. The end-effector was attached to, and therefore a part, of Link 7. The link
coordination system of the arm is shown in Figure 2c. An Intel Realsense D435i RGB-D
camera (Intel Corporation, Santa Clara, CA, US) was fixed on the end-effector of the arm in
an eye-in-hand configuration, facing the plants on both of the robot’s sides.

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 19

(Intel Corporation, Santa Clara, CA, US) was fixed on the end-effector of the arm in an

eye-in-hand configuration, facing the plants on both of the robot’s sides.

Figure 2. Overview of the dual-arm tomato-harvesting robot. (a) Prototype. (b) Side view of the

robot. (c) Link coordination system of the arm.

In our study, traditional grasping methodologies [4,22] were enhanced through the

implementation of an adaptive adjustment mechanism in the end-effector. This modifica-

tion allowed for precise alignment with the fruit main-stem and peduncle during the har-

vesting process. Notably, the 6th joint of the arm consistently maintained a horizontal ori-

entation, as illustrated in Figure 3a. Considering the above pose constraints of the arm, a

Monte Carlo method was used to calculate the dexterous workspace [23] of the arm, and

randomly generated 50,000 points. As shown in Figure 3b–d, the diameter of the dexter-

ous workspace of the arm was nearly 1.0 m. The center of the harvesting area was posi-

tioned 0.7 m from the arm base, enabling it to cover the entire area effectively. Considering

the height range and width of the harvesting area, the actual effective workspace area of

the arm was projected onto a two-dimensional plane. This projection, shown as the red

area in Figure 3e, outlined a rectangular region with dimensions of 0.439 × 0.48 m. How-

ever, this study utilized a slightly smaller area of 0.4 × 0.48 m for analysis.

Figure 2. Overview of the dual-arm tomato-harvesting robot. (a) Prototype. (b) Side view of the
robot. (c) Link coordination system of the arm.

In our study, traditional grasping methodologies [4,22] were enhanced through the
implementation of an adaptive adjustment mechanism in the end-effector. This modifi-
cation allowed for precise alignment with the fruit main-stem and peduncle during the
harvesting process. Notably, the 6th joint of the arm consistently maintained a horizontal
orientation, as illustrated in Figure 3a. Considering the above pose constraints of the arm, a
Monte Carlo method was used to calculate the dexterous workspace [23] of the arm, and
randomly generated 50,000 points. As shown in Figure 3b–d, the diameter of the dexterous
workspace of the arm was nearly 1.0 m. The center of the harvesting area was positioned
0.7 m from the arm base, enabling it to cover the entire area effectively. Considering the
height range and width of the harvesting area, the actual effective workspace area of the
arm was projected onto a two-dimensional plane. This projection, shown as the red area in
Figure 3e, outlined a rectangular region with dimensions of 0.439 × 0.48 m. However, this
study utilized a slightly smaller area of 0.4 × 0.48 m for analysis.

2.3. Tomato Cluster Coordinate Projection and Mapping

This study referenced SLAM (Simultaneous Localization and Mapping)-based nav-
igation techniques [5], implementing a “mapping-then-motion-planning” strategy. This
approach was designed to enable the harvesting robot to efficiently plan its movements,
taking into account the distribution of ripe tomato clusters across the two rows.

Biomimetics 2024, 9, 105 5 of 19

Biomimetics 2024, 9, x FOR PEER REVIEW 6 of 19

Figure 3. Effective workspace area of the harvesting arm. (a) Example of the robot in a harvesting

posture. (b) Workspace of the arm with a constant picking pose. (c) Top view (X−Y Plane) of the

workspace. (d) Side view (Y−Z Plane) of the workspace. (e) Schematic of the operating area in a

greenhouse environment. (A–A) Projection of the effective workspace area.

2.3. Tomato Cluster Coordinate Projection and Mapping

This study referenced SLAM (Simultaneous Localization and Mapping)-based navi-

gation techniques [5], implementing a “mapping-then-motion-planning” strategy. This

approach was designed to enable the harvesting robot to efficiently plan its movements,

taking into account the distribution of ripe tomato clusters across the two rows.

As demonstrated in Figure 4, the robot simultaneously captures color and aligned

depth images of the crop rows on both sides using dual RGB-D cameras during movement.

Each RGB image boasted a resolution of 640 × 480 pixels. The cameras were positioned at

a height of 1.24 m and were located 0.6 m from the center of the harvesting area. The

YOLOv5 deep learning network [21,24] was used to identify the tomato clusters in real

time. The model was designed to identify three distinct types of tomato clusters: unripe,

ripe, and ripe yet unsuitable for harvesting due to obstructions. As the cameras traveled

along the crop rows at 2 m/s in the tomato greenhouse (Section 2.1), the detection model

attained a precision of 94.4% and an F1-score of 95.7% (Figure 4d). Furthermore, our

model demonstrated the capability for real-time detection, operating efficiently at a rate

of 16.5 frames per second (FPS) [21].

In greenhouses, tomatoes were grown at a high density with minimal spacing be-

tween tomatoes on adjacent crop rows [24]. Consequently, when images were acquired

from the current crop row, tomato clusters from the opposite row may have appeared in

the field of view. To address this, our approach involved capturing the depth information

(Z) of the ripe tomato clusters in the images. We then filtered and retained only those ripe

clusters that fell within a specific depth threshold (0.4 m < Z < 0.8 m) and were unob-

structed (Figure 4e).

Figure 3. Effective workspace area of the harvesting arm. (a) Example of the robot in a harvesting
posture. (b) Workspace of the arm with a constant picking pose. (c) Top view (X−Y Plane) of the
workspace. (d) Side view (Y−Z Plane) of the workspace. (e) Schematic of the operating area in a
greenhouse environment. (A–A) Projection of the effective workspace area.

As demonstrated in Figure 4, the robot simultaneously captures color and aligned
depth images of the crop rows on both sides using dual RGB-D cameras during movement.
Each RGB image boasted a resolution of 640 × 480 pixels. The cameras were positioned
at a height of 1.24 m and were located 0.6 m from the center of the harvesting area. The
YOLOv5 deep learning network [21,24] was used to identify the tomato clusters in real
time. The model was designed to identify three distinct types of tomato clusters: unripe,
ripe, and ripe yet unsuitable for harvesting due to obstructions. As the cameras traveled
along the crop rows at 2 m/s in the tomato greenhouse (Section 2.1), the detection model
attained a precision of 94.4% and an F1-score of 95.7% (Figure 4d). Furthermore, our model
demonstrated the capability for real-time detection, operating efficiently at a rate of 16.5
frames per second (FPS) [21].

In greenhouses, tomatoes were grown at a high density with minimal spacing between
tomatoes on adjacent crop rows [24]. Consequently, when images were acquired from the
current crop row, tomato clusters from the opposite row may have appeared in the field of
view. To address this, our approach involved capturing the depth information (Z) of the
ripe tomato clusters in the images. We then filtered and retained only those ripe clusters
that fell within a specific depth threshold (0.4 m < Z < 0.8 m) and were unobstructed
(Figure 4e).

To reduce repeated localization of the same tomato cluster, our approach incorporated
the use of ByteTrack [24,25] for tracking the tomato clusters that were preserved following
depth threshold processing. The ByteTrack method was straightforward yet effective,
utilizing only the Kalman filter to predict the trajectory of objects in the current frame for
the next frame. It then calculated the Intersection over Union (IoU) between the predicted
boxes and the detected boxes as a measure of similarity for matching.

Biomimetics 2024, 9, 105 6 of 19

1

Figure 4. The projection process of ripe tomato clusters on the two-dimensional crop row map.
(a) Side view of the dual-arm robot between the crop rows. (b,c) Original color and aligned depth
images of the crop rows captured by cameras. (d) Detection results using YOLOv5 model: green
boxes indicate unripe tomato clusters, red for ripe tomato clusters, and blue for ripe tomato clusters
unfit for harvesting. (e) Identified harvesting targets after the depth threshold processing. (f) Tracking
area for tomato cluster localization. (g) Map coordinate system.

The ByteTrack method could identify the locations and IDs of tracked tomato clusters
in the current frame. However, the tomato clusters shift from the edges to the center of the
image as the robot moves, causing significant changes in the bounding box proportions [24].
This shift could lead to the displacement of the same tomato cluster’s ID across consecutive
frames. With reference to [7], we designed a tomato clusters position projection and
mapping method based on a specific tracking area. The detailed steps can be described as
follows:

1. First, we designated a specific area in the image (the red transparent rectangular area
formed by (xl , yl) and (xr, yr) in Figure 4f), reducing the tracking area to minimize
changes in the bounding box ratio. Specifically, we divided the area into left and right
sections based on the center line xc = (xr + xl)/2;

2. Then, the outputs by ByteTrack within the specific area were divided into two types—
the first type included tomato clusters with centroids

(
xc

i , yc
i
)

on the left side of the
specific area, and another type was tomato clusters on the right side;

3. Next, we continuously updated the IDs of tomato clusters in the left and the right of
the specific area in real time. If a new tomato cluster ID moved from the left section to
the right section or vice versa (Algorithm 1), we outputted the centroid coordinates P
of the tomato cluster, along with the current position of the vehicle through an Xsens
MTi-30 IMU (Inertial measurement unit).

Biomimetics 2024, 9, 105 7 of 19

Algorithm 1: The tomato cluster tracking method.

Input: IDi;
(

xc
i , yc

i
)
; (xl , yl); (xr, yr); xc; Arrayleft; Arrayright; P

Output: Arrayleft; Arrayright;P
1: if xl ≤ xc

i ≤ xc and yl ≤ yc
i ≤ yc then

2: if IDi not in Arrayleft then
3: Add IDi into Arrayleft

4: if IDi in Arrayright then
5: P ←

(
xc

i , yc
i
)

6: end if
7: end if
8: else if xc ≤ xc

i ≤ xr and yl ≤ yc
i ≤ yr then

9: if IDi not in Arrayright then
10: Add IDi into Arrayright

11: if IDi in Arrayleft then
12: P ←

(
xc

i , yc
i
)

13: end if
14: end if
15: end if
16: return Arrayleft; Arrayright;P

To project the tomato clusters in a two-dimensional map, hand-eye calibration [26,27]
was applied to transform the output centroid coordinates P of the fruit from the Camera
Coordinate System to the Robot Base Coordinate System. At time t, the coordinates
ML, MR of the fruits in the crop rows on both sides, within the map coordinate system,
were represented as shown in Equation (1). By controlling the movement of the mobile
vehicle to traverse the crop rows, we achieved fruit projection effects as shown in Figure 4f.
Here, the black points represent the projected coordinates of tomato clusters on the two-
dimensional map. {

ML =
(

Dt − PB1
Y , PB1

Z
)

MR =
(

Dt + d0 + PB2
Y ,−PB2

Z

) , (1)

where
(

PB1
X , PB1

Y , PB1
Z

)
denotes the position of the left-side target tomato cluster relative to

the robot base coordinate system of the B1 arm.
(

PB2
X , PB2

Y , PB2
Z

)
denotes the position of the

right-side cluster relative to the B2 arm. Dt signifies the distance the vehicle has moved
at time t, and d0 is the between the B1 and B2 arms. The B1 and B2 arms are shown in
Figure 2.

2.4. Infrequency Movement Planning for Multi-Arm Robot Vehicle

Our objective was to transform traditional grid-based vehicle movement planning
into an RL process. After the robot acquired the projected coordinates of fruit clusters, we
planned a minimal frequency movement path for a dual-arm vehicle in the two-dimensional
map. The m movement path typically consisted of a sequence of parking nodes. Any node
on a path was always dependent on the environment and its previous node. Consequently,
vehicle movement planning was achieved via a Markov Decision Process (MDP). The DRL
algorithm, which iteratively improved the decision performance through explorations and
thus adapted to different environments, showed certain advantages in solving MDP prob-
lems. This section first introduced a cutting-edge DRL algorithm: the Deep Deterministic
Policy Gradient algorithm (DDPG). A learning strategy for training the DDPG within a
specialized interactive environment was then discussed, followed by the relevant observed
state and the reward function.

Biomimetics 2024, 9, 105 8 of 19

2.4.1. Background of DDPG

The DDPG algorithm, as a model-free, off-policy, policy-based method in DRL, has
garnered recognition for its effective integration of Q-learning with deterministic strategy
optimization. Leveraging deep neural networks for function approximation and employing
strategies such as experience replay and target networks, DDPG enhanced both stability
and efficiency in learning [28]. This approach has demonstrated significant efficacy in
handling continuous control challenges within robotic systems [15,29].

The DDPG algorithm belongs to a family of actor-critic reinforcement learning algo-
rithms that aim to maximize the expected cumulative long-term reward. There are four
neural networks in the algorithm: (1) The critic network (Q network), Q

(
s, a

∣∣θQ); (2) the

target critic network Q
(

s, a
∣∣∣θQ

)
; (3) the actor network (deterministic policy network)

µ(s|θµ); (4) the target actor network µ
(
s
∣∣θµ

)
. Neural networks were here characterized by

parameters denoted as θ, with superscripts used to identify the specific network.
The critic network Q

(
s, a

∣∣θQ) was updated by minimizing the loss function, which
was often a mean squared error between the main Q function and the target Q-values,

L
(

θQ
)
= E(st , at ,rt , st+1)∼D

[(
Q
(

st, at

∣∣∣θQ
)
− yt(rt, st+1)

)2
]

, (2)

with the target Q-values yt constructed based on the Bellman equation:

yt(rt, st+1) = rt + γQ
(

st+1, µ
(

st+1

∣∣∣θµ
)∣∣∣θQ

)
, (3)

where D denotes the replay buffer to store experience tuples (st, at, rtst+1).rt = r(st, at)
denotes the reward that was obtained when the agent executed action at from the action
space A while in state st, belonging to the state space S . γ is a discount factor in the range
of 0 to 1, but usually close to 1 [30].

The actor network µ(s|θµ) was updated using the deterministic policy gradient:

∇θµ J = Est∼D

[
∇aQ

(
s, a

∣∣∣θQ
)∣∣∣

s=st ,a=µ(st)
∇θµ µ(s|θµ)|s=st

]
, (4)

To stabilize the learning process, the weights of the target networks Q and µ were softly
updated to slowly track the values of θQ and θµ. Detailed information about this procedure
can be found in [28].

In particular, to ensure exploration in the DDPG framework with a deterministic policy,
noise was added to each action. In this study, we used uncorrelated, mean-zero Gaussian
noise to optimize the learning process [30]. The final action at time t was computed using
the formula that incorporates the noise Nt:

at = µ(s|θµ) + Nt. (5)

2.4.2. Training DDPG for Movement Planning
The Interaction Environment

To solve the movement planning problem within the DRL framework, we built a
two-dimensional simulation environment to collect a sufficient number of samples to train
DDPG. The positions of tomato clusters were not entirely random, and were influenced by
inherent phenotypic characteristics, management measures, and external environmental
factors [2]. Therefore, to enhance the realism and diversity of the simulation environment,
we implemented the following steps:

1. At the beginning of each episode, a 10 × 2 m projection map was constructed, taking
into account the real greenhouse plant distribution patterns. We inserted the curves
representing the main stems of tomato plants (depicted as green lines) at regular
intervals of 0.42 m into the map;

Biomimetics 2024, 9, 105 9 of 19

2. Randomly, 0 to 5 target points (illustrated as blue dots) were selected on the main
stem curves to represent the positions of tomato clusters. Notably, each point’s height
was constrained within the range of 0.31 m to 0.79 m;

3. In the map, a vehicle (represented by a gray rectangle) and its harvesting area (outlined
by a red dashed line) were constructed. The vehicle was capable of moving left to right
along the X-axis. If a target point fell within the harvesting area, the corresponding
blue dot turned red, indicating the tomato had been harvested. Notably, each time the
vehicle stopped, a black dot was generated on the x-axis to mark the parking location.

The simulation environment, as depicted in Figure 5, was constructed using the Python
2D plotting library Matplotlib.

Biomimetics 2024, 9, x FOR PEER REVIEW 10 of 19

2. Randomly, 0 to 5 target points (illustrated as blue dots) were selected on the main

stem curves to represent the positions of tomato clusters. Notably, each point’s height

was constrained within the range of 0.31 m to 0.79 m;

3. In the map, a vehicle (represented by a gray rectangle) and its harvesting area (out-

lined by a red dashed line) were constructed. The vehicle was capable of moving left

to right along the X-axis. If a target point fell within the harvesting area, the corre-

sponding blue dot turned red, indicating the tomato had been harvested. Notably,

each time the vehicle stopped, a black dot was generated on the x-axis to mark the

parking location.

The simulation environment, as depicted in Figure 5, was constructed using the Py-

thon 2D plotting library Matplotlib.

Figure 5. The interaction environment. The red rectangle represents the effective working area

projection of the arms, and the gray rectangle represents the vehicle. The red dot indicates that the

target point has appeared in the robot arm operating area. Red dots indicate harvested targets,

blue dots indicate missed or unharvested targets. The green line represents the main stem, and all

target points only appear on the main stem. The red line represents the boundary line.

State and Action Space

In this study, our primary objective was to train an intelligent agent capable of dy-

namically generating movement sequences for a dual-arm robot vehicle. This optimiza-

tion aimed at ensuring that the robot halts precisely at locations that are most advanta-

geous for performing tasks, such as harvesting, while also minimizing unnecessary park-

ing to enhance overall efficiency. In the light of the above task, the state observed by the

robot could be described as follows: (1) The robot location x in the X-axis (robot moving

distance) where 𝑥 ∈ [0,10]. (2) The number 𝑛𝑝 of times the robot has parked. (3) The

number 𝑛𝑚 of missed target points. (4) The set 𝑃 = [𝑃𝐿 , 𝑃𝑅] consisting of target points

within the projection map, where each point is defined by the parameters [x, h, state]. Here,

the element state is a Boolean in the state space, initially set to False, and switched to True

when the point is within the harvest area. At time step t, the state observed from the envi-

ronment is represented as a multi-dimensional concatenated vector:

𝑠𝑡 = [𝑥, 𝑛𝑝, 𝑛𝑚, 𝑃] ∈ 𝒮, (6)

Our goal was to plan the movement path of the robot vehicle within the projection map.

Therefore, the actions output by the actor network correspond to the incremental displace-

ment of the robot vehicle along the X-axis, as follows:

𝑎𝑡 = ∆𝑥 ∈ 𝒜, (7)

Figure 5. The interaction environment. The red rectangle represents the effective working area
projection of the arms, and the gray rectangle represents the vehicle. The red dot indicates that the
target point has appeared in the robot arm operating area. Red dots indicate harvested targets, blue
dots indicate missed or unharvested targets. The green line represents the main stem, and all target
points only appear on the main stem. The red line represents the boundary line.

State and Action Space

In this study, our primary objective was to train an intelligent agent capable of dy-
namically generating movement sequences for a dual-arm robot vehicle. This optimization
aimed at ensuring that the robot halts precisely at locations that are most advantageous
for performing tasks, such as harvesting, while also minimizing unnecessary parking to
enhance overall efficiency. In the light of the above task, the state observed by the robot
could be described as follows: (1) The robot location x in the X-axis (robot moving distance)
where x ∈ [0, 10]. (2) The number np of times the robot has parked. (3) The number nm of
missed target points. (4) The set P = [PL, PR] consisting of target points within the projec-
tion map, where each point is defined by the parameters [x, h, state]. Here, the element
state is a Boolean in the state space, initially set to False, and switched to True when the
point is within the harvest area. At time step t, the state observed from the environment is
represented as a multi-dimensional concatenated vector:

st =
[
x, np, nm, P

]
∈ S , (6)

Our goal was to plan the movement path of the robot vehicle within the projection map.
Therefore, the actions output by the actor network correspond to the incremental displace-
ment of the robot vehicle along the X-axis, as follows:

at = ∆x ∈ A, (7)

Simultaneously, we imposed constraints on the incremental values to prevent reversing
and excessive movement distances. The range for these incremental values was accordingly
set to (0.1, 2.0] m.

Biomimetics 2024, 9, 105 10 of 19

Reward Function

The critical aspect of this training was to optimize the robot’s operational efficiency
by meticulously controlling its parking locations and the number of stops it makes. To
guide this behavior, we designed three types of reward functions to encourage or penalize
specific actions within the learning strategy, catering to different requirements: optimizing
the parking locations (rlocat), reducing the number of parking events (rpark), and avoiding
the omission of target points (rmiss).

The reward function for evaluating parking locations was defined in two ways: en-
suring simultaneous operation of multiple arms as closely as possible, and the proximity
of target points to the central axis within the harvesting area. Equation (8) describes the
function employed for the parking location evaluation. Specifically, if any arm’s harvesting
area lacked target points, the function assessed whether new target points could be added
to this area without losing targets in other areas, and output an element Reval (Boolean
type). If Reval was True, a significant negative value was assigned. Conversely, if all har-
vesting areas contained target points, the function calculated the average distance Dmean of
these points from the central axis and encouraged proximity to the axis by rewarding the
reciprocal of these distances. This procedure is summarized in Algorithm 2.

Algorithm 2: The parking location evaluation method.

Input: robot locations X; the set P = [PL, PR] consisted of target points within the map; the set of
target points within the harvesting area of the B1 arm PB1; the set of target points within the
harvesting area of the B2 arm PB2; harvest area width w; the interspace between the B1 and B2
arms L.
Output: Dmean; Reval

1: if PB1 = empty and PB2 = empty then
2: Reval = True
3: else if PB1 ̸= empty and PB2 = empty then
4: Get the point pmin with minimum x in PB1
5: Get distance from pmin to the harvesting area’s left edge d = pmin − (X− w/2)
6: if X + w/2 + L < PR.x < X + w/2 + L + d then
7: Reval = True
8: else
9: Reval = False
10: end if
11: else if PB1 = empty and PB2 ̸= empty then
12: Get the point pmin with minimum x in PB2
13: Get the distance from pmin to the harvesting area’s left edge d = pmin − (X + L− w/2)
14: if X + w/2 < PL.x < X + w/2 + d then
15: Reval = True
16: else
17: Reval = False
18: end if
19: else if PB1 ̸= empty and PB2 ̸= empty then
20: Reval ← False
21: for each point in PB1 do
22: DsumB1+ = abs(point.x− X)
23: for each point in PB2 do
24: DsumB2+ = abs(point.x− (X + L))
25: Dmean = DsumB1/num_PB1 + DsumB2/num_PB2
26: end if
27: return Reval; Dmean

Biomimetics 2024, 9, 105 11 of 19

rlocat =

{
−10 i f Reval = True
0.4/(Dmean + 0.04) i f Reval = False

, (8)

The reward function rpark was a decreasing nonlinear function of the number of stops,
np as shown in Equation (9).

rpark = −e0.1np , (9)

For the reward function rmiss, we gave a larger penalty when target point was missed:

rmiss =

{
−10nm i f nm ̸= 0

0 i f nm = 0
, (10)

Finally, the total reward function for each step was as follows:

rt(st, at) = rlocat + rpark + rmiss. (11)

2.5. Experimental Setup

We conducted both simulation and field experiments to evaluate the dual-arm robot
vehicle control performance of the DDPG. The identification, simulation, and training
activities detailed in this research were conducted using Python 3.7 and the PyTorch 1.11.0
framework on an Ubuntu 20.04 system. These processes were performed on a computer
configured with an Intel i7-10700K CPU (Intel Corporation, Santa Clara, CA, USA), 32 GB
RAM (Kingston Technology Company, Fountain Valley, CA, USA), and an Nvidia GeForce
GTX 1080Ti GPU (Nvidia Corporation, Santa Clara, CA, USA).

2.5.1. Simulation Experiments

In our simulation environment, we employed and compared three state-of-the-art
DRL algorithms specifically tailored for continuous action spaces, for training purposes.
These algorithms included Deep Deterministic Policy Gradient (DDPG) [28], Twin Delayed
Deep Deterministic Policy Gradient (TD3) [31], and Soft Actor Critic (SAC) [32,33]. All
these algorithms were configured with identical simulation environment settings and used
the same dataset. We utilized the default initialization parameters and weights for each
algorithm to guarantee their optimal performance. The key parameters of the simulation
environment and the DDPG are detailed in Table 1.

Furthermore, we evaluated the performance of the DRL algorithm with reference
to the metrics proposed in the reward function (Section 2.4.2). In the tables, results are
presented for all 10 testing crop rows. The parameters that were compared are the number
of stops np required to achieve the goal, and the standard deviation σnp of the number of
stops; the number of target points missed nm, and the standard deviation σnm of the missed
number; the number of idle instances ni of the robot arm, and the standard deviation σni
of the times nai; the average distance Dm from the target points to the central axis in the
working area, and the standard deviation σd of the distance Dm. The smaller the distance
Dmean, the better the parking location of the vehicle was.

Table 1. The key parameters of the simulation environment and the DDPG.

Object Parameters Value

Simulation
environment

Robot vehicle size 1.94× 0.53 m
Vehicle driving distance 10 m

Arm harvest area 0.4 × 0.48 m
Distance between the two arms 0.9 m

Number of target points 100∼120
Left crop row tomato cluster

projection area x ∈ [0, 10] m, h ∈ [0.31, 0.79] m

Right crop row tomato cluster
projection area x ∈ [0, 10] m, h ∈ [−0.79,−0.31] m

Biomimetics 2024, 9, 105 12 of 19

Table 1. Cont.

Object Parameters Value

DDPG

Number of episodes 105

Max episode step 50
Mini-batch Size 128
Discount factor 0.99

Decay coefficient 0.0001
Soft update factor 0.001
Replay buffer size 106

Learning rate of actor network 0.0001
Learning rate of critic network 0.001

Optimizer for SGD Adam [34]

2.5.2. Field Experiments

In a real greenhouse environment, we also conducted comparative experiments to
evaluate the effectiveness and efficiency of the vehicle movement planning system. We
utilized a dual-arm robot as shown in Figure 2a, specifically designed for autonomous
operations in greenhouse environments. It was capable of executing integrated tasks such
as harvesting, collecting, and transporting while maneuvering between rows. Prior to the
experiments, workers pruned side branches and leaves in the fruit maturation areas to
avoid interference during the movement process.

For the real tests, we generated a tomato coordinate projection map using the method
described in Section 2.3. The map was then input into three different algorithms to generate
vehicle movement paths:

1. Experiment 1—As illustrated in Figure 6, we used a traditional grid-based path
planning algorithm [12,34] to generate vehicle movement paths. Based on the size
of the arm’s harvesting area, the algorithm progressively constructed a global grid
map and eliminated grids without target points. The intersection points of each grid’s
central axis with the X-axis serve as the nodes for the generated movement paths;

Biomimetics 2024, 9, x FOR PEER REVIEW 13 of 19

Left crop row tomato cluster projection area 𝑥 ∈ [0,10] m, ℎ ∈ [0.31,0.79] m

Right crop row tomato cluster projection area 𝑥 ∈ [0,10] m, ℎ ∈ [−0.79, −0.31] m

DDPG

Number of episodes 105

Max episode step 50

Mini-batch Size 128

Discount factor 0.99

Decay coefficient 0.0001

Soft update factor 0.001

Replay buffer size 106

Learning rate of actor network 0.0001

Learning rate of critic network 0.001

Optimizer for SGD Adam [34]

Furthermore, we evaluated the performance of the DRL algorithm with reference to

the metrics proposed in the reward function (Section 2.4.2). In the tables, results are pre-

sented for all 10 testing crop rows. The parameters that were compared are the number of

stops 𝑛𝑝 required to achieve the goal, and the standard deviation 𝜎𝑛𝑝 of the number of

stops; the number of target points missed 𝑛𝑚 , and the standard deviation 𝜎𝑛𝑚 of the

missed number; the number of idle instances 𝑛𝑖 of the robot arm, and the standard devi-

ation 𝜎𝑛𝑖 of the times 𝑛𝑎𝑖; the average distance 𝐷𝑚 from the target points to the central

axis in the working area, and the standard deviation 𝜎𝑑 of the distance 𝐷𝑚. The smaller

the distance 𝐷𝑚𝑒𝑎𝑛, the better the parking location of the vehicle was.

2.5.2. Field Experiments

In a real greenhouse environment, we also conducted comparative experiments to

evaluate the effectiveness and efficiency of the vehicle movement planning system. We

utilized a dual-arm robot as shown in Figure 2a, specifically designed for autonomous

operations in greenhouse environments. It was capable of executing integrated tasks such

as harvesting, collecting, and transporting while maneuvering between rows. Prior to the

experiments, workers pruned side branches and leaves in the fruit maturation areas to

avoid interference during the movement process.

For the real tests, we generated a tomato coordinate projection map using the method

described in Section 2.3. The map was then input into three different algorithms to gener-

ate vehicle movement paths:

1. Experiment 1—As illustrated in Figure 6, we used a traditional grid-based path plan-

ning algorithm [12,34] to generate vehicle movement paths. Based on the size of the

arm’s harvesting area, the algorithm progressively constructed a global grid map and

eliminated grids without target points. The intersection points of each grid’s central

axis with the X-axis serve as the nodes for the generated movement paths;

Figure 6. Grid-based path planning algorithm. The red rectangle represents the harvesting area, the

dotted line represents the divided grid map, and the red dot represents the movement nodes.

Figure 6. Grid-based path planning algorithm. The red rectangle represents the harvesting area, the
dotted line represents the divided grid map, and the red dot represents the movement nodes.

2. Experiment 2—The process of the area division algorithm [13] is illustrated in Figure 7.
Initially, the closest fruit coordinate to the origin was chosen as area 1’s center (p0),
with its effective picking area marked, including points p1 and p2 (Figure 7a). Next,
areas centered on p1 and p2 were compared. p2, with more fruit points, became the
new center (Figure 7b–d). This process was repeated for subsequent areas, starting
from the closest point to the previous center (Figure 7e–h). The intersection points of
each area’s central axis with the X-axis serve as the nodes for the generated movement
paths;

Biomimetics 2024, 9, 105 13 of 19

Biomimetics 2024, 9, x FOR PEER REVIEW 14 of 19

2. Experiment 2—The process of the area division algorithm [13] is illustrated in Figure

7. Initially, the closest fruit coordinate to the origin was chosen as area 1’s center (p0),

with its effective picking area marked, including points p1 and p2 (Figure 7a). Next,

areas centered on p1 and p2 were compared. p2, with more fruit points, became the

new center (Figure 7b–d). This process was repeated for subsequent areas, starting

from the closest point to the previous center (Figure 7e–h). The intersection points of

each area’s central axis with the X-axis serve as the nodes for the generated move-

ment paths;

Figure 7. The process of the area division algorithm. (a) Determine the initial harvesting area; (b)

Generate candidate areas; (c) Select the candidate area containing the most target points (d) Deter-

mine the first harvesting area at the current location. (e-h) Repeat the operation of (a-b). The red

rectangle represents the harvesting area, and the green rectangle represents the candidate area. The

red dot indicates that the harvesting area is centered on this point. The yellow dot indicates that the

candidate area is centered on this point. Black dots indicate target points to be harvested

3. Experiment 3—The final experiment utilized the vehicle movement planning method

grounded in DRL, as outlined in this paper. It aimed to dynamically generate the

action sequence of the dual-arm robot vehicle, encompassing its incremental dis-

placement and the number of stops.

3. Results and Discussions

3.1. Simulation Experiments

Operating within the same simulation environment, Figure 8 illustrates the learning

curves of six distinct models—DDPG (our), SAC, and TD3—during their learning phase.

The results reveal that, overall, DDPG (the red curves) outperformed all other evaluated

algorithms, demonstrating superior convergence performance in the specified task of ve-

hicle movement planning. Specifically, DDPG and SAC reached a stable state at around

1400 episodes, achieving a learning rate that was 80% faster than the approximately 7000

episodes required by TD3. Furthermore, DDPG improved by approximately 19.82% over

SAC and 33.66% over TD3 in terms of the average return when reaching stability.

Figure 7. The process of the area division algorithm. (a) Determine the initial harvesting area;
(b) Generate candidate areas; (c) Select the candidate area containing the most target points (d)
Determine the first harvesting area at the current location. (e–h) Repeat the operation of (a,b). The
red rectangle represents the harvesting area, and the green rectangle represents the candidate area.
The red dot indicates that the harvesting area is centered on this point. The yellow dot indicates that
the candidate area is centered on this point. Black dots indicate target points to be harvested.

3. Experiment 3—The final experiment utilized the vehicle movement planning method
grounded in DRL, as outlined in this paper. It aimed to dynamically generate the
action sequence of the dual-arm robot vehicle, encompassing its incremental displace-
ment and the number of stops.

3. Results and Discussions
3.1. Simulation Experiments

Operating within the same simulation environment, Figure 8 illustrates the learn-
ing curves of six distinct models—DDPG (our), SAC, and TD3—during their learning
phase. The results reveal that, overall, DDPG (the red curves) outperformed all other
evaluated algorithms, demonstrating superior convergence performance in the specified
task of vehicle movement planning. Specifically, DDPG and SAC reached a stable state at
around 1400 episodes, achieving a learning rate that was 80% faster than the approximately
7000 episodes required by TD3. Furthermore, DDPG improved by approximately 19.82%
over SAC and 33.66% over TD3 in terms of the average return when reaching stability.

Table 2 presents the simulation results of the trained policy model based on a test set
of 10 crop rows. Our DDPG decision model demonstrated outstanding performance in
intermittent stop-and-move motion planning. In a 10 m crop row, it averaged 27.4 ± 0.5
parking instances, missed only 0.4± 0.7 target points on average, and experienced 3.3± 0.8
idle arm instances. Importantly, the average distance of target points from the central axis
within work areas was just 0.096 ± 0.005 m, showcasing the model’s ability to effectively
plan optimal parking positions. However, there was a drawback: compared to the TD3,
which had the lowest parking frequency, our model’s parking frequency increased by 17.3%.
It was noticeable that the lower parking frequency comes at the cost of a reduced harvest
yield. Subsequently, the vehicle needed to return to the missed locations, which ultimately
hindered the overall operational efficiency.

Biomimetics 2024, 9, 105 14 of 19Biomimetics 2024, 9, x FOR PEER REVIEW 15 of 19

Figure 8. The learning curves of the training process for the vehicle movement planning task with

different DLR algorithms.

Table 2 presents the simulation results of the trained policy model based on a test set

of 10 crop rows. Our DDPG decision model demonstrated outstanding performance in

intermittent stop-and-move motion planning. In a 10 m crop row, it averaged 27.4 ± 0.5

parking instances, missed only 0.4 ± 0.7 target points on average, and experienced 3.3 ±

0.8 idle arm instances. Importantly, the average distance of target points from the central

axis within work areas was just 0.096 ± 0.005 m, showcasing the model’s ability to effec-

tively plan optimal parking positions. However, there was a drawback: compared to the

TD3, which had the lowest parking frequency, our model’s parking frequency increased

by 17.3%. It was noticeable that the lower parking frequency comes at the cost of a reduced

harvest yield. Subsequently, the vehicle needed to return to the missed locations, which

ultimately hindered the overall operational efficiency.

Table 2. The simulation results of the three distinct models on the test set.

Algorithm avg. 𝒏𝒑 ± 𝝈𝒏𝒑 1 avg. 𝒏𝒎 ± 𝝈𝒏𝒎 1 avg. 𝒏𝒊 ± 𝝈𝒏𝒊 1 avg. 𝑫𝒎 ± 𝝈𝑫/m 1

DDPG 27.4 ± 0.5 0.4 ± 0.7 3.3 ± 0.8 0.096 ± 0.005

SAC 25.5 ± 0.5 8.2 ± 4.1 4.9 ± 1.4 0.100 ± 0.007

TD3 22.7 ± 0.9 17.2 ± 3.5 4.2 ± 1.9 0.103 ± 0.006
1 The definitions of parameters are described in detail in Section 2.5.1.

3.2. Field Experiments

In a real greenhouse setting, we conducted vehicle movement experiments using an

integrated cherry tomato-harvesting robot system capable of recognition and motion de-

cision-making. The movement process of the robot was as follows: Initially, as the robot

moved, it employed the visual system (as detailed in Section 2.3) to track tomato clusters

within a specific area of the image. Once a tomato cluster met the positioning criteria (Al-

gorithm 1), the robot then acquired the 3D coordinates of the target tomato relative to the

base coordinate system of the arm and the moving distance. After moving 12 m, the robot

stopped, and converted the collected coordinate points and the distance into a projection

map. Subsequently, this projection map of the first 10 m was input into the above three

experimental algorithms described in Section 2.5.2. Finally, the vehicle moved in reverse

along the planned path, returning to the starting point.

Within the 10 m crop row, the projection map recorded a total of 106 target points.

Compared to the actual count of 110 target tomato clusters, this resulted in a statistical

accuracy rate of 96.4%. The results of the field experiments for automatic vehicle move-

ment are presented in Table 3 and Figure 9. We analyzed the movement paths of the dual-

arm robot vehicle under different experimental schemes by comparing the vehicle parking

Figure 8. The learning curves of the training process for the vehicle movement planning task with
different DLR algorithms.

Table 2. The simulation results of the three distinct models on the test set.

Algorithm avg. np ±σ np
1 avg. nm ±σ nm

1 avg. ni ±σ ni
1 avg. Dm ± σD/m 1

DDPG 27.4 ± 0.5 0.4 ± 0.7 3.3 ± 0.8 0.096 ± 0.005
SAC 25.5 ± 0.5 8.2 ± 4.1 4.9 ± 1.4 0.100 ± 0.007
TD3 22.7 ± 0.9 17.2 ± 3.5 4.2 ± 1.9 0.103 ± 0.006

1 The definitions of parameters are described in detail in Section 2.5.1.

3.2. Field Experiments

In a real greenhouse setting, we conducted vehicle movement experiments using
an integrated cherry tomato-harvesting robot system capable of recognition and motion
decision-making. The movement process of the robot was as follows: Initially, as the robot
moved, it employed the visual system (as detailed in Section 2.3) to track tomato clusters
within a specific area of the image. Once a tomato cluster met the positioning criteria
(Algorithm 1), the robot then acquired the 3D coordinates of the target tomato relative
to the base coordinate system of the arm and the moving distance. After moving 12 m,
the robot stopped, and converted the collected coordinate points and the distance into
a projection map. Subsequently, this projection map of the first 10 m was input into the
above three experimental algorithms described in Section 2.5.2. Finally, the vehicle moved
in reverse along the planned path, returning to the starting point.

Within the 10 m crop row, the projection map recorded a total of 106 target points.
Compared to the actual count of 110 target tomato clusters, this resulted in a statistical
accuracy rate of 96.4%. The results of the field experiments for automatic vehicle movement
are presented in Table 3 and Figure 9. We analyzed the movement paths of the dual-arm
robot vehicle under different experimental schemes by comparing the vehicle parking
times, the numbers of missed targets, the numbers of idle times of the arms, the parking
locations and the process speeds in the same environment.

Table 3. The results of the three algorithms on the test crop row.

Algorithm np
1 nm

1 ni
1 Dm/m 1 Process Speed/ms 1

Grid map 43 0 43 0.103 3.7
Area division 36 0 34 0.080 14.1

DDPG 23 0 4 0.093 6.9
1 The definitions of parameters are described in detail in Section 2.5.1. 2 The speed represents the average time
required to plan the entire path.

Biomimetics 2024, 9, 105 15 of 19

Biomimetics 2024, 9, x FOR PEER REVIEW 16 of 19

times, the numbers of missed targets, the numbers of idle times of the arms, the parking

locations and the process speeds in the same environment.

Table 3. The results of the three algorithms on the test crop row.

Algorithm 𝒏𝒑 1 𝒏𝒎 1 𝒏𝒊 1 𝑫𝒎/m 1 Process Speed/ms 1

Grid map 43 0 43 0.103 3.7

Area division 36 0 34 0.080 14.1

DDPG 23 0 4 0.093 6.9
1 The definitions of parameters are described in detail in Section 2.5.1. 2 The speed represents the

average time required to plan the entire path.

In Experiment 1, we created a grid map for planning the movement path for the dual-

arm robot vehicle. The results show that to return to the starting position without missing

any targets, the vehicle needed to stop 43 times, but the path generation only took 3.7 ms.

Notably, during each stop, only one arm was operational. This was due to the distance

between the two arms not being an integer multiple of the arm’s working area. When one

arm aligned with the central axis of the working area, it inevitably led to the misalignment

of the other arm with the working area (Figure 9a). Additionally, the grid map was unable

to effectively distribute targets within each work area, resulting in a maximum 𝐷𝑚. In

Experiment 2, we implemented an area division algorithm as described in Section 2.5.2.

This algorithm allowed for the more rational planning of parking locations, achieving the

smallest average distance from target points to the central axis in the work area (𝐷𝑚 min-

imum). However, due to the need for multiple cycles and queries, the time required to

generate the path increased to 14.1 ms. Additionally, there was still an issue with compre-

hensively planning the positions of the working areas on both sides. Out of 36 parking

instances, in 34, only one arm was operational.

Figure 9. The vehicle motion planning paths generated by the three algorithms. (a) Grid-based
path-planning algorithm. (b) Area division algorithm. (c) DDPG-based path-planning algorithm. The
red dot indicates the parking location of the vehicle in the crop row. The red rectangle represents the
divided working area. The purple dot represents the projected coordinates of the tomato clusters that
are ready to be harvested.

In Experiment 1, we created a grid map for planning the movement path for the
dual-arm robot vehicle. The results show that to return to the starting position without
missing any targets, the vehicle needed to stop 43 times, but the path generation only
took 3.7 ms. Notably, during each stop, only one arm was operational. This was due to
the distance between the two arms not being an integer multiple of the arm’s working
area. When one arm aligned with the central axis of the working area, it inevitably led to
the misalignment of the other arm with the working area (Figure 9a). Additionally, the
grid map was unable to effectively distribute targets within each work area, resulting in a
maximum Dm. In Experiment 2, we implemented an area division algorithm as described
in Section 2.5.2. This algorithm allowed for the more rational planning of parking locations,
achieving the smallest average distance from target points to the central axis in the work
area (Dm minimum). However, due to the need for multiple cycles and queries, the time
required to generate the path increased to 14.1 ms. Additionally, there was still an issue
with comprehensively planning the positions of the working areas on both sides. Out of 36
parking instances, in 34, only one arm was operational.

Finally, in Experiment 3, we integrated the DDPG decision model and all methods
proposed in this paper for the final experiment on the robot vehicle, as shown in Figure 9c.
The results indicate that returning to the starting position without missing any targets
required only 23 stops. This setup allowed for the comprehensive consideration of work
areas on both sides when planning parking locations, reducing the number of idle instances
of the arms to four. The average distance from target points in the work area to the
central axis was 0.093 m, and the processing time was only 3.2 ms longer than the fastest
grid map method. Overall, our model achieved infrequency movement planning for the

Biomimetics 2024, 9, 105 16 of 19

vehicle, logically planned optimal parking locations, and enhanced the overall operational
efficiency.

3.3. Discussion and Future Work

The present study has demonstrated the efficacy of real-time projections of tomato
clusters and a vehicle movement planning algorithm based on DRL in a greenhouse setting.
In the context of vehicle parking node-planning tasks, the DDPG policy model proved to be
effective in determining the parking locations and frequencies for a dual-arm robot amidst
crop rows. In this study, we only tried to build a typical DRL model, and future explorations
could include integrating Long Short-Term Memory (LSTM) layers into the actor or critic
networks [15], or establishing a multi-agent reinforcement learning framework [35].

Furthermore, our method generated a 10 m-long projection map before deciding
on vehicle movements, which may not be useful for real-time motion planning. Future
research will aim to ascertain the ideal size of the projection map that would enable the
decision model to efficiently plan vehicle movements both in real time and effectively.

4. Conclusions

To address the efficiency demands of dual-arm harvesting robots, we proposed a novel
parking node planning method grounded in Deep Deterministic Policy Gradient (DDPG).
The policy model, predicated on the spatial distributions of fruit, generated a sequence of
strategic parking locations. This approach sought to strike a balance between minimizing
parking instances and ensuring an even coverage of randomly distributed fruits on both
sides, thereby facilitating the robot’s efficient operation.

The proposed method integrated considerations of frequent stops, missed targets,
and uneven task allocation, outperforming both SAC and TD3 in terms of convergence
performance. Furthermore, the field experiment results demonstrate that the DDPG policy
model with parking constraints significantly improved efficiency: the model reduced the
parking frequency of the vehicle by 46.5% and 36.1%, and decreased the arms’ idle instances
by 42.9% and 33.9%, respectively, in comparison to the grid-based and area division-based
planning algorithms. Importantly, these improvements were realized without any instances
of missed targets. Additionally, the average time required to generate parking node
sequences was 6.9 ms.

In conclusion, the DRL method demonstrated its robustness and efficiency in planning
parking nodes for dual-arm harvesting robots. This has provided novel perspectives on
the development of intelligent agricultural robotics. Future works will incorporate dual-
arm coordination and sequenced harvest stops into our reinforcement learning model.
Additionally, we aim to design a more advanced version of this model to further improve
overall operational efficiency.

Our method proved robust and efficient for the intermittent stop–move planning
of dual-arm harvesting robots, providing innovative insights into intelligent agricultural
robotics. In future work, we will extend our reinforcement learning model to include dual-
arm coordination and sequenced harvest stops. We will also enhance the generalization
of our model to multiple complex navigation scenarios, as well as other types of produce
with varying target densities.

Author Contributions: Conceptualization, Y.L. and Q.F.; methodology, Y.L.; software, Y.L. and Y.Z.;
validation, Y.L., Y.Z. and C.P.; formal analysis, Q.F.; investigation, Y.L.; resources, Q.F.; data curation,
Y.L. and Y.Z.; writing—original draft preparation, Y.L.; writing—review and editing, Q.F. and C.Z.;
visualization, C.P.; supervision, Q.F.; project administration, Q.F. and C.Z.; funding acquisition, Q.F.
and C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Major Agricultural Science and Technology Projects,
grant number NK2023150202, the Beijing Nova Program, grant number 20220484023, and the BAAFS
Innovation Capacity Building Project, grant number KJCX20210414 and KJICX20240502.

Institutional Review Board Statement: Not applicable.

Biomimetics 2024, 9, 105 17 of 19

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in
the design.

References
1. Maureira, F.; Rajagopalan, K.; Stöckle, C.O. Evaluating tomato production in open-field and high-tech greenhouse systems. J.

Clean. Prod. 2022, 337, 130459. [CrossRef]
2. Li, Y.; Feng, Q.; Zhang, Y.; Peng, C.; Ma, Y.; Liu, C.; Ru, M.; Sun, J.; Zhao, C. Peduncle collision-free grasping based on deep

reinforcement learning for tomato harvesting robot. Comput. Electron. Agric. 2024, 216, 108488. [CrossRef]
3. Li, Y.; Feng, Q.; Li, T.; Xie, F.; Liu, C.; Xiong, Z. Advance of target visual information acquisition technology for fresh fruit robotic

harvesting: A review. Agronomy 2022, 12, 1336. [CrossRef]
4. Taqi, F.; Al-Langawi, F.; Abdulraheem, H.; El-Abd, M. A cherry-tomato harvesting robot. In Proceedings of the 2017 18th

International Conference on Advanced Robotics, Hong Kong, China, 10–12 July 2017; pp. 463–468. [CrossRef]
5. Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and

field evaluation. J. Field Robot. 2020, 37, 202–224. [CrossRef]
6. Park, Y.; Seol, J.; Pak, J.; Jo, Y.; Kim, C.; Son, H.I. Human-centered approach for an efficient cucumber harvesting robot system:

Harvest ordering, visual servoing, and end-effector. Comput. Electron. Agric. 2023, 212, 108116. [CrossRef]
7. Barnett, J.; Duke, M.; Au, C.K.; Lim, S.H. Work distribution of multiple Cartesian robot arms for kiwifruit harvesting. Comput.

Electron. Agric. 2020, 169, 105202. [CrossRef]
8. Wrobel, S. Israeli Startup Develops First AI Robot for Picking Tomatoes. Available online: https://www.timesofisrael.com/

israeli-startup-develops-first-ai-robot-for-picking-tomatoes/ (accessed on 2 February 2023).
9. Li, T.; Xie, F.; Zhao, Z.; Zhao, H.; Guo, X.; Feng, Q. A multi-arm robot system for efficient apple harvesting: Perception, task plan

and control. Comput. Electron. Agric. 2023, 211, 107979. [CrossRef]
10. Wang, N.; Yang, X.; Wang, T.; Xiao, J.; Zhang, M.; Wang, H.; Li, H. Collaborative path planning and task allocation for multiple

agricultural machines. Comput. Electron. Agric. 2023, 213, 108218. [CrossRef]
11. Lee, T.K.; Baek, S.H.; Choi, Y.H.; Oh, S.Y. Smooth coverage path planning and control of mobile robots based on high-resolution

grid map representation. Rob. Auton. Syst. 2011, 59, 801–812. [CrossRef]
12. Gabriely, Y.; Rimon, E. Spiral-STC: An on-line coverage algorithm of grid environments by a mobile robot. In Proceedings of

the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; pp. 954–960.
[CrossRef]

13. Wang, Y.; He, Z.; Cao, D.; Ma, L.; Li, K.; Jia, L.; Cui, Y. Coverage path planning for kiwifruit picking robots based on deep
reinforcement learning. Comput. Electron. Agric. 2023, 205, 107593. [CrossRef]

14. Liu, Y.; Xu, H.; Liu, D.; Wang, L. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial
robot grasping. Robot. Comput. Integr. Manuf. 2022, 78, 102365. [CrossRef]

15. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep
reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [CrossRef]

16. James, J.Q.; Yu, W.; Gu, J. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning. IEEE
Trans. Intell. Transp. Syst. 2019, 20, 3806–3817. [CrossRef]

17. Ottoni, A.L.C.; Nepomuceno, E.G.; Oliveira, M.S.D.; Oliveira, D.C.R. Reinforcement learning for the traveling salesman problem
with refueling. Complex Intell. Syst. 2022, 8, 2001–2015. [CrossRef]

18. Kyaw, P.T.; Paing, A.; Thu, T.T.; Mohan, R.E.; Le, A.V.; Veerajagadheswar, P. Coverage path planning for decomposition
reconfigurable grid-maps using deep reinforcement learning based travelling salesman problem. IEEE Access 2020, 8, 225945–
225956. [CrossRef]

19. Martini, M.; Cerrato, S.; Salvetti, F.; Angarano, S.; Chiaberge, M. Position-agnostic autonomous navigation in vineyards with deep
reinforcement learning. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE),
Mexico City, Mexico, 20–24 August 2022; pp. 477–484. [CrossRef]

20. Bac, C.W.; Hemming, J.; van Tuijl, B.A.J.; Barth, R.; Wais, E.; van Henten, E.J. Performance evaluation of a harvesting robot for
sweet pepper. J. Field Robot. 2017, 34, 1123–1139. [CrossRef]

21. Li, Y.; Feng, Q.; Liu, C.; Xiong, Z.; Sun, Y.; Xie, F.; Li, T.; Zhao, C. MTA-YOLACT: Multitask-aware network on fruit bunch
identification for cherry tomato robotic harvesting. Eur. J. Agron. 2023, 146, 126812. [CrossRef]

22. Jun, J.; Kim, J.; Seol, J.; Kim, J.; Son, H.I. Towards an efficient tomato harvesting robot: 3d perception, manipulation, and
end-effector. IEEE Access 2021, 9, 17631–17640. [CrossRef]

23. Wang, D.; Dong, Y.; Lian, J.; Gu, D. Adaptive end-effector pose control for tomato harvesting robots. J. Field Robot. 2023, 40,
535–551. [CrossRef]

24. Rong, J.; Zhou, H.; Zhang, F.; Yuan, T.; Wang, P. Tomato cluster detection and counting using improved YOLOv5 based on RGB-D
fusion. Comput. Electron. Agric. 2023, 207, 107741. [CrossRef]

https://doi.org/10.1016/j.jclepro.2022.130459
https://doi.org/10.1016/j.compag.2023.108488
https://doi.org/10.3390/agronomy12061336
https://doi.org/10.1109/ICAR.2017.8023650
https://doi.org/10.1002/rob.21889
https://doi.org/10.1016/j.compag.2023.108116
https://doi.org/10.1016/j.compag.2019.105202
https://www.timesofisrael.com/israeli-startup-develops-first-ai-robot-for-picking-tomatoes/
https://www.timesofisrael.com/israeli-startup-develops-first-ai-robot-for-picking-tomatoes/
https://doi.org/10.1016/j.compag.2023.107979
https://doi.org/10.1016/j.compag.2023.108218
https://doi.org/10.1016/j.robot.2011.06.002
https://doi.org/10.1109/ROBOT.2002.1013479
https://doi.org/10.1016/j.compag.2022.107593
https://doi.org/10.1016/j.rcim.2022.102365
https://doi.org/10.1016/j.compag.2021.106350
https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1007/s40747-021-00444-4
https://doi.org/10.1109/ACCESS.2020.3045027
https://doi.org/10.1109/CASE49997.2022.9926582
https://doi.org/10.1002/rob.21709
https://doi.org/10.1016/j.eja.2023.126812
https://doi.org/10.1109/ACCESS.2021.3052240
https://doi.org/10.1002/rob.22146
https://doi.org/10.1016/j.compag.2023.107741

Biomimetics 2024, 9, 105 18 of 19

25. Shen, L.; Liu, M.; Weng, C.; Zhang, J.; Dong, F.; Zheng, F. ColorByte: A real time MOT method using fast appearance feature
based on ByteTrack. In Proceedings of the 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD), Guilin,
China, 4–5 November 2022; pp. 1–6. [CrossRef]

26. Xie, B.; Jiao, W.; Wen, C.; Hou, S.; Zhang, F.; Liu, K.; Li, J. Feature detection method for hind leg segmentation of sheep carcass
based on multi-scale dual attention U-Net. Comput. Electron. Agric. 2021, 191, 106482. [CrossRef]

27. Rong, J.; Wang, P.; Wang, T.; Hu, L.; Yuan, T. Fruit pose recognition and directional orderly grasping strategies for tomato
harvesting robots. Comput. Electron. Agric. 2022, 202, 107430. [CrossRef]

28. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971. [CrossRef]

29. Zhong, J.; Wang, T.; Cheng, L. Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement
learning and inverse kinematics. Complex Intell. Syst. 2022, 8, 1899–1912. [CrossRef]

30. Lindner, T.; Milecki, A.; Wyrwał, D. Positioning of the robotic arm using different reinforcement learning algorithms. Int. J.
Control. Autom. Syst. 2021, 19, 1661–1676. [CrossRef]

31. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the 35th
International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2022; pp. 2587–2601. [CrossRef]

32. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15
July 2022; pp. 1861–1870. [CrossRef]

33. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
algorithms and applications. arXiv 2018, arXiv:1812.05905v2.

34. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [CrossRef]
35. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CBD58033.2022.00010
https://doi.org/10.1016/j.compag.2021.106482
https://doi.org/10.1016/j.compag.2022.107430
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1007/s40747-021-00366-1
https://doi.org/10.1007/s12555-020-0069-6
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.26599/TST.2021.9010012

	Introduction
	Materials and Methods
	Greenhouse Environment
	Dual-Arm Harvesting Robot System and Workspace Area
	Tomato Cluster Coordinate Projection and Mapping
	Infrequency Movement Planning for Multi-Arm Robot Vehicle
	Background of DDPG
	Training DDPG for Movement Planning

	Experimental Setup
	Simulation Experiments
	Field Experiments

	Results and Discussions
	Simulation Experiments
	Field Experiments
	Discussion and Future Work

	Conclusions
	References

