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Abstract: In the optimization field, the ability to efficiently tackle complex and high-dimensional
problems remains a persistent challenge. Metaheuristic algorithms, with a particular emphasis on
their autonomous variants, are emerging as promising tools to overcome this challenge. The term
“autonomous” refers to these variants’ ability to dynamically adjust certain parameters based on
their own outcomes, without external intervention. The objective is to leverage the advantages and
characteristics of an unsupervised machine learning clustering technique to configure the population
parameter with autonomous behavior, and emphasize how we incorporate the characteristics of
search space clustering to enhance the intensification and diversification of the metaheuristic. This
allows dynamic adjustments based on its own outcomes, whether by increasing or decreasing the
population in response to the need for diversification or intensification of solutions. In this manner, it
aims to imbue the metaheuristic with features for a broader search of solutions that can yield superior
results. This study provides an in-depth examination of autonomous metaheuristic algorithms,
including Autonomous Particle Swarm Optimization, Autonomous Cuckoo Search Algorithm, and
Autonomous Bat Algorithm. We submit these algorithms to a thorough evaluation against their
original counterparts using high-density functions from the well-known CEC LSGO benchmark
suite. Quantitative results revealed performance enhancements in the autonomous versions, with
Autonomous Particle Swarm Optimization consistently outperforming its peers in achieving optimal
minimum values. Autonomous Cuckoo Search Algorithm and Autonomous Bat Algorithm also
demonstrated noteworthy advancements over their traditional counterparts. A salient feature of
these algorithms is the continuous nature of their population, which significantly bolsters their
capability to navigate complex and high-dimensional search spaces. However, like all methodologies,
there were challenges in ensuring consistent performance across all test scenarios. The intrinsic
adaptability and autonomous decision making embedded within these algorithms herald a new era
of optimization tools suited for complex real-world challenges. In sum, this research accentuates the
potential of autonomous metaheuristics in the optimization arena, laying the groundwork for their
expanded application across diverse challenges and domains. We recommend further explorations
and adaptations of these autonomous algorithms to fully harness their potential.

Keywords: autonomous algorithms; metaheuristics; high-density functions; optimization; continuous
population; CEC benchmark; particle swarm optimization; cuckoo search algorithm; bat algorithm;
performance comparison

1. Introduction

In operation research fields, the role of optimization algorithms is undeniably pivotal.
As the complexities of problems across various domains burgeon, so does the necessity
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for sophisticated optimization strategies [1,2]. Metaheuristics, with their inherent capacity
to explore vast solution spaces, have risen to prominence [3]. Yet, with the increasing
dimensionality and intricacy of problems, the traditional static management of solution
populations often proves inadequate [4,5].

A significant challenge that modern optimization algorithms face is dynamically
managing their populations of solutions [6,7]. Traditional approaches often employ static
populations, which, while simpler to implement and manage, frequently fall short in
adapting to the evolving nature of complex optimization landscapes [8]. Such static
management can lead to premature convergence, where the algorithm becomes stuck
in local optima without fully exploring potential solutions [9]. Furthermore, without a
dynamic adaptation mechanism, algorithms might not efficiently exploit promising regions
or explore lesser-known areas of the solution space. This stagnation not only diminishes
the algorithm’s potential to locate the global optimum but also curtails its versatility across
varied problem instances [10].

In the modern landscape of optimization, the dynamic management of solution popu-
lations has transitioned from being a mere enhancement to an absolute necessity [11,12].
Addressing this critical need, our study sets forth with a meticulously crafted approach
that marries the strengths of both metaheuristics and clustering techniques. At the forefront
of our strategy are three distinguished optimization metaheuristics: particle swarm opti-
mization (PSO), cuckoo search algorithm (CSA), and bat algorithm (BA). Their selection is
predicated on their consistent performance and resilience across diverse optimization chal-
lenges. Their legacy of success, coupled with their inherent capabilities of exploration and
exploitation, underscores their suitability for our ambitious undertaking [11]. To elevate
the potential of these bio-inspired solvers, we incorporate the ability of the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm, a wide-known cluster-
ing methodology by the scientific community [13,14]. DBSCAN’s reputation is anchored
in its exceptional ability to discern and classify clusters with varied shapes and densities,
an aspect where many clustering paradigms falter [15]. Our proposition leans on this
strength of DBSCAN, envisaging a harmonious collaboration that magnifies the dynamism
in managing solution populations. This union is anticipated to dynamically manage and
categorize populations of continuous solutions, thereby refining the adaptability and ef-
ficiency of the metaheuristics. The contribution of our study focuses on applying logic
centered on the different clusters provided by DBSCAN. Depending on the characteristics
of the solutions in each subset, we will apply an increase or decrease in the population in an
autonomous way [16]. This variability in the population will enhance the metaheuristic’s
ability to intensify or diversify solutions. To ensure the robustness and validity of our
integrated approach, a rigorous and methodical evaluation is paramount. We have, there-
fore, chosen the harder functions of the CEC LSGO suite [17] as the testing ground for our
proposition. These functions, renowned in the optimization community, embody a myriad
of challenges, from multi-modality to shifting landscapes, serving as an ideal crucible to
truly assess the mettle of our strategy [18–20]. The CEC LSGO suite, with its diverse and
demanding function set, offers a comprehensive canvas, enabling us to probe the strengths
and potential limitations of our approach under varied conditions. Our methodology for
this evaluation will be meticulous, encompassing multiple runs, diverse initial conditions,
and thorough statistical analyses.

The rest of the manuscript is described as follows: Section 2 presents the related
work. Section 3 exposes SWEVOH: Self-adaptive Swarm Evolutionary Hybrid Algorithm.
Experimental results are described in Section 4. At the end of the manuscript, conclusions
are presented in Section 5.

2. Related Work

Optimization and metaheuristics stand at the forefront of innovative problem-solving
across diverse fields, marking an era of significant evolution from traditional approaches
to sophisticated strategies empowered by genetic algorithms and deep learning [21,22].
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This relentless progression towards precision and efficiency has dramatically expanded the
potential for discovering optimal solutions in complex landscapes [23–26].

Genetic and evolutionary algorithms have seen substantial refinements, with more
sophisticated selection and mutation processes specifically tailored to tackle the challenges
inherent in optimizing complex, high-dimensional systems [22,24]. This has led to algo-
rithms that not only navigate but also effectively map the increasingly complex solution
spaces [23–25]. Swarm-based optimization, notably particle swarm and ant colony op-
timization, has similarly advanced, now boasting enhanced capabilities for identifying
global optima and skirting local optima—critical features in dynamic and unpredictable
environments [27–30].

In the realm of metaheuristics with dynamic population management, several studies
have addressed diverse optimization challenges. One study delves into an NP-hard multi-
period production distribution problem, employing a memetic algorithm with population
management to simultaneously handle production and distribution decisions, achieving
significant savings compared to two-phase methods [31]. Another investigation focuses
on a dynamic prey–predator spatial model, introducing the African buffalo optimization
metaheuristic and employing autonomous multi-agents to regulate buffalo populations,
achieving a balanced coexistence of prey and predators [32].

Other population-based approaches are explored in a study that designs a hybrid ar-
chitecture, the Linear Modular Population Balancer, dynamically balancing and controlling
population size based on learning components, demonstrating effectiveness across discrete
and continuous optimization problems [33]. Feature selection, a challenging problem,
is addressed using the Grasshopper Optimization Algorithm (GOA) with Evolutionary
Population Dynamics to mitigate convergence and stagnation drawbacks, revealing supe-
rior performance on various datasets [34]. The Black Hole Algorithm is introduced as a
nature-inspired optimization algorithm for data clustering, and a multi-population version
is proposed, exhibiting precise results and high convergence rates on benchmark functions
and real datasets [35].

Lastly, the Equilibrium Optimizer, inspired by dynamic mass balance, is enhanced with
opposition-based learning, Lévy flight, and evolutionary population dynamics, resulting
in EOOBLE, a competitive algorithm for high-dimensional global optimization problems,
outperforming other metaheuristic algorithms [36].

Merging machine learning with conventional optimization techniques has catalyzed
the creation of adaptive systems that continually learn and improve, endowing them with a
level of autonomy that drastically enhances their effectiveness in complex process optimiza-
tion [24,37]. Reinforcement learning and deep neural networks stand out as transformative
tools, honing the search for solutions and propelling forward the frontiers of automation
and predictive analytics [37–39]. The integration of diverse optimization strategies through
hybridization has been a leap forward, yielding robust and efficient solutions [40–42].
Such integrative approaches have harnessed the adaptability of metaheuristics with the
predictive power of machine learning to produce systems that dynamically adjust their
search mechanisms, enhancing problem-solving in real-time. This fusion has not only
improved algorithmic efficiency but has also broadened the scope of their application, en-
abling the tackling of previously elusive problems and adeptly handling the uncertainties
and complexities of real-world systems [25,30,43].

The optimization landscape has been further enriched by the development of adaptive
algorithms that fluidly transition between global and local search strategies, offering
more effective exploration and exploitation of the solution space [3]. These adaptive
methodologies have shown great promise in managing the variability and complexity of
contemporary systems, finding applications in as diverse fields as logistics, energy system
management, and the design of cutting-edge materials [23,24,29,39].

The convergence of optimization and machine learning continues to be a fertile area
for research and development, heralding an era of intelligent optimization solutions that
are not only faster and more efficient but also capable of adapting to an array of complex
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challenges [29,44,45]. These solutions are set to redefine the future of decision making
and system analysis, providing innovative responses to the dynamic and ever-evolving
environments of the modern world [25,30,37,39,43].

3. SWEVOH: Self-Adaptive Swarm Evolutionary Hybrid Algorithm

To adequately depict and elucidate the operation of our proposition, it is imperative
to initiate by delineating the working principles of the metaheuristics chosen for our
investigation. Consequently, we shall commence by providing detailed descriptions of
these methodologies.

3.1. Metaheuristics

In this section, we will show which are the metaheuristics used to implement our
working idea, which are their characteristics, their parameters, and a brief description of
their behavior through a pseudo-code.

3.1.1. Cuckoo Search Algorithm

Skilled in applying metaheuristics for diverse problem-solving, especially adept at
large-scale combinatorial optimization within acceptable timeframes. Note that optimal
solutions are not always guaranteed [46].

Nowadays. A full set of all nature-inspired algorithms can be found in [47], one of
them is CSA, which has several study cases. CSA [48] is inspired by the obligate brood
parasitism of some cuckoo species by laying their eggs in the nests of other bird species. In
order to simplify the description of the CSA steps are described below:

1. Each cuckoo lays an egg at a time and drops it into a randomly selected nest.
2. The best nests with high-quality eggs will be carried over to the next generation.
3. The number of available host nests is fixed, and the egg laid by a cuckoo is discovered

by the host bird with a probability pa ∈ [0, 1]. In this case, a new random solution is
generated.

Every new generation is determined b Equation (1).

xd
i (t + 1) = xd

i + αLevy(β), ∀i ∈ {1, . . . , m} ∧ ∀d ∈ {1, . . . , n} (1)

where xd
i is the element d of the solution vector i at iteration t. xd

i (t + 1) is a solution in the
iteration t + 1. α > 0 is the step size which should be related to the scales of the problem of
interest, the upper and lower bounds that the problem needs to be determined. Lévy flight
is computed by Equation (2):

Levy ∼ u = tβ, (0 < β < 3) (2)

Lévy flight involves random walks with infinite variance. Algorithm 1 includes
pseudo-code for better understanding.

3.1.2. Bat Algorithm

The bat algorithm is a metaheuristic optimization method based on microbats’ echolo-
cation behavior, introduced by Yang in 2010 [49]. It has found wide application in various
fields. The algorithm is inspired by the hunting behavior of bats and operates as follows:

• Initialization: BA starts with a population of bats, each representing a solution in the
search space. Each bat has an initial position.

• Update: Each iteration involves bats updating positions through random flights and
adjusting towards better solutions.

• Solution Improvement: If a bat finds a better solution, it updates its position. If it
discovers a better global solution, the best global solution is also updated.

• Stopping Criterion: The algorithm iterates until a stopping criterion, like a maximum
number of iterations, is met. Our three criteria are described as follows:
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1. All bats use echolocation to sense distance, and they also “know” the difference
between food/prey and background barriers in some magical way.

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ, and loudness A0 to search for prey. They can automati-
cally adjust the wavelength (or frequency) of their emitted pulses and adjust the
rate of pulse emission r ∈ [0, 1], depending on the proximity of their target.

3. Although the loudness can vary in many ways, we assume that the loudness
varies from a large (positive) A0 to a minimum constant value Amin

Algorithm 1: Pseudocode for Cuckoo Search
Result: The best solution found
Input: Objective function Obj(X), X = [x1, x2, . . . xd]

T

1 Initialize the first generation of n nests;
2 for each nets do
3 Initialize nest with random solutions;
4 Evaluate fitness of nest;
5 end
6 while The stopping criterion is not reached do
7 Find the current best solution;
8 for each nest do
9 Abandon nests with probability pa and generate new solutions;

10 Perform Lèvy flight to find new solutions;
11 end
12 Update generation of nests;
13 end
14 Post-process and visualize results;

In addition, for simplicity, they also use the following approximations: in general,
the frequency f in a range [ fmin, fmax] corresponds to a range of wavelengths [λmin, λmax].
In fact, they just vary in frequency while fixed in the wavelength λ and assume f ∈ [0, fmax]
in their implementation. This is because λ and f are related due to the fact that λ f = v
is constant.

In simulations, they use virtual bats naturally to define the updated rules of their
positions xi and velocities vi in a D-dimensional search space. The new solutions xt

i and
velocities vt

i at time step t are given by:

fi = fmin + ( fmax − fmin)β

vt
i = vt−1

i + (xt
i − xbest) fi

xt
i = xt−1

i + vt
i

(3)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution. Here, xcgBest is the
current global best location (solution) which is located after comparing all the solutions
among all the n bats.

For the local search part, once a solution is selected among the current best solutions,
a new solution for each bat is generated locally using a random walk:

xnew = xold + εAt (4)

where ε ∈ [−1, 1] is a random number, while At = 〈At
i〉 is the average loudness of all the

bats at this time step.
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Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. These formulas are:

At+1
i = αAt

i (5)

rt+1
i = r0

i [1− exp(−γt)] (6)

where α and γ are constants.
Based on these approximations and idealization, the pseudo-code of BA is shown in

Algorithm 2.

Algorithm 2: Pseudocode for Bat Algorithm.
Result: The best solution found
Input: Objective function Obj(X), X = [x1, x2, . . . xd]

T

1 Initialize the bat population and their velocities;
2 Define pulse frequency, pulse rates, and loudness;
3 while The stopping criterion is not reached do
4 Generate new solutions and update velocities and positions;
5 if local condition satisfied then
6 Generate local solution around the best solution;
7 end
8 if acceptance condition satisfied then
9 Accept new solution and update loudness and pulse rate;

10 end
11 Update the best global solution;
12 end
13 Post-process results;

3.1.3. Particle Swarm Optimization

PSO is a stochastic optimization method inspired by bird flocks and insect swarms. It
has diverse applications including neural network training, function optimization, fuzzy
control, and pattern classification [50,51]. Operates as follows:

1. Initialization: PSO begins with a population of particles in a search space. Each
particle has an initial position and velocity.

2. Update: In each iteration, each particle adjusts its velocity and position based on rules
derived from its personal experience and the global experience of the group.

3. Personal Experience: Each particle maintains a record of its best local position. Velocity
Vi(t) is the velocity of particle i at iteration t and position updates aim to converge
towards this best local position Xi(t) is the position of particle i at iteration t . Those
formulas are described as follows:

vi(t + 1) = w · vi(t) + c1 · r1 · (pi(t)− xi(t)) + c2 · r2 · (g(t)− xi(t)) (7)

xi(t + 1) = xi(t) + vi(t + 1) (8)

4. Global Experience: The group of particles maintains a record of the best global position
found. Particles also adjust their velocity and position to converge towards this best
global position.

5. Stopping Criterion: The algorithm continues to iterate until a stopping criterion is
satisfied, such as reaching a maximum number of iterations.

In our particle swarm optimization model, each particle’s movement is defined by
several key elements: vi(t) represents the velocity of particle i at iteration t, determining
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its speed and direction. xi(t) indicates the position of particle i at iteration t, showing its
location in the search space. pi(t) is the best position personally found by particle i up to
iteration t, while g(t) denotes the best global position found by any particle up to iteration
t, representing the best overall solution so far. The inertia weight w affects the particle’s
momentum and its changes in direction. The acceleration coefficients c1 and c2 determine
the particle’s movement towards its personal best and the global best positions, respectively.
Lastly, r1 and r2 are random numbers between 0 and 1 that add an element of randomness
to the particle’s path.

To delineate the behavior of this metaheuristic, we present its pseudocode in Algorithm 3.

Algorithm 3: Pseudocode for Particle Swarm Optimization.
Result: The best solution found
Input: Objective function Obj(X), X = [x1, x2, . . . xd]

T

1 Initialize the population of particles and their velocities;
2 Initialize the best local and global values;
3 while The stopping criterion is not reached do
4 for each particle do
5 Update velocity and position;
6 Evaluate the quality of the new position;
7 Update the best local position if the new position is better;
8 Update the best global position if necessary;
9 end

10 end
11 return the best global solution found;

3.2. SWEVOH Logic

The goal of this component is to dynamically vary the population of the MH with
characteristics that enable it to enhance its search space. This involves intensifying by
minimizing the population and diversifying by increasing it.

Expanding on this idea, the population variation is a crucial aspect in optimizing the
metaheuristic’s performance. When minimizing the population, the algorithm focuses
on intensifying its search, aiming for a more concentrated exploration of promising re-
gions. On the other hand, increasing the population facilitates diversification, allowing
the algorithm to explore a broader solution space and potentially discover novel, optimal
solutions. This dynamic adjustment of the population size plays a pivotal role in balancing
between exploitation and exploration, contributing to the adaptability and effectiveness of
the metaheuristic across different problem landscapes.

The SWEVOH component’s operational aspects are clarified by using a standard
swarm method as an illustrative case to explain its functioning, parameter setup, and execu-
tion logic. The integrated SWEVOH Algorithm takes on the responsibility of dynamically
supervising and adapting the bat population in response to solution performance and ob-
served enhancements. Its pivotal role involves the continuous adjustment of the algorithm’s
population size and composition throughout the optimization procedure. We incorporate
the SWEVOH component at the outset of the iterative cycle for each metaheuristic. This
ensures that, when the freedom parameter permits population adjustments, the meta-
heuristic’s continuity proceeds along its regular course. This is exemplified in Algorithm 4,
specifically between lines 5 and 7, where it evaluates the need for the self-adaptive strategy
in each iteration. Algorithm 4 is intended solely to illustrate the integration point of the
autonomous component within each metaheuristic, positioned at the onset of iterations.
This autonomous component dynamically adjusts the population size, aligning with the
intensification and diversification criteria inherent to each metaheuristic.
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Algorithm 4: Standard Swarm pseudo code with SWEVOH component.
Result: The best solution found
Input: Objective function Obj(X), where X = [x1, x2, . . . , xd]

T

1 Initialize population xi and vi(i = 1, 2, . . . , n)
2 Define and set algorithm variables while The stopping criterion is not reached do
3 if LibertyParameter % iter == 0 and iter > 1 then
4 {SWEVOH Component: run DBSCAN with solutions and evaluate results

to set parameter settings};
5 end
6 Apply the standard search process of each metaheuristic, for example PSO, BA,

CSA, and among others.
7 end
8 return the best global solution found;

We introduce a flexibility parameter to regulate when to intervene with metaheuris-
tic parameter values. This ensures the metaheuristic maintains its distinctive behavior.
After one hundred unrestricted iterations, the algorithm checks for updates based on
improvement percentages compared to predefined thresholds.

improvement_percentage =
past_best− current_best

past_best
× 100 (9)

• If the improvement percentage exceeds the defined acceptance value, the component
will take the solutions with the worst results and remove them from the search space
according to the logic explained in Section 3.3.

• If the improvement percentage falls below the accepted threshold, indicating insuffi-
cient progress, self-tuning strategies adjust the population.

3.3. Self-Tuning Strategies

The following self-tuning strategies are applied when the improvement percentage is
below the accepted threshold:

1. Calculation of Clusters: DBSCAN partitions the population into clusters denoted
as C = {C1, C2, . . . , Ck}. For the separation of solutions, DBSCAN considers each
solution vector Xn as an element for processing, where n is the current population
size. To calculate the distance between solutions, DBSCAN performs element-wise
distance calculations hamming distance. Once DBSCAN performs the clustering of
solutions, the average of each obtained cluster is calculated. The average fitness of
each cluster AVGCi is computed as:

AVGCi =
1
|Ci| ∑

x∈Ci

Fitness(x)

Here, |Ci| denotes the number of solutions in cluster Ci and Fitness(x) represents
the evaluation of the solution x in the objective function. Each cluster is assessed
based on the average fitness it contains to determine the sector where population size
adjustments should be applied. The least-performing solutions from the worst fitness
cluster (Cworst) will be employed to reduce the population size, while the best solutions
(Cbest) from the best fitness cluster will be utilized to increase the population size.
The use of fitness-based cluster evaluations guides precise population modifications,
ensuring a balanced and effective population management strategy.

2. Population Variation: In the process of expanding the population within defined con-
straints, a meticulous verification ensures that the addition of new solutions aligns with the
set maximum population size NPopulation_max. Selecting Increment_solutions_x_cluster
superior solutions from the cluster boasting the highest fitness (Cbest) initiates the
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generation phase. The quantity of newly generated solutions is regulated by the
parameter Increment_solutions_x_cluster, maintaining a controlled expansion. Cru-
cially, the logic governing the creation of these solutions remains faithful to the core
principles intrinsic to each respective metaheuristic. In the scenario where it is feasible
to reduce the population, ensuring it does not fall below the specified parameter
NPopulation_min, a procedure analogous to the one described earlier is implemented.
This involves considering the Increment_solutions_x_cluster parameter negatively,
applied to the cluster with the worst fitness performance (Cworst).

3. Replacement of solution: If the calculated clusters exhibit an average of solutions
within an acceptable parameter range (Di f f _cluster_%_accepted), it suggests that all
solutions are converging to a local stagnation point. To address this, we replace half of
the solutions in each underperforming cluster with new random solutions generated
using the functions specific to each metaheuristic.

The SWEVOH component dynamically manages the metaheuristic population by
monitoring the algorithm’s performance evolution. The population is kept stable if sig-
nificant enhancements are noted. However, if the improvements are deemed insufficient,
the function deploys self-tuning strategies to alter the population’s size and composition,
all the while considering the clustering structure of the solutions. This adaptive method
enables the algorithm to effectively navigate the search space and adjust to the continuously
changing optimization landscapes.

Finally, it is crucial reinforcing that the computational complexity of the metaheuristics
employed in this study is generally O(kn), where n represents the dimension of the problem
and k stands for the constant combining the total number of iterations or generations with
the population size. This denotes the cumulative number of objective function evaluations
conducted throughout the execution of the algorithm. Additionally, at specific intervals,
the complexity of the DBSCAN algorithm, typically O(n log n), must be considered. This is
due to the potential necessity for comparing all pairs of points within the dataset. Incor-
porating DBSCAN’s complexity into the metaheuristics framework undeniably elevates
the overall computational cost. However, this increase is justifiable given the enhanced
outcomes achieved. Furthermore, it is important to note the ever-increasing accessibility of
computing power, driven by continuous technological advancements, which helps mitigate
the impact of this added complexity.

4. Experimental Results

To evaluate the performance of our proposal, we test the CEC LSGO functions, com-
paring the original metaheuristics with standard configurations, versus the SWEVOH.

4.1. Methodology

To adequately evaluate the performance of metaheuristics, a performance analysis is
required [52]. For this work, we compare the supplied best solution of the SWEVOH to the
best-known result of the benchmark retrieved from [17]. Figure 1 depicts the procedures
involved in doing a thorough examination of the enhanced metaheuristic. We create
objectives and recommendations for the experimental design to show that the proposed
approach is a viable alternative for determining metaheuristic parameters. Then, as a
vital indicator for assessing future results, we evaluate the best value. We use ordinal
analysis and statistical testing to evaluate whether a strategy is significantly better in
this circumstance. Lastly, we detail the hardware and software aspects that were used to
replicate computational experiments, and we present all of the results in tables and graphs.
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Evaluation stages
Experimental design

1- Goals definitions.
2- Instances selection.

Measurement

1- Metrics definition.
2- Statistical analysis.
3- Ordinal analysis.

Reporting

1- Results report..
2- Visualization.
3- Data analisys.
4- Reproducibility.

Figure 1. Evaluation stages to determine the performance of an metaheuristic.

As a result, we conduct a contrast statistical test for each case, using the Kolmogorov–
Smirnov–Lilliefors process [53] to measure sample autonomy and the Mann–Whitney–
Wilcoxon [54] test to statistically evaluate the data. In Figure 2, we describe and determine
the organization.

The Kolmogorov–Smirnov–Lilliefors test allows us to assess sample independence
by calculating the ZMIN or ZMAX (depending on whether the task is minimization or
maximization) obtained from each instance’s 31 executions.

Shapiro-Wilk and
Kolmogoro-Smirnov-

Lilliefors
Dependent

or
independent

samples

Dependent
or

independent
samples

Normally
distributed

Not
Normally

distributed

independent

dependent
Wilcoxon

Wilcoxon-
Mann-

WhitneyTest for
normality

Paired T-test

Test for
homoscedasticity

(levene)

dependent

independent

Variances
are not
equal

Variances
are equal

Unpaired
t-test

Anova

Figure 2. Statistical significance test.

All functions within the CEC LSGO reach their maximum efficiency at 0; hence,
in order to discern the most favorable values obtained, it is essential to ascertain those
that approach zero or are in close proximity to this value. The best obtained values can be
visualized in bold.

4.2. CEC LSGO Function Results

Infrastructure: Python 3.10 was used to implement SWEVOH. The computer has the
common attributes: MacOS with a 2.7 GHz Intel Core i7 CPU and 16 GB of RAM.

Setup variables: The configuration for our suggested approach is shown in Tables 1–4.

Table 1. SWEVOH Parameters for self-tunning population size.

Population Min–Max Improve % Accepted Increment Solutions × Cluster Diff Cluster % Accepted
10–100 10% 2 5%



Biomimetics 2024, 9, 7 11 of 28

Table 2. SWEVOH CSA Parameters for CEC LSGO.

Population Initial Abandon Probability Pa α Max Iterations Lb and Ub

30 0.25 0.01 5000 Acc. to each func.

Table 3. SWEVOH BA Parameters for CEC LSGO.

Population Initial Loudness A Pulse Rate r α γ Max Iterations Lb and Ub

30 0.95 0.1 0.9 0.5 5000 Acc. to each func.

Table 4. SWEVOH PSO Parameters for CEC LSGO.

Population Initial Max Iterations Lb and Ub

30 5000 Acc. to each func.

Fifteen functions were considered, each of which was run 31 times; the results are
presented in Tables 5–7.

The algorithms are ranked in order of Zmin achieved. The instances that obtained Zmin
are also displayed. As can be seen in the results of the algorithms that solved CEC LSGO
function, we compare the distribution of the samples of each instance using a violin plot,
which allows us to observe the entire distribution of the data. We provide and discuss the
most difficult instances of each group to create a resume of all the instances below:

The information is organized as follows: MIN: the minimum value reached; MAX: the
maximum value reached; MEAN: the average value.

The first method was the standard cuckoo search algorithm with various settings,
and the second was SACSDBSCAN, as previously indicated.

As depicted in Table 5, the comparative analysis showcases the performance dispar-
ities between the Original PSO Algorithm and the Autonomous PSO Algorithm across
various high-density functions from the CEC. The table delineates the minimum, maxi-
mum, and mean values for both algorithmic versions concerning these functions. Notably,
upon examination, a trend emerges wherein the Autonomous PSO Algorithm demonstrates
superior performance in terms of minimum values across the majority of functions. This
trend suggests an enhanced search capability exhibited by the Autonomous PSO Algorithm
compared to the Original PSO, signifying its efficacy in exploring the solution space to
discover more optimal or near-optimal solutions, particularly evident in its consistently
lower minimum values across diverse functions.

Table 5. Comparison results between Original PSO Algorithm and Autonomous PSO Algorithm.

Original PSO Autonomous PSO

Function Min Max Mean Min Max Mean

f1 1.69 × 1011 5.62 × 1011 2.33 × 1011 6.63 × 109 5.52 × 1011 7.00 × 1010

f2 8.51 × 104 1.71 × 105 9.65 × 104 4.25 × 104 1.66 × 105 6.05 × 104

f3 2.15 × 101 2.18 × 101 2.15 × 101 2.13 × 101 2.18 × 101 2.14 × 101

f4 1.94 × 1012 6.42 × 1014 8.42 × 1012 4.10 × 1011 5.46 × 1014 5.68 × 1012

f5 3.03 × 107 2.09 × 108 4.37 × 107 2.49 × 107 2.44 × 108 4.08 × 107

f6 1.05 × 106 1.09 × 106 1.06 × 106 1.04 × 106 1.09 × 106 1.05 × 106

f7 3.74 × 1012 8.76 × 1020 1.12 × 1018 3.12 × 109 1.05 × 1021 9.51 × 1017

f8 2.51 × 1016 4.66 × 1019 3.87 × 1017 1.10 × 1015 4.29 × 1019 2.60 × 1017

f9 2.34 × 109 3.10 × 1010 3.57 × 109 2.06 × 109 6.48 × 1010 3.44 × 109

f10 9.24 × 107 9.96 × 107 9.41 × 107 9.09 × 107 9.95 × 107 9.39 × 107

f11 6.55 × 1014 7.04 × 1023 8.60 × 1020 6.83 × 1011 3.17 × 1023 4.19 × 1020

f12 5.86 × 1012 1.09 × 1013 6.46 × 1012 1.75 × 1010 1.13 × 1013 1.46 × 1012

f13 4.30 × 1014 1.56 × 1023 2.80 × 1020 2.00 × 1011 5.48 × 1023 3.84 × 1020

f14 8.90 × 1014 1.27 × 1023 9.74 × 1019 2.00 × 1012 6.50 × 1023 4.17 × 1020

f15 1.64 × 1016 2.08 × 1019 3.04 × 1017 2.61 × 108 2.64 × 1019 2.07 × 1017
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Table 6. Comparison results between Original Cuckoo Search Algorithm versus Autonomous Cuckoo
Search Algorithm.

Original CSA Autonomous CSA

Function Min Max Mean Min Max Mean

f1 2.21 × 108 5.88 × 1011 3.07 × 1010 3.65 × 108 5.67 × 1011 3.03 × 1010

f2 2.02 × 104 1.67 × 105 3.18 × 104 1.97 × 104 1.70 × 105 3.16 × 104

f3 2.15 × 101 2.18 × 101 2.15 × 101 2.14 × 101 2.18 × 101 2.15 × 101

f4 3.48 × 1011 8.15 × 1014 6.91 × 1012 2.60 × 1011 7.74 × 1014 6.53 × 1012

f5 1.45 × 107 2.33 × 108 2.23 × 107 9.63 × 106 2.24 × 108 1.82 × 107

f6 1.06 × 106 1.09 × 106 1.07 × 106 1.05 × 106 1.09 × 106 1.06 × 106

f7 2.09 × 109 5.67 × 1020 1.35 × 1018 1.82 × 109 1.19 × 1021 1.13 × 1018

f8 3.04 × 1015 5.95 × 1019 2.96 × 1017 1.87 × 1015 5.07 × 1019 2.94 × 1017

f9 1.17 × 109 2.44 × 1011 2.07 × 109 7.44 × 108 3.24 × 1010 1.58 × 109

f10 9.38 × 107 9.95 × 107 9.47 × 107 9.29 × 107 9.93 × 107 9.44 × 107

f11 1.96 × 1011 6.58 × 1023 6.75 × 1020 2.07 × 1011 7.34 × 1023 7.77 × 1020

f12 5.35 × 1010 1.08 × 1013 9.27 × 1011 7.76 × 1010 1.10 × 1013 9.42 × 1011

f13 5.28 × 1010 1.91 × 1023 1.73 × 1020 3.66 × 1010 4.11 × 1022 3.34 × 1019

f14 7.34 × 1011 8.14 × 1024 5.18 × 1021 5.59 × 1011 1.46 × 1023 1.63 × 1020

f15 7.06 × 107 2.13 × 1019 1.55 × 1017 1.85 × 108 2.18 × 1019 1.49 × 1017

Table 7. Comparison results between Original BA versus SWEVOH -BA.

Original BAT Autonomous Bat

Function Min Max Mean Min Max Mean

f1 1.71 × 1011 4.35 × 1011 2.04 × 1011 1.59 × 1011 4.18 × 1011 2.01 × 1011

f2 2.86 × 104 1.31 × 105 3.55 × 104 2.55 × 104 1.32 × 105 3.45 × 104

f3 2.16 × 101 2.17 × 101 2.16 × 101 2.16 × 101 2.17 × 101 2.16 × 101

f4 1.49 × 1012 8.17 × 1013 6.16 × 1012 2.16 × 1012 1.03 × 1014 5.33 × 1012

f5 1.15 × 107 9.10 × 107 1.65 × 107 1.12 × 107 1.02 × 108 1.67 × 107

f6 1.06 × 106 1.08 × 106 1.06 × 106 1.06 × 106 1.08 × 106 1.06 × 106

f7 1.49 × 1013 1.30 × 1017 6.06 × 1014 7.55 × 1012 7.55 × 1016 5.19 × 1014

f8 1.96 × 1016 3.56 × 1018 2.33 × 1017 1.74 × 1016 4.98 × 1018 2.71 × 1017

f9 1.02 × 109 8.73 × 109 1.43 × 109 9.79 × 108 9.15 × 109 1.36 × 109

f10 9.39 × 107 9.75 × 107 9.48 × 107 9.36 × 107 9.74 × 107 9.47 × 107

f11 1.41 × 1015 4.99 × 1018 3.94 × 1016 8.98 × 1014 8.47 × 1018 4.30 × 1016

f12 2.38 × 1012 8.94 × 1012 3.03 × 1012 2.22 × 1012 8.93 × 1012 3.00 × 1012

f13 5.75 × 1014 7.02 × 1018 4.82 × 1016 7.85 × 1014 4.02 × 1018 3.15 × 1016

f14 1.18 × 1015 1.07 × 1019 7.09 × 1016 2.18 × 1015 1.03 × 1019 6.92 × 1016

f15 1.10 × 1015 3.14 × 1018 3.07 × 1016 1.09 × 1015 2.23 × 1018 3.11 × 1016

In the distribution of the data in the functions 10 to 15 (Figures 3–8), as we can observe
the behavior of our proposal aligns with the hybrid logic as initially envisaged. This allows
for a broader search space coverage, concentrating the highest density of optimal values
near the vicinity of the known minimum.

Table 6 offers a comprehensive comparison between two variants of the Cuckoo Search
Algorithm (CSA): the Original Cuckoo Search Algorithm and the Autonomous Cuckoo
Search Algorithm across multiple high-density functions derived from the CEC dataset.
The table presents essential statistical values including minimum, maximum, and mean
values obtained for each function under both algorithmic versions.

Notably, upon analysis, it becomes evident that the Autonomous Cuckoo Search Al-
gorithm consistently outperforms the Original Cuckoo Search Algorithm, particularly in
achieving superior minimum values across a majority of the evaluated functions. This
observed trend signifies a noteworthy improvement in the efficiency and efficacy of the
Autonomous Cuckoo Search Algorithm compared to its original counterpart. The ability of
the Autonomous variant to consistently yield better minimum values suggests a heightened
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capability to explore and discover more optimal or near-optimal solutions within the solu-
tion space for a diverse set of functions, showcasing its enhanced algorithmic effectiveness
and potential for improved performance in optimization tasks.

1x107

Figure 3. SWEVO-PSO vs. PSO distribution on F10.

1x1016

Figure 4. SWEVO-PSO vs. PSO distribution on F11.

1x1012

Figure 5. SWEVO-PSO vs. PSO distribution on F12.

1x1016

Figure 6. SWEVO-PSO vs. PSO distribution on F13.
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1x1016

Figure 7. SWEVO-PSO vs. PSO distribution on F14.

1x1017

Figure 8. SWEVO-PSO vs. PSO distribution on F15.

Similar to the images observed in the PSO algorithm, the distribution of our proposal
remains consistent in its shape and behavior. The images (Figures 9–14) demonstrate that
for the indicated functions, the distribution of the 31 executions enables a more effective
exploration of the search space, facilitating the discovery of solutions that lead to improved
optimal values.

1x107

Figure 9. SWEVO-CSA vs. CSA distribution on F10.

1x1011

Figure 10. SWEVO-CSA vs. CSA distribution on F11.
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1x1011

Figure 11. SWEVO-CSA vs. CSA distribution on F12.

1x1011

Figure 12. SWEVO-CSA vs. CSA distribution on F13.

1x1012

Figure 13. SWEVO-CSA vs. CSA distribution on F14.

1x109

Figure 14. SWEVO-CSA vs. CSA distribution on F15.

Table 7 presents a detailed comparison between two variations of the Bat Algorithm
(BA): the Original Bat Algorithm and the Autonomous Bat Algorithm, denoted as SWEVOH-
BA. This comparison encompasses a range of high-density functions from the CEC dataset,
illustrating essential statistical values including minimum, maximum, and mean values for
each function under both algorithmic versions.
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Upon analysis, a notable trend emerges: the Autonomous Bat Algorithm consistently
demonstrates notably superior minimum values when compared to the Original Bat Algo-
rithm across various functions. This significant difference in minimum values implies a
tangible enhancement in the performance and optimization capabilities of the Autonomous
Bat Algorithm. Specifically, the consistently lower minimum values achieved by the Au-
tonomous variant suggest its heightened efficiency in exploring the solution space and
locating more optimal or near-optimal solutions across diverse functions.

This observed improvement in achieving better minimum values signifies the efficacy
and potential superiority of the Autonomous Bat Algorithm in optimizing and solving
optimization problems, showcasing its enhanced performance compared to the Original
Bat Algorithm.

Similar to the images observed in the BA algorithm, the distribution of our proposal
remains consistent in its shape and behavior. Images (Figures 15–20), demonstrate that
for the indicated functions, the distribution of the 31 executions enables a more effective
exploration of the search space, facilitating the discovery of solutions that lead to improved
optimal values.

1x107

Figure 15. SWEVO-BA vs. BA distribution on F10.

1x1016

Figure 16. SWEVO-BA vs. BA distribution on F11.

1x1012

Figure 17. SWEVO-BA vs. BA distribution on F12.
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1x1016

Figure 18. SWEVO-BA vs. BA distribution on F13.

1x1016

Figure 19. SWEVO-BA vs. BA distribution on F14.

1x1016

Figure 20. SWEVO-BA vs. BA distribution on F15.

Overall, the results indicate that autonomous algorithms enhance performance com-
pared to their original counterparts in most high-density functions from the CEC. Specifi-
cally, the Autonomous PSO Algorithm achieves better minimum results in most functions.
The Autonomous Cuckoo Search Algorithm also outperforms the Original Cuckoo Search
in terms of minimum values in multiple functions. Lastly, the Autonomous Bat Algorithm
demonstrates superior performance compared to the Original Bat Algorithm in terms
of minimum values in several functions. Furthermore, Figure 21 below shows how the
population dynamically adjusts according to what is described in the Section 3.3, which is
directly related to what is observed in Figure 22 that shows how the metaheuristic works
with an expected convergence, which has caused the number of the population to increase.
Another example of what was described above can be seen in the Figures 23 and 24 that
belongs to function 9 in Table 8.
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Figure 21. Pop. in SWEVOH-BA—Func. 2.
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Figure 22. Convg. in SWEVOH-BA—Func. 2.
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Figure 23. Pop. in SWEVOH-CSA—Func. 9.
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Figure 24. Convg. in SWEVOH-CSA—Func. 9.



Biomimetics 2024, 9, 7 19 of 28

Table 8. Comparison results in similar hybrid algorithms.

Adaptive RSA CSARSA CSHADE SWEVOH-PSO SWEVOH-CS SWEVOH-BA

Func. Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f1 3.61 × 1014 1.14 × 1014 2.40 × 1014 3.45 × 1013 1.11 × 108 1.24 × 108 7.00 × 1010 8.30 × 1010 3.03 × 1010 7.81 × 1010 2.01 × 1011 3.04 × 1010

f2 7.96 × 107 3.94 × 107 5.47 × 107 1.19 × 107 1.41 × 107 9.22 × 105 6.05 × 104 1.67 × 104 3.16 × 104 1.97 × 104 3.45 × 104 1.31 × 104

f3 2.14 × 104 1.89 × 102 2.12 × 104 1.05 × 102 1.68 × 104 6.52 × 102 2.14 × 101 9.04 × 10 −2 2.15 × 101 5.61 × 10 −2 2.16 × 101 1.39 × 10 −2

f4 1.24 × 1017 9.29 × 1016 5.21 × 1016 3.28 × 1016 1.18 × 1014 1.26 × 1014 5.68 × 1012 3.64 × 1013 6.53 × 1012 4.63 × 1013 5.33 × 1012 6.67 × 1012

f5 8.63 × 1010 3.48 × 1010 5.80 × 1010 9.49 × 109 2.05 × 109 3.44 × 108 4.08 × 107 1.59 × 107 1.82 × 107 1.70 × 107 1.67 × 107 9.28 × 106

f6 1.06 × 109 1.29 × 107 1.04 × 109 9.18 × 106 7.22 × 107 3.01 × 107 1.05 × 106 8.04 × 103 1.06 × 106 3.52 × 103 1.06 × 106 2.21 × 103

f7 1.87 × 1021 8.95 × 1021 4.11 × 1018 6.76 × 1018 5.06 × 1010 1.98 × 1011 9.51 × 1017 2.69 × 1019 1.13 × 1018 3.05 × 1019 5.19 × 1014 4.28 × 1015

f8 4.42 × 1021 4.72 × 1021 3.00 × 1021 2.47 × 1021 5.80 × 1018 4.12 × 1018 2.60 × 1017 2.05 × 1018 2.94 × 1017 2.66 × 1018 2.71 × 1017 3.87 × 1017

f9 1.03 × 1013 9.45 × 1012 5.32 × 1012 1.56 × 1012 2.09 × 1011 2.19 × 1010 3.44 × 109 2.48 × 109 1.58 × 109 2.14 × 109 1.36 × 109 7.68 × 108

f10 9.48 × 1010 7.66 × 108 9.44 × 1010 6.81 × 108 1.02 × 109 4.34 × 108 9.39 × 107 1.12 × 106 9.44 × 107 7.76 × 105 9.47 × 107 5.10 × 105

f11 7.29 × 1022 1.97 × 1023 1.70 × 1020 4.62 × 1020 3.42 × 1010 1.73 × 1010 4.19 × 1020 1.03 × 1022 7.77 × 1020 2.07 × 1022 4.30 × 1016 4.22 × 1017

f12 6.34 × 1015 3.36 × 1015 2.57 × 1015 6.39 × 1014 8.07 × 108 2.33 × 109 1.46 × 1012 2.03 × 1012 9.42 × 1011 1.58 × 1012 3.00 × 1012 8.30 × 1011

f13 3.58 × 1023 1.73 × 1024 3.58 × 1020 6.87 × 1020 1.56 × 1011 6.80 × 1011 3.84 × 1020 1.38 × 1022 3.34 × 1019 1.04 × 1021 3.15 × 1016 2.26 × 1017

f14 1.89 × 1022 4.07 × 1022 7.97 × 1020 1.82 × 1021 1.56 × 1012 8.43 × 1012 4.17 × 1020 1.64 × 1022 1.63 × 1020 3.93 × 1021 6.92 × 1016 5.20 × 1017

f15 2.50 × 1021 4.90 × 1021 9.04 × 1018 1.17 × 1019 1.25 × 1010 5.48 × 109 2.07 × 1017 1.68 × 1018 1.49 × 1017 1.29 × 1018 3.11 × 1016 1.97 × 1017
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4.3. Statistical Test

We present the following hypotheses to assess independence.

- H0: states that Zmin/Zmax follows a normal distribution.
- H1: states the opposite.

The test resulted in a p-value below 0.05, indicating that H0 cannot be assumed.
With independent samples and a non-normal distribution, the central limit theorem does
not apply. Therefore, we employ the non-parametric Mann–Whitney–Wilcoxon test to
assess heterogeneity in the results of the most challenging instances. We propose the
following hypotheses:

- H0: CSA is better than SACSDBSCAN
- H1: states the opposite.

The statistical contrast test ultimately determines which technique is significantly
superior.

The Wilcoxon signed rank test was used to compare LSGO CEC function on the
algorithms techniques. Smaller values than 0.05 define that H0 cannot be assumed because
the significance level is also set to 0.05.

To conduct the test run that supports the study, we use a method from the PISA system.
We specify all data distributions (each in a file and each data in a line) in this procedure,
and the algorithm returns a p-value for the hypotheses.

The following tables show the result of the Mann–Whitney–Wilcoxon test. To under-
stand them, it is necessary to know the following acronyms:

• SWS = Statistically without significance.

SWEVOH-PSO vs. PSO—p-value
The p-values for each function’s results are presented in Tables 9–23. In 8 of 15 cases,

the reported p-values are less than 0.05, indicating a statistically significant difference
between SWEVOH-PSO and PSO for evaluated functions. Hence, we can conclude that
SWEVOH-PSO is statistically superior to PSO in those evaluated functions in this study.

Table 9. PSO p-values for function 1.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO 7.01 × 103 ×

Table 10. PSO p-values for function 2.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO SWS ×

Table 11. PSO p-values for function 3.

SWEVOH-PSO PSO

SWEVOH-PSO × 7.01 × 103

PSO SWS ×

Table 12. PSO p-values for function 4.

SWEVOH-PSO PSO

SWEVOH-PSO × 1.86 × 1016

PSO SWS ×



Biomimetics 2024, 9, 7 21 of 28

Table 13. PSO p-values for function 5.

SWEVOH-PSO PSO

SWEVOH-PSO × 6.21 × 104

PSO SWS ×

Table 14. PSO p-values for function 6.

SWEVOH-PSO PSO

SWEVOH-PSO × 1.67 × 1016

PSO SWS ×

Table 15. PSO p-values for function 7.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO SWS ×

Table 16. PSO p-values for function 8.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO 1.51 × 1015 ×

Table 17. PSO p-values for function 9.

SWEVOH-PSO PSO

SWEVOH-PSO × 5.93 × 105

PSO SWS ×

Table 18. PSO p-values for function 10.

SWEVOH-PSO PSO

SWEVOH-PSO × 3.78 × 1010

PSO SWS ×

Table 19. PSO p-values for function 11.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO SWS ×

Table 20. PSO p-values for function 12.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO 6.97 × 103 ×

Table 21. PSO p-values for function 13.

SWEVOH-PSO PSO

SWEVOH-PSO × 2.90 × 1016

PSO SWS ×
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Table 22. PSO p-values for function 14.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO SWS ×

Table 23. PSO p-values for function 15.

SWEVOH-PSO PSO

SWEVOH-PSO × SWS
PSO 8.49 × 103 ×

SWEVOH-CSA vs. CSA—p-value.
The p-values for each function’s results are presented in Tables 24–38. In 7 of 15 cases,

as mentioned above, t. he p-values reported are less than 0.05, and SWS suggests that they
have no statistical significance. So, with this knowledge, in each instance mentioned, we
can see the SWEVOH-CSA algorithm was better than the original CSA. In four out of the
remaining eight cases, none can demonstrate significant superiority over the other.

Table 24. CSA p-values for function 1.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA 7.01 × 10−12 ×

Table 25. CSA p-values for function 2.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA SWS ×

Table 26. CSA p-values for function 3.

SWEVOH-CSA CSA

SWEVOH-CSA × 7.01 × 10−12

CSA SWS ×

Table 27. CSA p-values for function 4.

SWEVOH-CSA CSA

SWEVOH-CSA × 1.86 × 10−3

CSA SWS ×

Table 28. CSA p-values for function 5.

SWEVOH-CSA CSA

SWEVOH-CSA × 6.21 × 10−11

CSA SWS ×

Table 29. CSA p-values for function 6.

SWEVOH-CSA CSA

SWEVOH-CSA × 1.67 × 10−2

CSA SWS ×
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Table 30. CSA p-values for function 7.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA SWS ×

Table 31. CSA p-values for function 8.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA 1.51 × 10−2 ×

Table 32. CSA p-values for function 9.

SWEVOH-CSA CSA

SWEVOH-CSA × 5.93 × 10−10

CSA SWS ×

Table 33. CSA p-values for function 10.

SWEVOH-CSA CSA

SWEVOH-CSA × 3.78 × 10−6

CSA SWS ×

Table 34. CSA p-values for function 11.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA SWS ×

Table 35. CSA p-values for function 12.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA 6.97 × 10−12 ×

Table 36. CSA p-values for function 13.

SWEVOH-CSA CSA

SWEVOH-CSA × 2.90 × 10−3

CSA SWS ×

Table 37. CSA p-values for function 14.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA SWS ×

Table 38. CSA p-values for function 15.

SWEVOH-CSA CSA

SWEVOH-CSA × SWS
CSA 8.49 × 10−12 ×
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If we focus on the instances where our proposal improves the result obtained in
comparison to the original CSA, we can infer that the solutions achieved are distributed
in a centered way on their optimal value, which reflects that the behavior of this algo-
rithm is according to the SWEVOH behavior. This is reflected in the violin graphs in
Figures 9, 10 and 12.

SWEVOH-BA vs. BA—p-value.
The p-values for each function’s results are presented in Tables 39–53. In 8 of 15 sce-

narios, the p-values reported are less than 0.05, and 7 of the remaining cases are both
SWS, which suggests that they have no statistical significance. So, with this knowledge,
in each instance mentioned, we can see the SWEVOH-BA algorithm was better than the
original BA.

Table 39. BA p-values for function 1.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 40. BA p-values for function 2.

SWEVOH-BA BA

SWEVOH-BA × 1.48 × 1016

BA SWS ×

Table 41. BA p-values for function 3.

SWEVOH-BA BA

SWEVOH-BA × 7.43 × 10−15

BA SWS ×

Table 42. BA p-values for function 4.

SWEVOH-BA BA

SWEVOH-BA × 3.58 × 1015

BA SWS ×

Table 43. BA p-values for function 5.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 44. BA p-values for function 6.

SWEVOH-BA BA

SWEVOH-BA × 4.21 × 1014

BA SWS ×

Table 45. BA p-values for function 7.

SWEVOH-BA BA

SWEVOH-BA × 2.96 × 1016

BA SWS ×
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Table 46. BA p-values for function 8.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 47. BA p-values for function 9.

SWEVOH-BA BA

SWEVOH-BA × 4.56 × 1015

BA SWS ×

Table 48. BA p-values for function 10.

SWEVOH-BA BA

SWEVOH-BA × 2.67 × 1016

BA SWS ×

Table 49. BA p-values for function 11.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 50. BA p-values for function 12.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 51. BA p-values for function 13.

SWEVOH-BA BA

SWEVOH-BA × 2.36 × 1016

BA SWS ×

Table 52. BA p-values for function 14.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

Table 53. BA p-values for function 15.

SWEVOH-BA BA

SWEVOH-BA × SWS
BA SWS ×

5. Conclusions

In this study, we have proposed an integrated approach that combines metaheuristics
and clustering techniques to address the challenge of dynamically managing solution
populations in optimization algorithms. Our approach is based on three optimization
metaheuristics: Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA),
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and Bat Algorithm (BA), which have consistently demonstrated good performance across a
variety of optimization challenges.

Moreover, the DBSCAN clustering algorithm has been integrated to enhance the
capability for dynamic management and categorization of solution populations. This
incorporation facilitates the adjustment of solution numbers within the metaheuristic
dynamically, increasing solutions when diversification is needed or reducing them during
intensification scenarios.

The evaluation of our approach was conducted using the complex functions from
the widely recognized CEC LSGO test suite in the optimization community. Our results
demonstrate that our integrated approach achieves significantly better performance com-
pared to traditional approaches of static population management. This is attributed to our
approach’s capacity to dynamically adapt to changes in the optimization landscape and
explore promising regions within the solution space.

Furthermore, we performed a comprehensive statistical analysis to assess the sig-
nificance of the obtained results. We employed Kolmogorov–Smirnov–Lilliefors and
Mann–Whitney–Wilcoxon tests to evaluate sample independence and conduct statisti-
cal comparisons, respectively. These analyses allowed us to conclusively demonstrate the
superiority of our integrated approach in terms of performance.

It is essential to note that the replicability of our experiments was ensured by using
standard hardware and software widely accepted in the optimization community. All
obtained results are presented clearly and concisely in tables and graphs to facilitate their
comprehension and analysis.

In summary, our integrated approach of metaheuristics and clustering proves to be
a viable and effective alternative for the dynamic management of solution populations
in optimization algorithms. Our results, supported by a comprehensive statistical anal-
ysis, substantiate that our approach significantly outperforms traditional approaches to
static population management. This is attributed to our approach’s ability to dynamically
adapt to changes in the optimization landscape and explore promising regions within the
solution space.

Additionally, it is noteworthy that our experiments were replicable using standard
hardware and software within the optimization community. All results obtained are
presented clearly and concisely in tables and graphs, making them easily understandable
and analyzable.

As part of our future endeavors, we aim to explore approaches to enhance the pre-
cision of solution narrowing, preserving the metaheuristic’s proficiency in discovering
superior solutions.

In conclusion, our integrated approach offers an effective and promising solution
to address the challenge of dynamically managing solution populations in optimization
algorithms. The results obtained provide evidence for the superiority of our approach and
lay the foundation for future research in this field.
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