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Abstract: The wings of birds exhibit multi-degree-of-freedom motions during flight. Among them,
the flapping folding motion and chordwise passive deformation of the wings are prominent features
of large birds in flight, contributing to their exceptional flight capabilities. This article presents
a method for the fast and accurate calculation of folding passive torsional flapping wings in the
early design stage. The method utilizes the unsteady three-dimensional panel method to solve
the aerodynamic force and the linear beam element model to analyze the fluid–structure coupling
problem. Performance comparisons of folding flapping wings with different kinematics are conducted,
and the effects of various kinematic parameters on folding flapping wings are analyzed. The results
indicate that kinematic parameters significantly influence the lift coefficient, thrust coefficient, and
propulsion efficiency. Selecting the appropriate kinematic and geometric parameters is crucial for
enhancing the efficiency of the folding flapping wing.

Keywords: folding motion; flapping wing; fluid–structure coupling; unsteady panel method;
propulsion efficiency

1. Introduction

Unlike fixed-wing aircraft, flapping wings have numerous degrees of freedom, en-
compassing various motions and deformations [1], such as active flapping and twisting,
passive torsional and bending deformations, and spanwise folding. These dynamic fea-
tures enable flapping wings to efficiently generate lift and thrust, thereby enhancing flight
performance [2]. Consequently, comprehending the impact of wing motions on flight
performance is pivotal in flapping-wing design. Given that the spanwise folding motion is
a primary characteristic of large birds in flight [3], this paper predominantly investigates
the influence of the folding motion combined with the wing’s passive torsional deformation
on performance.

Flapping wings with folding motions have been studied. Send [4] designed the
famous smart bird and utilized thin-plate theory and CFD software to study the unsteady
two-dimensional airfoil. Finally, experiments were applied to the analysis. Kim [5] built
a folding bird-like flapping wing, analyzed its performance using simple methods,
and conducted flight tests. Huang [6] employed the two-dimensional airfoil method
to solve the folding flapping wing’s aerodynamic forces and optimized the structural
parameters in the linkage mechanism. Han [7] applied the panel method to study the
unsteady aerodynamic force of the flapping wing and found that, compared with simple
up-and-down flapping, the wing combined with the folding motion can obtain greater
lift and thrust, but the wing twist was not considered. Yang [8] employed the unsteady
vortex lattice method to calculate the aerodynamic force of the folding ornithopter and
employed an optimization algorithm to optimize the shape and motion parameters to
maximize the average lift. Karimian [9] applied a simple two-dimensional lift line model
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and a linear beam element model to study the aeroelastic model of a flapping wing with
folding. He found that a wing with folding motion can improve flight performance and
propulsion efficiency, and that the phase of the movement of the outer wing has a great
influence on aerodynamic performance. Verstraete [10] utilized the unsteady vortex
lattice method and a linear finite element model to simulate a seagull-like flapping
wing with folding and studied the effect of folding on the flutter speed. Chang [11]
applied the method of solving the Navier–Stokes equations to calculate the folding-
flapping-wing model. The torsional deformation in the model was preset without
the fluid–structure interaction calculation. He found that lift and thrust were mainly
generated in the downward-flapping stage. Lang [12] applied commercial software
to solve N-S equations to study the effects of the folding parameters of a flat-panel
wing on its performance. Bie [13] also applied a commercial N-S equation solver to
study a bat-like folding flapping wing and analyzed the effects of the inner-to-outer
wing ratio. Ryu [14] experimentally studied the folding flapping wing with a four-bar
linkage mechanism and concluded that the folding motion of the wing is conducive to
the generation of lift. Chen [15] employed an experimental method to study the influence
of wing-folding amplitudes on the vertical aerodynamic force of a small flapping wing.
Qin [16] employed a PIV experiment to study the evolution and physical characteristics
of the tip vortex of a folding flapping wing.

The existing research exhibits numerous shortcomings. The design and manufacture
of folding flapping wings have basically relied on experiments and simple analysis meth-
ods, which makes it difficult to guide the design. Regarding analytical approaches, the
single-layer vortex lattice method is unable to compute the surface pressure coefficient; it
can only assess changes in lift and thrust, leaving the wing surface state unclear. However,
the surface pressure coefficient significantly influences the airfoil lift–drag ratio [17]. Al-
though the method of solving the N-S equations can accurately determine the aerodynamic
force, it is time-consuming and unsuitable for the initial design stage. Considering the
fluid–structure coupling problem further exacerbates the computational time, rendering it
impractical. Regarding research problems, the impact of folding on propulsion efficiency
has not been considered. Propulsion efficiency is, in fact, crucial for achieving efficient
flight. Studies seldom consider the effects of wing torsional deformation and the geometric
parameters of the wing itself, concentrating solely on the impact of the folding motion. This
oversight results in widespread separation on the wing surface, deviating from real-world
scenarios [18].

To address the shortcomings of current research, this article proposes a method for
solving the fluid–structure coupling problem of folding flapping wings. The unsteady three-
dimensional panel method is employed to calculate the wing surface pressure coefficient
and aerodynamic parameters, while the linear beam element model is utilized to account
for the outer wing’s passive torsional deformation, as shown in Figure 1. A kinematic
analysis of folding flapping wings with varying kinematic parameters is conducted. A dy-
namic analysis of folding flapping wings with different parameters undergoing passive
twisting due to aerodynamic forces is performed. Performance parameters such as the
lift coefficient, thrust coefficient, and propulsion efficiency are compared and analyzed.
Various aerodynamics throughout the period are compared, and the wing surface pressure
coefficients are analyzed. The influence of different parameters on the aerodynamic perfor-
mance of folding flapping wings is discussed, their mechanism is analyzed, and design
guidance is provided in the conclusion.
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Figure 1. Passive torsional deformation of folding flapping wing.

2. Theoretical Methods
2.1. Aerodynamic Model

This article employs the unsteady panel method to calculate the 3D aerodynamic
force. The panel method is an inviscid method that has been studied by many researchers.
Magnus [19] and Ashby [20] utilized high-order and low-order surface element methods to
calculate 3D aerodynamic forces, respectively. Similarly, Maskew [21] and Johnson [22] uti-
lized the panel method to establish a general program for solving wing aerodynamic forces.
Vest [18] utilized the panel method to study the flight performance of birds. The method in
this article originates from Hess [23], and Hess’s method is extended to unsteady situations.

As shown in Figure 2, the panel model consists of a wing panel and a wake panel.
The wing panel consists of a source panel and a dipole panel, and the wake panel consists
of only the dipole panel. The wing is divided into M portions in the chord direction and
N portions by N-lines in the spanwise direction. To save calculation time, the free-wake
model is not used, but the fixed-wake model described by Reichert [24] is employed.
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Figure 2. The 3D unsteady panel method.

The velocity (Neumann) boundary condition is employed as the boundary condition,
which means that the velocity normal to the wing surface is zero. For unsteady conditions,
the trailing edge of the wing must satisfy the unsteady Kutta condition [25], which is

[
Vt

up

]2

k
−

[
Vt

down
]2

k = 2

[
∂
(
Φdown − Φup

)
∂t

]
k

(1)
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where Vt is the tangential velocity, and Φ is the velocity potential of the trailing edge at
time step k. More details can be found in Reference [26].

2.2. Structural Model

To simulate the torsional deformation of the wing beam, a linear beam element model
is utilized. The local element stiffness matrix is [K]:

[K] =



12EI
l3 0 −6EI

l2
−12EI

l3 0 −6EI
l2

0 GJ
l 0 0 −GJ

l 0
−6EI

l2 0 4EI
l

6EI
l2 0 2EI

l
−12EI

l3 0 6EI
l2

12EI
l3 0 6EI

l2

0 −GJ
l 0 0 GJ

l 0
−6EI

l2 0 2EI
l

6EI
l2 0 4EI

l


where EI is the bending stiffness and GJ is the torsional stiffness of an element, and l is the
length of an element.

2.3. Aeroelastic Coupling

The unsteady aerodynamic force, the wing mass’s inertial force, and the beam’s
deformation internal force all achieve a dynamic balance during the flapping of the wings.
There is an interaction between the deformation of the wing and aerodynamic forces. Given
the data at time step k, the equilibrium equation at time step k + 1 can be solved:

[K]
→
q k+1 + [M]

..
→
q k+1 =

→
F k+1 (2)

where [K] is the stiffness matrix, [M] is the mass matrix,
→
q k+1 is the deformation displace-

ment, and
→
F k+1 is the force and moment on the beam. The Newmark-β method [27] is

utilized to solve this second-order equation. This method is unconditionally stable.

.
→
q k+1 =

.
→
q k +

[
(1 − δ)

..
→
q k + δ

..
→
q k+1

]
∆t (3)

→
q k+1 =

→
q k +

.
→
q k∆t +

[
(0.5 − λ)

..
→
q k +

..

β
→
q k+1

]
∆t2 (4)

2.4. Performance Parameters

The unsteady Bernoulli theorem [28] states that the pressure coefficient in unsteady
flows can be written as follows:

Cp =
p − p∞

(1/2)ρV2
∞

=

(
Vmove

V∞

)2
−

(
V

V∞

)2
− 2

V2
∞

∂Φ
∂t

(5)

where V is the velocity of the wing, V∞ is the far-field velocity, Φ is the velocity potential,
and Vmove is the motion velocity of the wing with respect to the global coordinate system.
The outer wing performs a pitching motion around the outer wing beam, accompanied
by a flapping motion around the axis of the tip of the inner wing, while the inner wing
flaps around the axis of the inner wing root. The torsional moment Mt(t), bending moment
Mb(t), vertical lift Fz(t), and horizontal thrust Fx(t) are all produced by the moving wing.
The wing’s output of power is as follows:

P(t) = Mb_in(t)·
.
βin(t) + Mb_out(t)·

.
βout(t) (6)

As shown in Figure 1, the wing consists of two parts: the inner wing and the outer
wing. βin(t) is the flapping angle of the inner wing, and βout(t) is the flapping angle of the
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outer wing. The bending moment at the wing root is Mb_in(t), while the bending moment
at the outer wing root is Mb_out(t).

Fx, Fz, and P are the following time-averaged quantities:

Fx =
1
T

∫ T

0
Fx(t)dt (7)

Fz =
1
T

∫ T

0
Fz(t)dt (8)

P =
1
T

∫ T

0
P(t)dt (9)

The dimensionless forms of these quantities are

Ct =
Fx

1/2ρV2
∞S

(10)

Cl =
Fz

1/2ρV2
∞S

(11)

CP =
P

1/2ρV3
∞S

(12)

Propulsion efficiency is defined as

ηP =
Ct

CP
(13)

2.5. Solver Validation
2.5.1. Aerodynamic Force

The unsteady aerodynamic force obtained with the present method was validated
with the numeral calculation described by Lin [29] on a flapping rectangular wing with
the airfoil NACA0014. It is solved by using the 3-dimensional Euler equations. The wing’s
maximum twisting angle is 4 degrees at the wing tip, and active twisting varies linearly
along the span with a phase lag of 90 degrees. As shown in Figure 3, the method employed
in this article yields results that closely match Lin’s calculations.
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2.5.2. Fluid–Structure Coupling

The aeroelastic response obtained with the present method was validated with the
flapping wing studied by DeLaurier [30]. DeLaurier performed computations and exper-
iments with the flapping wing he designed. Similar to the flapping wing in this article,
DeLaurier’s flapping wings are also passively twisted. All parameters are provided in
Reference [30] to facilitate the comparison of methods.

As shown in Figure 4a,b, compared with the calculations used by DeLaurier, the lift
coefficient and thrust coefficient calculated using this method are in good agreement with
the experiment. Since the non-stick model is used, there are still some differences, especially
when trailing-edge separation occurs on the outer wing after the period becomes small.
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Figure 4. Comparison of calculation results with Delaurier’s calculation and experimental results.
(a) Average lift; (b) average thrust; (c) torsion amplitude and phase angle; (d) flapping elastic
amplitude and phase angle.

As shown in Figure 4c, the maximum twist angle amplitudes Θmax along the inner
wing are almost the same, but there are some differences in the outer wing sections. The
phase angles Φθ between the twisting angle and flapping motion are slightly larger than
the results of DeLaurier. As shown in Figure 4d, compared to DeLaurier’s results, the
flapping elastic amplitudes Hmax are larger in the inner wing but smaller in the outer wing,
and their phase angles ΦH are marginally smaller. These deviations could result from a
mix of variations in the structural and aerodynamic models.
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3. Wing Model
3.1. Wing Calculation Model

The wings of the folding flapping wing are divided into two sections, namely, the
inner wing and the outer wing. The inner section is torsionally rigid and does not twist
with flapping, while the outer wing passively twists with flapping. At the same time, the
outer wing section performs a flapping motion relative to the inner section.

In this article, inertia force and aerodynamic force are responsible for the wing’s
passive torsion. The lift center on the airfoil is around 25% of the chord length to utilize the
aerodynamic force to produce torque on the beam as much as possible, and considering
the issues of the wing structure, the beam is placed at 10% of the chord line. It is assumed
that the beam is the only source of torsional stiffness. As shown in Figure 5a, the beam
elements are distributed into N portions along the span direction, which is consistent with
the aerodynamic panel. It is assumed that the wing’s mass is distributed by volume and
is discretely separated into mass locations at 10% of the chord behind the beam on the
chord line. As shown in Figure 5b, the forces and moments in the 2D wing profile, which
conducts pitching and plunging motions along the elastic axis, are depicted. The effective
angle of attack equals the angle of incidence plus the self-motion.
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3.2. Structural and Kinematic Parameters

The shape of the wing is inspired by the Canadian goose, which has a half wingspan
of 0.8 m, an aspect ratio of 12, a root chord length of 0.3 m, and a root-to-tip ratio of 2. The
flight velocity is 15 m/s, and the Reynolds number of the wing is from 367,500 to 183,750.
The flapping period is 0.33 s, the wing-tip Strouhal number St = 0.167, and the wing-tip
reduced frequency k = 0.0952 can be calculated. As shown in Figure 5a, the wing-root
and wing-tip airfoils are NACA8412 and NACA0012, respectively, and the remaining
portion of the wing has a linearly interpolated transition from the wing root to the wing
tip according to the parameters of the NACA airfoil family. The root airfoil’s angle of
incidence is 4 degrees. The airfoil must function within an appropriate angle of attack if the
flapping wing is intended to generate enough lift and thrust and have good propulsion
efficiency [18,31]. To balance the manufacturing difficulty and ensure that the wing has a
suitable torsion law, it is assumed that there is a linear relationship between the beam’s
cross-sectional diameter and wingspan; thus, the torsional stiffness is supposed to vary
with the wingspan to the fourth power. As shown in Figure 6b, the torsional stiffness GJ
represents torsional stiffnesses along the outer wing. Since this article discusses the effect
of spanwise folding on a flapping wing, the bending stiffness is assumed to be rigid to
exclude interference.
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The lengths of the inner and outer sections are, respectively, 0.45 and 0.55 of the total
span. For the convenience of discussion, the flapping motion of the inner/outer wing is
a simple harmonic motion. As shown in Figure 6a, the flapping motion law of the inner
wing is

βin(t) = βin_maxcos(ωt) (14)

and the flapping motion law of the outer wing relative to the inner wing is

βout(t) = βmean − βout_maxcos
(
ωt − ϕβ

)
where βin_max is the flapping amplitude of the inner wing, βmean is the mean folding
angle, βout_max is the folding angle amplitude of the outer wing, and ϕβ is the phase
difference between the flapping angles of the inner and outer wings. In order to show the
characteristics of folding flapping wings, βout_max = 30◦ is used, and the other parameters
are studied with different values.

4. Results and Discussion

To study the impact of different parameters on flight performance, a kinematic analysis
of folding flapping wings with different kinematic parameters was conducted based on
real bird flight postures. The flapping phase angles ϕβ are 0, 45, and 90 degrees, the inner
wing flapping angles βin_max are 20 and 30 degrees, and the average folding angles βmean
are 0 and 30 degrees. The different combinations are Case 1 to Case 9, as shown in Table 1.

Table 1. Combinations of different kinematic parameters.

βin_max = 20◦

βmean = 0◦
βin_max = 20◦

βmean = 30◦
βin_max = 30◦

βmean = 0◦
βin_max = 30◦

βmean = 30◦

ϕβ = 90
◦

Case 1 Case 2 Case 3 Case 4
ϕβ = 45

◦
Case 5 Case 6 Case 7 Case 8

ϕβ = 0
◦

Case 9 Case 10

4.1. Kinematic Analysis
4.1.1. Flapping Trajectory of the Folding Flapping Wing

The trajectories of the folding flapping wing during flapping are different due to
different kinematic parameters. Figure 7a shows the trajectory of the downward-flapping
stage in Cases 1 to 10, and Figure 7b shows the trajectory of the upward-flapping stage in
Cases 1 to 10.
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It can be seen that the average folding angle βmean affects the configuration of the
folded wing during flapping. When βmean = 0◦, the configuration of the wing at the highest
and lowest points is symmetrical with respect to half of the inner wing flapping angle, as in
Cases 1, 3, and 5. It is asymmetric when βmean is 30

◦
, as in Cases 2, 4, and 6. We expect that



Biomimetics 2024, 9, 42 10 of 20

the trajectory will be different during upward and downward flapping. If the outer wing
folds downward during upward flapping, the upward speed of the wing can be reduced,
and the loss of lift during upward flapping can be reduced. The configurations of real large
birds are asymmetric during flight.

As shown in Cases 1, 5, and 9, when the flapping angular phase ϕβ is small, the range
of movement and the unsteadiness of the outer wing become large. And the smaller ϕβ is,
the more similar the trajectories of the wing are during upward and downward flapping.
For example, the upward and downward trajectories in Cases 9 and 10 are exactly the same,
while the upward and downward trajectories in Cases 1 and 2 are different. It can be seen
from the density of the trajectory that the Case 1 and 2 velocities will be greater in the rear
part of the downward and upward flapping than that in the front part.

When the maximum flapping angle βin_max is large, the overall flapping angle is large,
and the unsteadiness of the entire wing is enhanced.

4.1.2. Velocity of Wing Tip

The wing is composed of two sections, and the outer section of the wing rotates around
the end of the inner section of the wing. As shown in Figure 8a, the flapping velocity at

the wing tip is the sum of the migration velocity
→
Vm and the relative velocity

→
Vr. The

coordinate of the wing tip at time t is
→
L tip = (y tip, ztip

)
, and the migration velocity of

the wing tip linked to the local coordinate system of the inner wing in the current wing
configuration is as follows:

→
Vm =

→
ωin ×

→
L tip (15)

The relative velocity of the outer wing relative to the inner wing is

→
Vr =

→
ωout ×

→
L out_r (16)

where →
L out_r =

→
L tip −

→
L in (17)

The sum of
→
Vm and

→
Vm is

→
V tip:

→
V tip =

→
Vm +

→
Vr (18)
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Figure 8b shows the flapping velocity of the wing tip with different kinematic param-
eters, where the positive and negative are based on the z-direction velocity. In general,
the curve of the velocity change with time is similar to a sinusoidal curve. It can be seen
that the larger the phase angle ϕβ, the smaller the velocity peak, which is similar to the
trajectory analysis. And the larger the ϕβ, the more lagging the phase. The smaller ϕβ is,
the closer it is to a simple synthesis of the inner and outer wing velocities. According to the
comparison between Cases 1 and 2, when βmean = 30◦, the velocity peak value is slightly
less than or equal to that at βmean = 0◦, but the difference is tiny. Obviously, when βn_max is
larger, the wing-tip velocity is larger. In general, the phase angle ϕβ has the greatest impact
on the wing-tip velocity.

4.2. Aerodynamic Performance

For Case 1 to Case 10, the changes in the lift coefficient, thrust coefficient, and propul-
sion efficiency with the initial geometric twist angle of the wing were studied. The initial
geometric twist angle is the twist change in the airfoil’s angle of incidence from the wing tip
to the wing root during initial manufacturing, and the initial geometric twist angle varies
linearly along the wingspan.

As shown in Figure 9a, the lift coefficient increases as the initial geometric twist
angle increases; this occurs because when the geometric twist angle increases, the average
angle of attack of the airfoil increases. In Cases 1, 3, 5, 7, and 9, it can be seen that when
βmean = 0◦, except for the initial geometric twist angle, the parameters have little impact
on the lift coefficient. This occurs because when βmean = 0◦, the configuration of the
two-section wing in the upward and downward phases is symmetrical. On the contrary,
it can be seen in Cases 2, 4, 6, and 8 that the asymmetry of the wing configuration during
the flapping period has a greater impact on the lift coefficient. The lift coefficient of the
asymmetric configuration is larger, which is consistent with the analysis in Figure 7. Due to
the difference in the inner wing flapping angle βin_max, the flapping trajectories during the
cycle are different due to the asymmetry caused by βmean. When βin_max is larger, the lift
coefficient will be larger, as shown in Cases 2 and 4. Phase ϕβ has no obvious effect on the
lift coefficient.

As shown in Figure 9b, the thrust coefficient first increases and then decreases as the
initial geometric twist angle increases. This occurs because the airfoil has the strongest
thrust generation capability near an average angle of attack of 0 degrees. The thrust
coefficients are obviously divided into three levels, with the highest in Cases 7 and 8. The
thrust coefficients in Cases 5 and 6 are slightly smaller than those in Cases 3, 4, 9, and 10,
and those in Cases 1 and 2 are the smallest. It can be seen that βmean has a small impact
on the thrust coefficient; the flapping angle βin_max and phase ϕβ have a greater impact
on the thrust coefficient. This is consistent with the discussion of the wing-tip flapping
velocity. The thrust coefficients in Cases 3 and 4 are larger than those in Cases 1 and 2 with
the same ϕβ, which means that the thrust coefficient is proportional to the βin_max angle.
This occurs because a large flapping angle indicates a high flapping velocity and strong
unsteadiness. With the same βin_max, the thrust coefficients in Cases 5 and 6 are larger
than those in Cases 1 and 2. Similar to the wing-tip flapping velocity analysis, a smaller
phase angle ϕβ of the outer wing means a higher flapping velocity. The thrust coefficient is
generally proportional to the flapping velocity of the outer wing.

As shown in Figure 9c, the propulsion efficiency first increases and then decreases as
the initial geometric twist angle increases. The propulsion efficiency distribution is similar
to the distribution of the thrust coefficient. The propulsion efficiency is high when the
thrust coefficient is big. A high thrust coefficient means a large maximum angle of attack of
the airfoil during the period. At high angles of attack, the lift-to-drag ratio of the airfoil
will drop sharply because of the airflow separation. The aerodynamic calculation method
in this article is an inviscid method that cannot simulate separation, but with the help of
the airfoil surface pressure, this can be discussed.
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4.3. Parameters within a Cycle

In order to further study the influence of kinematic parameters on folding flapping
wings, the changes in aerodynamic parameters during the period were examined. The
initial geometric twist angle of the wing was set to −4 degrees.

As shown in Figure 10a, the lift coefficient curve during the entire period is similar
to a sinusoidal curve. The lift coefficient is generally positive, but it is negative for a short
period during the upward phase. According to Cases 1, 5, and 9 or Cases 2, 6, and 10, the
larger the phase angle ϕβ, the more lagging the phase of the lift coefficient, and the smaller
the peak value of the lift coefficient. This is consistent with the wing-tip velocity shown in
Figure 8b. Comparing Cases 1 and 2, Cases 5 and 6, or Cases 9 and 10, it can be seen that
when βmean = 30◦, the phase of the maximum lift coefficient is advanced over that when
βmean = 0◦, but the phase of the minimum lift coefficient lags behind that when βmean = 0◦.
And it can be seen that the lift coefficient is larger when βmean = 30◦, which is consistent
with the conclusion in Figure 10a. The βmean significantly affects the lift coefficient during
the period. During the upward-flapping phase, the lift loss is reduced due to the wing’s
folding motion. It can be seen from Cases 1 and 3 or Cases 5 and 7 that a larger βin_max
means a larger range of the lift coefficient curve, and βin_max has little impact on the change
in phase.
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As shown in Figure 10b, the thrust coefficient curves have two peaks during the
period. The peak value in the downward phase is greater than the peak value in the
upward phase. The thrust coefficient is generally positive. Comparing Cases 1, 5, and
9 or Cases 2, 6, and 10, it can be seen that, similar to the case of the lift coefficient, the
smaller the flapping phase angle ϕβ, the larger the thrust coefficient, and the more lagging
the phase of the thrust coefficient. Comparing Cases 1 and 2, Cases 5 and 6, or Cases 9
and 10, it can be seen that when βmean = 30◦ and ϕβ ̸= 0◦, the thrust coefficient is slightly
larger than that when βmean = 0◦ in the downward phase but is smaller than that when
βmean = 0◦ in the upward phase. This shows that the asymmetric motion trajectory reduces
the thrust during the upward-flapping phase and concentrates the generation of thrust in
the downward-flapping phase. It can be seen from Cases 1 and 3 or Cases 5 and 7 that
a larger βin_max means a larger range of the thrust coefficient curve due to the increased
overall unsteadiness. And βin_max has little impact on the thrust coefficient curve phase.

As shown in Figure 11a, there is some relationship between the wing-tip twist angle
and lift coefficient curves. For different cases, when the range of the lift coefficient is large,
the range of the negative wing-tip twist angle will also be large. And the phase of the
wing-tip twist angle is consistent with the lift coefficient. The twist angle is positive during
the upward phase of flapping and negative during the downward phase for the wing’s lift
center is located behind the torsion center. The negative twist angles are significantly bigger
than the positive twist angles throughout the period because of the angle of incidence
and camber of the wing, which causes the positive lift to be substantially greater than the
negative lift. The outer wing’s maximum twist angles are displayed along its wingspan
in Figure 11b, where it can be seen that the twist angles are almost linear. Figure 11c
shows the maximum effective angle of attack along the wingspan. It can be seen that
the effective angle of attack of the inner wing increases linearly along the span, and due
to the torsional deformation of the outer wing, there is a sudden change in the effective
angle of attack of the outer wing and the inner wing. As shown in Figure 8b, there exists a
correlation between the maximum equivalent angle of attack and the wing-tip flapping
velocity, where a higher wing-tip flapping velocity corresponds to a higher effective angle
of attack. The maximum effective angle of attack does not exceed 15 degrees, which shows
that the method in this article is effective.



Biomimetics 2024, 9, 42 14 of 20
Biomimetics 2024, 9, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

 
(c) 

Figure 11. Twist angle and effective angle of attack along the span. (a) Wing-tip twist angle during 

the period; (b) maximum twist angles along the wingspan; (c) maximum effective angle of attack 

along the wingspan. 

4.4. Pressure Coefficient  

In order to further study the influence of kinematic parameters on flight performance, 

the surface pressure coefficient of the airfoil at 75% of the span during the period was 

studied. Since the inner section of the wing does not twist, the pressure coefficient of the 

inner wing is not discussed. In order to further show the characteristics of the airfoil sur-

face pressure coefficient, the pressure coefficient is studied at the maximum and minimum 

points of the lift coefficient curves, that is,  𝑡 𝑇 =⁄ 0.25 + 𝜙𝑚𝑎𝑥/2𝜋  and 𝑡 𝑇 =⁄ 0.75 +

𝜙𝑚𝑖𝑛/2𝜋. Due to the unsteadiness and the asymmetry of the folded-wing motion, the max-

imum and minimum lift coefficient points have phase angle deviations relative to the in-

ner wing flapping angle, which are 𝜙𝑚𝑎𝑥 and 𝜙𝑚𝑖𝑛, respectively, as shown in Figure 10a. 

The other two moments in the cycle are set to 𝑡 𝑇 =⁄ 0.5 + (𝜙𝑚𝑎𝑥 + 𝜙𝑚𝑖𝑛) 2⁄ 𝜋  and 

𝑡 𝑇 =⁄ 1 + (𝜙𝑚𝑎𝑥 + 𝜙𝑚𝑖𝑛) 2⁄ 𝜋. 

As shown in Figure 12, based on kinematic laws and the pressure coefficient distri-

bution, the suction peak of the pressure coefficient distribution means that the positive 

effective angle of attack of the airfoil is large when 𝑡 𝑇 =⁄ 0.25 + 𝜙𝑚𝑎𝑥/2𝜋 in Cases 1 and 

2, and the negative effective angle of attack is large when 𝑡 𝑇 =⁄ 0.75 + 𝜙𝑚𝑖𝑛/2𝜋. At the 

other two moments, the effective angle of attack of the airfoil is very small, generating 

almost no lift and thrust. Comparing Figure 12a,b, it can be seen that due to the different 

𝛽𝑚𝑒𝑎𝑛, the effective angle of attack of the airfoil in the cycle is greatly affected. Combined 

with Figures 8b and 9a, it shows that although 𝛽𝑚𝑒𝑎𝑛 has a small impact on the velocity, 

it can affect the effective angle of attack of the outer wing. Moreover, the average angle of 
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along the wingspan.

4.4. Pressure Coefficient

In order to further study the influence of kinematic parameters on flight performance,
the surface pressure coefficient of the airfoil at 75% of the span during the period was
studied. Since the inner section of the wing does not twist, the pressure coefficient of the
inner wing is not discussed. In order to further show the characteristics of the airfoil surface
pressure coefficient, the pressure coefficient is studied at the maximum and minimum
points of the lift coefficient curves, that is, t/T = 0.25+ ϕmax/2π and t/T = 0.75+ ϕmin/2π.
Due to the unsteadiness and the asymmetry of the folded-wing motion, the maximum
and minimum lift coefficient points have phase angle deviations relative to the inner
wing flapping angle, which are ϕmax and ϕmin, respectively, as shown in Figure 10a. The
other two moments in the cycle are set to t/T = 0.5 + (ϕmax + ϕmin)/2π and t/T = 1 +
(ϕmax + ϕmin)/2π.

As shown in Figure 12, based on kinematic laws and the pressure coefficient distri-
bution, the suction peak of the pressure coefficient distribution means that the positive
effective angle of attack of the airfoil is large when t/T = 0.25 + ϕmax/2π in Cases 1 and 2,
and the negative effective angle of attack is large when t/T = 0.75 + ϕmin/2π. At the other
two moments, the effective angle of attack of the airfoil is very small, generating almost
no lift and thrust. Comparing Figure 12a,b, it can be seen that due to the different βmean,
the effective angle of attack of the airfoil in the cycle is greatly affected. Combined with
Figures 8b and 9a, it shows that although βmean has a small impact on the velocity, it can
affect the effective angle of attack of the outer wing. Moreover, the average angle of attack
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during the period when βmean = 30◦ in Case 2 is biased toward the positive angle of attack
compared to that when βmean = 0◦ in Case 1, which makes the lift coefficient larger.
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Figure 12. Pressure coefficient at 75% of the wingspan in Case 1 and Case 2. (a) Pressure coefficient in
Case 1; (b) pressure coefficient in Case 2.

As shown in Figure 13, the effective positive angle of attack at t/T = 0.25 + ϕmax/2π
and the negative angle of attack at t/T = 0.75 + ϕmin/2π in Cases 3 and 4 both increase
significantly compared with those in Cases 1 and 2. The problem in Cases 3 and 4 is that
there is always a moment when the effective angle of attack is excessively large during the
upward or downward phase. This will aggravate the separation of the trailing edge of the
airfoil, and the lift-to-drag ratio will drop sharply, thus reducing the propulsion efficiency.
This situation should be avoided by adjusting the initial geometric twist angle.
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Figure 13. Pressure coefficient at 75% of the wingspan in Case 3 and Case 4. (a) Pressure coefficient in
Case 3; (b) pressure coefficient in Case 4.

As shown in Figure 14, the airfoil surface pressure coefficient in Cases 5 and 6 repre-
sents that the effective-angle-of-attack range of the airfoil is larger than that in Cases 1 and
2. Due to the smaller flapping phase angle ϕβ, the flapping velocity of the outer wing is
larger than that in Cases 1 and 2, which is consistent with the analysis in Figure 8b. And it
can also be seen in Figure 9 that the thrust coefficient and propulsion efficiency are much
larger than those in Cases 1 and 2. Comparing Cases 5 and 6 with Cases 1 and 2, the impact
of βmean is the same.
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As shown in Figure 15, as βin_max becomes larger, the pressure coefficient shows that
the maximum effective angle of attack in Cases 7 and 8 becomes excessively large compared
to that in Cases 5 and 6. From a practical perspective, such a large effective angle of attack
of the outer wing is not allowed during the flapping process [18].
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As shown in Figure 16, in Cases 9 and 10, the range of the effective angle of attack is
large when the phase angle ϕβ = 0◦ because the flapping velocity is large, according to
Figure 8b. But according to Figure 9, its thrust and propulsion efficiency are smaller than
those in Cases 3 and 4. Therefore, after paying the price of a large airfoil angle of attack
and severe airflow separation, Cases 9 and 10 have no advantages over Cases 3 and 4 in the
lift coefficient and thrust coefficient. When the flapping phase angle ϕβ = 0◦, although it is
beneficial to improve the flapping velocity of the outer wing, the outer wing is prone to
have an excessive angle of attack, and the thrust coefficient and propulsion efficiency are
not guaranteed.
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According to the above discussion, Cases 3 and 4 have advantages over Cases 9 and
10. Now, compare Cases 3 and 4 with Cases 5 and 6. When the initial geometric twist angle
is −4 degrees, there are some differences between the pressure coefficients in Figures 13
and 14. In order to make the comparison more convincing, the geometric twist angle in
Case 4 is set to −7 degrees. As shown in Figures 14b and 17, the range of the airfoil pressure
coefficient is almost the same, which means that the maximum effective angle of attack in
the cycle is almost the same. According to Figure 9, it can be seen that the lift coefficient,
thrust coefficient, and propulsion efficiency in Case 4 when the initial geometric twist angle
is −7 degrees are greater than those in Case 6 when the initial geometric twist angle is
−4 degrees. It can be concluded that a larger flapping phase angle ϕβ has benefits, which
can reduce the lift loss in the upward-flapping process of the folding flapping wing.
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Figure 17. Pressure coefficient at 75% of the wingspan in Case 4 with initial geometric twist angle of
−7 degrees.

The above-discussed results can be compared in Table 2 It can be seen that, excluding
Cases 7 and 8, whose equivalent angle of attack is excessively large, Case 4, with a geometric
twist angle of −7 degrees, has advantages over the other cases in terms of the lift coefficient,
thrust coefficient, and propulsion efficiency. The same conclusion can also be learned from
Figure 9.
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Table 2. Comparison of performance parameters.

θgeo
Case 1
−4

Case 2
−4

Case3
−4

Case 4
−4

Case 5
−4

Case 6
−4

Case 7
−4

Case 8
−4

Case 9
−4

Case 10
−4

Case 4
−7

Cl 0.540 0.586 0.536 0.623 0.540 0.575 0.536 0.618 0.543 0.541 0.575
Ct 0.0278 0.0274 0.0715 0.0694 0.0551 0.0520 0.112 0.104 0.0695 0.0625 0.0691
ηP 0.431 0.435 0.581 0.574 0.546 0.543 0.632 0.622 0.570 0.568 0.584

5. Conclusions

This article proposes a method for the rapid and accurate calculation of folding passive
torsional flapping wings during the early design stage. The unsteady three-dimensional
surface element method is employed to compute aerodynamic forces, the linear beam ele-
ment method is utilized to calculate torsional deformation, and the fluid–structure coupling
calculation is conducted using the Newmark-β method. Using various kinematic param-
eters, this article investigates the changing rules of the lift coefficient, thrust coefficient,
and propulsion efficiency as the initial geometric twist angle changes. It analyzes the lift
coefficient, thrust coefficient, and torsional deformation of the wing throughout the entire
period, along with the wing surface pressure coefficient at different moments. This article
draws the following conclusions:

1. Kinematic parameters significantly impact performance. The flapping phase angle ϕβ

between the inner and outer wings affects the movement velocity of the outer wing. A
larger ϕβ implies a smaller flapping velocity for the outer wing, resulting in a smaller
thrust coefficient and a more pronounced lag in the lift coefficient phase. A Larger ϕβ

also indicates asymmetry in the flapping trajectory.
2. The average folding angle βmean significantly influences the lift coefficient as it impacts

the trajectory of the flapping wing. When βmean is positive, the folding motion is
noticeable during the upward-flapping process, resulting in small lift loss and, conse-
quently, a larger lift coefficient during this phase. It has a minor impact on the thrust
coefficient and propulsion efficiency but greatly affects the effective angle of attack
of the outer wing. βmean should be designed to align with the initial geometric twist
angle. Otherwise, the airfoil’s angle of attack throughout the period might become
excessive, leading to severe airflow separation and reduced propulsion efficiency.

3. The flapping angle βin_max of the inner wing primarily influences the overall wing’s
unsteadiness. An increase in βin_max results in an elevation in the thrust coefficient,
but it may lead to an excessive effective angle of attack for the outer wing, reducing
the propulsion efficiency.

4. For folding flapping wings, there are principles for selecting kinematic parameters.
From the perspective of the lift coefficient, the folding motion should be applied to
reduce lift loss during the upward-flapping phase. The configuration of the wing
during the period should be asymmetrical, and a large flapping phase angle ϕβ and
a positive average folding angle βmean should be selected. Regarding the thrust
coefficient and propulsion efficiency, the generation of thrust should be concentrated
in the downward-flapping phase when the lift-to-drag ratio is high. So, a positive
βmean should be selected. The inner wing flapping angle βin_max can adjust the overall
unsteadiness of the wing and the thrust. The initial geometric twist angle can be
matched with the average folding angle βmean to maintain the airfoil’s effective angle
of attack within a reasonable range during upward and downward flapping.
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Nomenclature

Cl lift coefficient of the wing
Ct thrust coefficient of the wing
Cp pressure coefficient
ηP propulsion efficiency of the wing
βin flapping angle of inner wing
βout flapping angle of outer wing
βin_max flapping amplitude of the inner wing
βout_max flapping amplitude of the outer wing
βmean mean folding angle
Utip flapping velocity of the wing tip
GJ torsional stiffnesses of the beam
EI bending stiffnesses of the beam
ϕβ phase difference between the flapping angles of the inner and outer wings

ϕmax
phase angle deviations relative to the inner wing flapping angle at maximum lift
coefficient point

ϕmin
phase angle deviations relative to the inner wing flapping angle at maximum lift
coefficient point

θgeo initial geometric twist angle of the wing
θe f f effective angle of attack of wing
θmax maximum passive twisting angle of the wing
θtip passive twisting angle of the wing tip
Hmax flapping elastic amplitude of the wing
Φθ phase angles between twisting angle and flapping motion
ΦH phase angles between bending response and flapping motion
Φup velocity potential of the upper surface of the trailing edge
Φdown velocity potential of the upper surface of the trailing edge
k reduced frequency
St Strouhal number
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